Skip to main content

UNSATURATED ZONE PROCESSES

  • Conference paper
Applied Hydrogeophysics

Part of the book series: NATO Science Series ((NAIV,volume 71))

Abstract

The vadose zone, i.e., the part of subsurface above thewater table, is home to a number of key processes that control the mass and energy exchanges between the subsurface and the atmosphere. Vadose zone hydrology provides boundary conditions for both atmospheric processes, including micro-meteorology and climatic changes, and subsurface water migration, with strong implications in water resources management. The rates, timing, and patterns of aquifer recharge are controlled by percolation through the vadose zone. Contaminants released near the ground surface can be altered, retarded or wholly removed by biological, chemical and physical processes in the vadose zone before reaching underlying aquifers. Unsaturated processes control also the availability of water for agriculture, and are the driving mechanisms in slope stability, floods and other major engineering geology problems. Fewhydrological problems of practical interest can neglect the importance of the complex, non linear dynamics of vadose zone processes. However, in practice, the impact of the vadose zone on hydrologic problems is often ignored or treated using highly simplified approximations, mainly because of limited available data in this region. A proper characterization of the vadose zone should also account for the natural variability of the soil properties at different scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alumbaugh, D.L., P.Y. Chang, L. Paprocki, J.R. Brainard, R.J. Glass, and C.A. Rautman, 2002. Estimating moisture contents in the vadose zone using cross-borehole ground penetrating radar: A study of accuracy and repeatability, Water Resour. Res. 38(1), 1309, doi: 10.1029/2001WR000754.

    Article  Google Scholar 

  • Annan, A.P., 2005. GPR methods for hydrogeological studies, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, Series: Water Science and Technology Library, Vol. 50, 523 pp.

    Google Scholar 

  • Archie, G.E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME, 146, 54–67.

    Google Scholar 

  • Arcone, S.A., P.R. Peapples, and L. Liu, 2003. Propagation of a ground-penetrating radar (GPR) pulse in a thin surface waveguide, Geophysics, 68 (3), 1922–1933.

    Article  Google Scholar 

  • Barker, R., and J. Moore, 1998. The application of time-lapse electrical tomography in groundwater studies, The Leading Edge, 1454–1458.

    Google Scholar 

  • Becht A., E. Appel, and P. Dietrich, in press. Analysis of multi-offset GPR data: a case study in a coarse-grained gravel aquifer, Near Surface Geophysics.

    Google Scholar 

  • Benderitter, Y., and J.J. Schott, 1999. Short time variation of the resistivity in an unsaturated soil: The relationship with rainfall, European J. Environ. Eng. Geophys., 4, 37–49.

    Google Scholar 

  • Bevan, M.J., A.L. Endres, D.L. Rudolph, and G. Parkin, 2003. The non-invasive characterization of pumping-induced dewatering using ground-penetrating radar, J. Hydrol., 281, 55–69.

    Article  Google Scholar 

  • Binley, A., S. Henry-Poulter, and B. Shaw, 1996. Examination of solute transport in an undisturbed soil column using electrical resistance tomography, Water Resour. Res., 32(4), 763–769.

    Article  Google Scholar 

  • Binley, A., P. Winship, R. Middleton, M. Pokar, and J. West, 2001. High resolution characterization of vadose zone dynamics using cross-borehole radar, Water Resour. Res. 37 (11), 2639–2652.

    Article  Google Scholar 

  • Binley, A., P. Winship, L.J. West, M. Pokar, and R. Middleton, 2002a. Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles, J. Hydrol., 267 (3–4), 160–172.

    Article  Google Scholar 

  • Binley, A.M., G. Cassiani, R. Middleton, and P. Winship, 2002b. Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging, J. Hydrol., 267, 147–159.

