Skip to main content

BIOGEOPHYSICS: THE EFFECTS OF MICROBIAL PROCESSES ON GEOPHYSICAL PROPERTIES OF THE SHALLOW SUBSURFACE

  • Conference paper
Applied Hydrogeophysics

Part of the book series: NATO Science Series ((NAIV,volume 71))

Abstract

The geologic record suggests the presence of microbes on Earth as early as the Precambrian (Hall-Stoodley et al., 2004). Microbes are involved in practically every aspect of earth evolution. The term microbe is a general descriptor for tiny organisms that individually are too small to be seen with the unaided eye. Microbes may include bacteria, archaea, fungi, and protists. Viruses are also included as a major type of microbe, although there is some debate whether viruses can be classified as living organisms. The role microbes play in altering environmental systems is well documented in many biogeochemical studies. Notable is the role of microbes in water-rock interactions (Chapelle and Bradley, 1997). Field observations and laboratory experiments suggest that bacteria can accelerate silicate weathering either by direct contact with minerals or by producing organic and inorganic acids that enhance the dissolution of silicates (Heibert and Bennett, 1992). Thus, microbes are able to directly alter mineral surface chemistry and pore water chemistry over short to geologic time scales. Microbial induced changes in water-rock-regolith environments over variable time scales cause changes in the physical properties of these environments that may be detected and measured using geophysical methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel Aal, G.Z., E.A. Atekwana, L.D. Slater, and E.A. Atekwana, 2004. Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments, Geophys. Res. Lett., 31 (12), L12505, doi: 10.1029/2004GL020030.

    Article  Google Scholar 

  • Abdel Aal, G.Z., L.D. Slater, and E.A. Atekwana, 2006. Induced-polarization measurements on unconsolidated sediments from a site of active hydrocarbon biodegradation, Geophys., 71, H13–H24, doi: 10.1190/1.2187760.

    Article  Google Scholar 

  • Aggarwal, P.K., and R.E. Hinchee, 1991. Monitoring in situ biodegradation of hydrocarbons by using carbon isotopes, Environ. Sci. Technol., 25, 1178–1180.

    Article  Google Scholar 

  • Atekwana, E., E.A. Atekwana, R.S. Rowe, D.D. Werkema, Jr., and F.D. Legall, 2004a. The relationship of total dissolved solids measurements to the bulk electrical conductivity in an aquifer contaminated with hydrocarbon, J. Appl. Geophys., 56, 281–294.

    Google Scholar 

  • Atekwana, E.A., E.A. Atekwana, D.D. Werkema, J.P. Allen, L.A. Smart, J.W. Duris, D.P. Cassidy, W.A. Sauck, and S. Rossbach, 2004b. Evidence for microbial enhanced electrical conductivity in hydrocarbon-contaminated sediments, Geophys. Res. Lett., 31, L2350.

    Google Scholar 

  • Atekwana, E.A., W.A. Sauck, G.Z. Abdel Aal, and D.D. Werkema, Jr., 2002. Geophysical investigation of vadose zone conductivity anomalies at a hydrocarbon contaminated site: Implications for the assessment of intrinsic bioremediation, J. Environ. Eng. Geophys., 7 (3), 102–110.

    Google Scholar 

  • Atekwana, E.A., W.A. Sauck, and D.D. Werkema, Jr., 2000. Investigations of geoelectrical signatures at a hydrocarbon contaminated site, J. Appl. Geophys., 44, 167–180.

    Article  Google Scholar 

  • Atekwana, E.A., D.D. Werkema, Jr., J.D. Duris , S. Rossbach , E.A. Atekwana, W.A. Sauck, D.P. Cassidy, J. Means, and F.D. Legall, 2004c. In situ apparent resistivity measurements and microbial population distribution at a hydrocarbon contaminated site: Implications for assessing natural attenuation, Geophysics, 69 (1), 56–63.

    Article  Google Scholar 

  • Balkwill, D.L., and D.R. Boone, 1997. Identity and diversity of microorganisms cultured from subsurface environments, in The Microbiology of the Terrestrial Deep Surface, edited by P.S. Amy and D.L. Haldeman, CRC, Boca Raton, FL, pp. 105–117.

    Google Scholar 

  • Bekins, B., B.E. Rittmann, and J.A. Macdonald, 2001. Natural attenuation strategy for groundwater cleanup focuses on demonstrating cause and effect, Eos, Trans, Am. Geophys. Union, 82 (5), 53–58.