    Article  Google Scholar 

  • Binley, A.M., G. Cassiani, and P. Winship, 2004. Characterization of Heterogeneity in Unsaturated Sandstone Using Borehole Logs and Cross Borehole Tomography, edited by J. Bridge and D. W. Hyndman, SEPM (Society for Sedimentary Geology), Special Publication No. 80, Aquifer characterization, 176 pp.

    Google Scholar 

  • Binley, A.M., and A. Kemna, 2005. DC Resistivity and Induced Polarization methods, in edited by Y. Rubin and S.S. Hubbard, Hydrogeophysics, Springer, Series: Water Science and Technology Library, Vol. 50, 523 pp.

    Google Scholar 

  • Bohidar, R.N., and J.F. Hermance, 2002. The GPR refraction method, Geophysics, Vol. 67, No. 5, pp. 1474–1485.

    Article  Google Scholar 

  • Brovelli, A., G. Cassiani, E. Dalla, F. Bergamini, D. Pitea, and A.M. Binley, 2005. Electrical properties of partially saturated sandstones: novel computational approach with hydro-geophysical applications, Water Resour. Res., 41 (3), W03005, doi: 10.1029/2004WR003382.

    Article  Google Scholar 

  • Burbery L., G. Cassiani, G. Andreotti, T. Ricchiuto, and K.T. Semple, 2004. Well test and stable isotope analysis for the determination of sulphate-reducing activity in a fast aquifer contaminated by hydrocarbons, Environ. Pollut., 129 (2), 321–330.

    Article  Google Scholar 

  • Chan, C. Y., and R. J. Knight, 1999. Determining water content from dielectric measurements in layered materials, Water Resour. Res., 35, 85–93.

    Article  Google Scholar 

  • Chand, R., S. Chandra, V.A. Rao, V.S. Singh, and S.C. Jain, 2004. Estimation of natural recharge and its dependency on sub-surface geoelectric parameters, J. Hydrol., 299, 67–83.

    Article  Google Scholar 

  • Chanzy, A., A. Tarussov, A. Judge, and F. Bonn, 1996. Soil water content determination using digital ground penetrating radar, Soil Sci. Soc. Am. J., 60, 1318–1326.

    Article  Google Scholar 

  • Chelidze, T., and Y. Guéguen, 1999. Electrical spectroscopy of porous rocks: a review – I. theoretical models, Geophys. J. Int., 137, 1–15.

    Article  Google Scholar 

  • Dahan, O., E.V. McDonald, and M.H. Young, 2003. Flexible time domain reflectometry probe for deep vadose zone monitoring, Vadose Zone J., 2, 270–275.

    Google Scholar 

  • Daily, W.D., A.L. Ramirez, D.J. LaBrecque, and J. Nitao, 1992. Electrical resistivity tomography of vadose water movement, Water Resour. Res., 28, 1429–1442.

    Article  Google Scholar 

  • Daily, W, A. Ramirez, A. Binley, and D. LaBrecque, 2004a. Electrical resistance tomography, The Leading Edge, 23 (4), 438–442.

    Article  Google Scholar 

  • Daily, W., A. Ramirez, and A. Binley, 2004b. Remote Monitoring of Leaks in Storage Tanks using Electrical Resistance Tomography: Application at the Hanford Site, J. Environ. Eng. Geophys., 9(1), 11–24.

    Article  Google Scholar 

  • Das, B.S., J.M. Wraith, and W.P. Inskeep, 1999. Nitrate concentrations in root zone estimated using time domain reflectometry, Soil Sci. Soc. Am. J., 63, 1561–1570.

    Article  Google Scholar 

  • Day-Lewis, F., K. Singha, and A. Binley, 2005. On the Limitations of Applying Petrophysical Models to Tomograms: A Comparison of Correlation Loss for Cross-Hole Electrical-Resistivity and Radar Tomography, J. Geophys. Res., 110 (B8), B08206, doi: 10.1029/2004JB003569.

    Article  Google Scholar 

  • Eppstein, M.J., and D.E. Dougherty, 1998. Efficient three-dimensional data inversion: Soil characterization and moisture monitoring from cross-well ground-penetrating radar at the Vermont test site, Water Resour. Res., 34 (9), 1889–1900.

    Article  Google Scholar 

  • Ferré, T.P.A., G. von Glinski, and L.A. Ferré, 2003. Monitoring the maximum depth of drainage in response to pumping using borehole ground penetrating radar, Vadose Zone J., 2, 511–518.

    Google Scholar 

  • French, H.K., C. Hardbattle, A. Binley, P. Winship, and L. Jakobsen, 2002. Monitoring snowmelt induced unsaturated flow and transport using electrical resistivity tomography, J. Hydrol., 267 (3–4), 273–284.

    Article  Google Scholar 

  • French, H., and A. Binley, 2004. Snowmelt infiltration: Monitoring temporal and spatial variability using time-lapse geophysics, J. Hydrol., 297, 174–186.

    Article  Google Scholar 

  • Frohlich, R.K., and C.D. Parke, 1989. The electrical resistivity of the vadose zone – field survey, Ground Water, 27 (4), 524–530.

    Article  Google Scholar 

  • Gerlitz, K., M.D. Knoll, G.M. Cross, R.D. Luzitano, and R. Knight, 1993. Processing ground penetrating radar data to improve resolution of near-surface targets, in Symposium on the Application of Geophysics to Engineering and Environmental Problems (SA GEEP’93), San Diego, CA, pp. 561–574.

    Google Scholar 

  • Hagrey, S.A. al, and J. Michaelsen, 1999. Resistivity and percolation study of preferential flow in vodose zone at Bokhorst, Germany, Geophysics, 64 (3), 746–753.

    Article  Google Scholar 

  • Hardage, B.A., 2000. Vertical Seismic Profiling: Principles, Third updated and revised edition, Handbook of Geophysical Exploration, Vol. 14, Pergamon.

    Google Scholar 

  • Heimovaara, T.J., A.G. Focke, W. Bouten, and J.M. Verstraten, 1995. Assessing temporal variations in soil water composition with time domain reflectometry, Soil Sci. Soc. Am. J., 59, 689–698.

    Article  Google Scholar 

  • Hubbard, S.S., J.E. Peterson Jr., E.L. Majer, P.T. Zawislanski, K.H. Williams, J. Roberts, and F. Wobber, 1997. Estimation of permeable pathways and water content using tomographic radar data, The Leading Edge, 16 (11), 1623–1628.

    Article  Google Scholar 

  • Huisman, J.A., C. Sperl, W. Bouten, and J.M. Verstraten, 2001. Soil water content measurements at different scales: Accuracy of time domain reflectometry and ground-penetrating radar, J. Hydrol., 245, 48–58.

    Article  Google Scholar 

  • Huisman, J.A., S.S. Hubbard, J.D. Redman, and A.P. Annan, 2003. Measuring soil water content with ground penetrating radar: A review, Vadose Zone J., 2, 476–491.

    Google Scholar 

  • Kalinski, R.J., W.E. Kelly, I. Bogardi, and G. Pesti, 1993. Electrical-resistivity measurements to estimate travel-times through unsaturated ground-water protective layers, J. Appl. Geophys., 30 (3), 161–173.

    Article  Google Scholar 

  • Kean, W.F., M.J. Waller, and H.R. Layson, 1987. Monitoring moisture migration in the vadose zone with resistivity, Ground Water, 27 (4), 562–561.

    Article  Google Scholar 

  • Klute, A., and C. Dirksen, 1986. Methods of Soil Analysis, Part I, in edited by A. Klute and C. Dirksen, ASA and SSSA, Madison, WI pp. 771–798.

    Google Scholar 

  • Knoll, M.D., and W.P. Clement, 1999. Vertical radar profiling to determine dielectric constant, water content and porosity values at well locations, Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP’99), pp. 821–830.