    Article  Google Scholar 

  • Bennett, P.C., F.K. Hiebert, and W. Joo Choi, 1996. Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater, Chem. Geol., 132, 45–53.

    Article  Google Scholar 

  • Bermejo, J.L., W.A. Sauck, and E.A. Atekwana, 1997. Geophysical discovery of a new lnapl plume at the former Wurtsmith Afb, Oscoda, Michigan, Ground Water Monit. Rem., 17 (4), 131–137.

    Article  Google Scholar 

  • Bollinger, C., P. Hohener, D. Hunkeler, K. Haberli, and J. Zeyer, 1999. Intrinsic bioremediation of a petroleum hydrocarbon-contaminated aquifer and assessment of mineralization based on stable carbon isotopes, Biodegradation, 10 (201), 217.

    Google Scholar 

  • Bouwer, E.J., H.H.M. Rijnaarts, A.B. Cunningham, and R. Gerlach, 2000. Biofilms in porous media, in Biofilms Ii: Process Analysis And Applications, edited by J.D. Bryers, Wiley-Liss, pp. 123–158.

    Google Scholar 

  • Bradford, J.H., 2003. GPR offset dependent reflectivity analysis for characterization of a high-conductivity lnapl plume, in Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (Sageep ’03), April 6–10, San Antonio, TX, pp. 238–252.

    Google Scholar 

  • Bryar, T.R., and R. Knight, 2002. Sensitivity of nuclear magnetic relaxation measurements to changing soil redox conditions. Geophys. Res. Lett. 29, 2197.

    Article  Google Scholar 

  • Burton, M., E.A. Atekwana, and E. Atekwana, 2003. Mineral grain surface observations at hydrocarbon-contaminated aquifer: Implications for the electrical properties of soils, in Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (Sageep’03), April 6–10, San Antonio, TX., pp. 271–280.

    Google Scholar 

  • Cassidy, D.P., D.D. Werkema, W.A. Sauck, E.A. Atekwana, S. Rossbach, and J. Duris, 2001. The effects of LNAPL biodegradation products on electrical conductivity measurements, J. Environ. Eng. Geophys., 6, 47–52.

    Article  Google Scholar 

  • Chapelle, F.H., and P.M. Bradley, 1997. Alteration of aquifer geochemistry by microorganisms, in Hurst, 56Hurst, C.J., G.R. Knudsen, M.J. McInerney, L.D. Stetzenbach, and M.V. Walter (eds.), Manual of Environmental Microbiology, American Society for Microbiology, pp. 558–564. ASM Press, Washington, D.C.

    Google Scholar 

  • Cozzarelli, I.M., B.A. Bekins, M.J. Baedecker, G.R. Aiken, R.P. Eganhouse, and M.E. Tuccillo, 2001. Progression of natural attenuation processes at a crude oil spill site: I. Geochemical evolution of the plume, J. Contam. Hydrogeol., 53, 369–385.

    Article  Google Scholar 

  • Dojka, M.A., P. Hugenholtz, S.K. Haack, and P. Norman, 1998. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation, Appl. Environ. Microbiol., 3869–3877.

    Google Scholar 

  • Dunsmore, B.C., C.J Bass., and Lappin-ScottH.M., 2004. A novel approach to investigate biofilm accumulation and bacterial transport in porous matricies, Environ. Microbiol., 6 (2), 183–187.

    Article  Google Scholar 

  • Duris, J.W., 2002. Microbial communicty structure in hydrocarbon impacted sediment associated with anomalous geophysical signatures, M.S.Thesis, Western Michigan University, Kalamazoo, MI, 1–72.

    Google Scholar 

  • Gammack, S.M., E. Paterson, J. Kemp, M.S. Cresser, and K. Killham, 1992. Factors affecting the movement of microorganisms in soils, in Soil Biochemistry, edited by G. Stotzky and J.M. Bollag, Vol. 7, Marcel Dekker, New York, pp. 304–418.

    Google Scholar 

  • Goodman, A.E., and K.C. Marshall, 1995. Genetic responses of bacteria at surfaces, in Microbial Biofilms, edited by H.M. Lappin-Scott and J.W. Costerton, Cambridge University Press, Cambridge, UK, pp. 80–98.

    Google Scholar 

  • Hall-Stoodley, L., W.J. Costerton, and P. Stoodley, 2004. Bacterial biofilms: From the natural environment to infectious diseases, Nat. Rev./Microbiol., 2, 95–108, doi: 10.1038/nrmicro821.

    Article  Google Scholar 

  • Heibert, F.K., and P.C. Bennett, 1992. Microbial control of silicate weathering in organic-rich ground water, Science, 258, 278–281.

    Article  Google Scholar 

  • Legall, F.D., 2002. Geochemical and isotopic characteristics associated with high conductivities in a shallow hydrocarbon-contaminated aquifer, Ph.D. Dissertation, Western Michigan University, Kalamazoo, MI, 1–85.

    Google Scholar 

  • Lesmes, D.P., and K.M. Frye, 2001. Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea Sandstone, J. Geophys. Res., 106 (B3), 4079–4090.

    Article  Google Scholar 

  • Lovely, D.R., 1990. Magnetite Formation During Microbial Dissimilatory Iron Reduction, Iron Biominerals, edited by R.B. Frankel and R.P. Blakemore, Plenum, New York, pp. 151–166.

    Google Scholar 

  • Maier, R.M., I.L. Pepper, and C.P. Gerba, 2000. Environmental Microbiology, Academic , San Diego, CA, pp. 156–157.

    Google Scholar 

  • Mann, S., J. Webb, and R.J.P. Williams (eds), 1989. Biomineralization: Chemical and Biochemical Perspectives, VCH, New York, pp. 1–385.

    Google Scholar 

  • Marshall, K.C., 1976. Interfaces in Microbiol Ecology, Harvard University Press, Cambridge, Mass, pp. 44–47.

    Google Scholar 

  • Marshall, K.C., 1985. Mechanisms of bacterial adhesion at solid–water interfaces, in Bacterial Adhesion, edited by D.C. Savage and M. Fletcher, Plenum, New York, pp. 133–161.

    Google Scholar 

  • Marshall, K.C., 1992. Biofilms: An overview of bacterial adhesion, activity, and control at surfaces, Am. Soc. Microbiol. News, 58, 202–207.

    Google Scholar 

  • Mcmahon, P.B., D.A. Vroblesky, P.M. Bradely, F.H. Chapelle, and C.D. Gullet, 1995. Evidence for enhanced mineral dissolution in organic acid-rich shallow ground water, Ground Water, 33 (2), 207–216.

    Article  Google Scholar 

  • Moskowitz, B.M., R.B. Frankel, and D.A. Bazylinski, 1993. Rock magnetic criteria for the detection of biogenic magnetite, Earth Planet. Sci. Lett., 120, 283–300.

    Article  Google Scholar 

  • Naudet, V., A. Revil, J.Y. Bottero, and P. Begassat, 2003. Relationship between self-potential (sp) signals and redox conditions in contaminated groundwater, Geophys. Res. Lett., 30 (21), 2091.

    Article  Google Scholar 

  • Naudet, V., and A. Revil, 2005. A sandbox experiment to investigate bacteria-mediated redox processes on self-potential signals, Geophys. Res. Lett., 32, doi: 10.1029/2005gl022735.

    Google Scholar 

  • Newby, D.T., I.L. Pepper, and R.M. Maier, 2000. Microbial Transport in Environmental Microbiology, edited by R.M. Maier, I.L. Pepper, and C.P. Gerba, Academic, New York, 585 p.

    Google Scholar 

  • Ntarlagiannis, D., K.H. Williams, L.D. Slater, and S.S. Hubbard, 2005a. Low frequency electrical response to microbial induced sulfide precipitation, J. Geophys. Res., 110, G02009, doi: 10.1029/2005JG000024.

    Article  Google Scholar 

  • Ntarlagiannis, D., N. Yee, L. Slater, and E.A. Atekwana, 2005b. Electrical measurements on microbial cells in suspension and in sand columns, Eos Trans. AGU, 86 (18), Jt. Assem. Suppl., May 23–27, Abstract Ns51b-06.

    Google Scholar 

  • Nyquist, J.E., and C.E. Corry, 2002. Self-potential: The ugly duckling of environmental geophysics, The Leading Edge, 21, 446–451.

    Article  Google Scholar 

  • Park, D.H., and J.G. Zeikus, 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore, Appl. Environ. Microbiol., 66 (4), 1292–1297.

    Article  Google Scholar 

  • Prodan, C., F. Mayo, J.R. Claycomb, J.H. Miller, and M.J. Benedik, 2004. Low frequency, low-field dielectric spectroscopy of living cell suspensions, J. Appl. Phys. 95 (7), 3754–3756.