    Google Scholar 

  • Kobr, M., S. Mares, and F. Paillet, 2005. Geophysical well logging, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, Series: Water Science and Technology Library, Vol. 50, 523 pp.

    Google Scholar 

  • Kool, J.B., J.C. Parker, and M.T. van Genuchten, 1985. Determining soil hydraulic properties from one-step outflow experiments by parameter estimation: Theory and numerical studies, Soil Sci. Soc. Am. J., 49, 1348–1354.

    Article  Google Scholar 

  • Lambot, S., M. Javaux, F. Hupet, and M. Vanclooster, 2002. A global multilevel coordinate search procedure for estimating the unsaturated soil hydraulic properties, Water Resour. Res., 38 (11), 1224, doi: 10.1029/2001WR001224.

    Article  Google Scholar 

  • Lambot, S., E.C. Slob, I. van den Bosch, B. Stockbroeckx, B. Scheers, and M. Vanclooster, 2004. Estimating soil electric properties from monostatic ground-penetrating radar signal inversion in the frequency domain, Water Resour. Res., 40, W04205, doi: 10.1029/2003WR002095.

    Article  Google Scholar 

  • Lambot, S., E.C. Slob, I. van den Bosch, B. Stockbroeckx, and M. Vanclooster, 2004b. Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties, IEEE Trans. Geosci. Remote Sens., 42, 2555–2568.

    Article  Google Scholar 

  • Lambot, S., M. Antoine, I. van den Bosch, E.C. Slob, and M. Vanclooster, 2004c. Electromagnetic inversion of GPR signals and subsequent hydrodynamic inversion to estimate effective vadose zone hydraulic properties, Vadose Zone J., 3, 1072–1081.

    Google Scholar 

  • Linde, N.J., J. Chen, M. Kowalsky, and S. Hubbard, 2006. Hydrogeophysical parameter estimation for field characterization, in this book.

    Google Scholar 

  • Lizarralde, D., and S. Swift, 1999. Smooth inversion of VSP traveltime data, Geographics, 64 (3), 659–661.

    Google Scholar 

  • Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 513–522.

    Google Scholar 

  • Nakashima, Y., H. Zhou, and M. Sato, 2001. Estimation of groundwater level by GPR in an area with multiple ambiguous reflections, J. Appl. Geophys., 47, 241–249.

    Article  Google Scholar 

  • Noborio, K., 2001. Measurement of soil water content and electrical conductivity by time domain reflectometry: A review, Comput. Electronics Agric., 31, 213–237.

    Article  Google Scholar 

  • Panissod, C., D. Michot, Y. Benderitter, and A. Tabbagh, 2001. On the effectiveness of 2D electrical inversion results: An agricultural case study, Geophys. Prospect., 49, 570–576.

    Article  Google Scholar 

  • Park, S., 1998. Fluid migration in the vadose zone from 3-D inversion of resistivity monitoring data, Geophysics, 63 (1), 41–51.

    Article  Google Scholar 

  • Parkin, G.W., R.G. Kachanoski, D.E. Elrick, and R.G. Gibson, 1995. Unsaturated hydraulic conductivity measured by time-domain reflectometry under a rainfall simulator, Water Resour. Res., 31 (3), 447–454.

    Article  Google Scholar 

  • Ramirez, A., and W. Daily, 2001. Electrical imaging at the large block test – Yucca Mountain, Nevada, J. Appl. Geophys., 46, 85–100.

    Article  Google Scholar 

  • Rhoades, J.D., P.A.C. Raats, and R.J. Prather, 1976. Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity, Soil Sci. Soc. Am. J., 40, 651–655.

    Google Scholar 

  • Richards, L.A., 1928. The usefulness of capillary potential to soil-moisture and plant investigators, J. Agric. Res., 37, 719–742.