    Article  Google Scholar 

  • Redman, J.A., S. Walker, and M. Elimelech, 2004. Bacterial adhesion and transport in porous media: Role of the secondary energy minimum, Environ. Sci. Technol., 38, 1777–1785.

    Article  Google Scholar 

  • Robert, M., and C. Chenu, 1992. Interactions between soil minerals and microorganisms, in Soil Biochemistry, edited by G. Stotzky and J.M. Bollag, Vol. 7, Marcel Dekker, New York, pp. 307–418.

    Google Scholar 

  • Sauck, W.A., E.A. Atekwana, and M.S. Nash, 1998. High conductivities associated with an lnapl plume imaged by integrated geophysical techniques, J. Environ. Eng. Geophys., 2 (3), 203–212.

    Google Scholar 

  • Sauck, W.A., 2000. A conceptual model for the geoelectrical response of LNAPL plumes in granular sediments. J. Appl. Geophys., 44, 151–165.

    Article  Google Scholar 

  • Shevnin, V., A. Mousatov, E. Nakamura-Labastida, O. Elgado-Rodriquez, J. Sanche-Osi, and H. Sanchez-Osio, 2003. Study of oil pollution in airports with resistivity sounding, in Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (Sageep 2003), San Antonio, TX., Paper Con02, pp. 180–189.

    Google Scholar 

  • Stoodley, P., R. Cargo, C.J. Rupp, S. Wilson, and I. Klapper, 2002. Biofilm mechanics and shear-induced deformation and detachment. J. Ind. Microbiol. Biotechnol. 29, 361–368.

    Article  Google Scholar 

  • Stumm, W., and J.J. Morgan, 1995. Aquatic Chemistry: Chemical Equilibria and Rates in Natrual Waters, 3rd edition. New York: John Wiley and Sons.

    Google Scholar 

  • Turco, R.F., and M. Sadowsky, 1995. The microfloral of bioremediation, in Bioremediation: Science and Applications, edited by H.D. Skipper and R.F. Turco, Special Publication No. 43, Soil Science Society of America, Madison, WI., pp. 87–102.

    Google Scholar 

  • Van Der Wal, A., M. Minor, W. Norde, A.J.B. Zehnder, and J. Lyklema, 1997a. Conductivity and dielectric dispersion of gram-positive bacterial cells, J. Colloidal Interfacial Sci., 186, 71–79.

    Article  Google Scholar 

  • Van Der Wal, A., M. Minor, W. Norde, A.J.B. Zehnder, and J. Lylkema, 1997b. Electrokinetic potential of bacterial cells, Langmuir, 13, 165–271.

    Article  Google Scholar 

  • Van Loosdrecht, M.C.M., J. Lyklema, A.J. Norde, and B. Zehnder, 1990. Influence of interfaces on microbial activity, Microbiol. Rev., 54, 75–87.

    Google Scholar 

  • Werkema, D.D., E.A. Atekwana, A.L. Endres, W.A. Sauck, and D.P. Cassidy, 2003. Investigating the geoelectrical response of hydrocarbon contamination undergoing biodegradation, Geophys. Res. Lett., 30 (12), 1647.

    Article  Google Scholar 

  • Williams, K H., D. Ntarlagiannis, L.D. Slater, P. Long, A. Dohnalkova, S.S. Hubbard, and J.F. Banfield, 2004. Remote sensing of subsurface microbial transformations, Eos Trans., AGU, Abstract B51f-01.

    Google Scholar 

  • Williams, K.H., D. Ntarlagiannis, L.D. Slater, A. Dohnalkova, S.S. Hubbard, and J.F. Banfield, 2005. Geophysical imaging of stimulated microbial mineralization, Environ. Sci. Technol., 39, 7592–7600.

    Article  Google Scholar 

  • Wolfaardt, G.M., J.R. Lawrence, R.D. Robarts, S.J. Caldwell, and D.E. Caldwell, 1994. Multicellular organization in a degradative biofilm community, Appl. Environ. Microbiol., 60, 434–446.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Atekwana, E.A., Werkema, D.D., Atekwana, E.A. (2006). BIOGEOPHYSICS: THE EFFECTS OF MICROBIAL PROCESSES ON GEOPHYSICAL PROPERTIES OF THE SHALLOW SUBSURFACE. In: Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K. (eds) Applied Hydrogeophysics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4912-5_6

Download citation

Publish with us

Policies and ethics