    Google Scholar 

  • Robinson, D.A., and S.P. Friedman, 2003. A method for measuring the solid particle permittivity or electrical conductivity of rocks, sediments, and granular materials, J. Geophys. Res. B, 108 (B2), 2076.

    Google Scholar 

  • Robinson, D.A., S.B. Jones, J.W. Wraith, D. Or, and S.P. Friedman, 2003. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry, Vadose Zone J., 2, 444–475.

    Google Scholar 

  • Roth, K., R. Schulin, H. Fluhler, and W. Hattinger, 1990. Calibration of time domain reflectometry for water content measurements using a composite dielectric approach, Water Resour. Res., 26 (10), 2267–2273.

    Article  Google Scholar 

  • Rucker, D.F., and Ty P. A. Ferre, 2004. Correcting water content measurement errors associated with critically refracted first arrivals on zero offset profiling borehole ground penetrating radar profiles, Vadose Zone J., 3, 278–287.

    Article  Google Scholar 

  • Rubin, Y. and S.S. Hubbard (eds.), 2005. Hydrogeophysics, Springer Series: Water Science and Technology Library, Vol. 50, 523 pp.

    Google Scholar 

  • Siggins, A.F., 1992. Limitations of shallow cross-hole radar investigations, Fourth Intern. Conf. on GPR, Rovaniemi, Finland, Geological survey of Finland, special paper 16, pp. 307–315.

    Google Scholar 

  • Slater, L., Zaidman, M.D., Binley, A.M., and West, L.J., 1997. Electrical imaging of saline tracer migration for the investigation of unsaturated zone transport mechanisms, Hydrol. Earth Syst. Sci., 1, 291–302.

    Article  Google Scholar 

  • Steeples, D., 2005. Shallow Seismic Methods, in edited by Y. Rubin and S.S. Hubbard, Hydrogeophysics, Springer, Series: Water Science and Technology Library, Vol. 50, 523 pp.

    Google Scholar 

  • Strobbia, C., 2003. Surface wave method. Acquisition, processing and inversion, PhD Thesis, Politecnico di Torino, Turin, Italy.

    Google Scholar 

  • Topp, G.C., J.L. Davis, and A.P. Annan, 1980. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines, Water Resour. Res., 16, 574–582.

    Article  Google Scholar 

  • Topp, G.C., J.L. Davis, and A.P. Annan, 1982. Electromagnetic determination of soil water content using TDR, 2: Evaluation of installation and configuration of parallel transmission lines, Soil Sci. Soc. Am. J., 46 (4), 678–684.

    Article  Google Scholar 

  • Valla, P., and U. Yaramanci, 2002. Surface nuclear magnetic resonance: What is possible?, J. Appl. Geophys., 50(1–2), Special Issue, May 2002.

    Google Scholar 

  • van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898.

    Article  Google Scholar 

  • Waxman, M., and L. Smits, 1968. Electrical conductivities in oil-bearing shaly sands, Soc. Pet. Eng. J., 107–122.

    Google Scholar 

  • West, L.J., K. Handley, Y. Huang, and M. Pokar, 2003. Radar frequency dielectric dispersion in sandstone: Implications for determination of moisture and clay content, Water Resour. Res., 39 (2), 1026, doi: 10.1029/2001WR000923.

    Article  Google Scholar 

  • Zaidman, M.D., R.T. Middleton, L.J. West, and A.M. Binley, 1999. Geophysical investigation of unsaturated zone transport in the Chalk in Yorkshire. Part 2, Q. J. Eng. Geol. Hydrogeol., 32, 185–198.

    Google Scholar 

  • Zhou, Q.Y., J. Shimada, and A. Sato, 2001. Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography, Water Resour. Res., 37 (2), 273–285.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Cassiani, G., Binley, A., Ferré, T.P. (2006). UNSATURATED ZONE PROCESSES. In: Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K. (eds) Applied Hydrogeophysics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4912-5_4

Download citation

Publish with us

Policies and ethics