Skip to main content

DEVELOPMENT OF METHODS AND EQUIPMENT FOR DETECTION OF EXPLOSIVES’ VAPORS IN THE ATMOSPHERE WITH LASER

  • Conference paper
Detection and Disposal of Improvised Explosives

Part of the book series: NATO Security through Science Series ((NASTB))

Abstract

Nowadays a lot of attention is being paid on the development of methods and instrumentation for detection of traces of explosives in the atmosphere. This necessity is caused by numerous cruel and inhuman acts of terrorism, which are being carried out throughout the world. Often terrorists’ attacks are carried out by suicide-bombers, who are usually indistinguishable from other people in the crowd. In this connection, methods of standoff detection of traces of explosives in the air are of particular interest, since they can provide the possibility of non-contact (secret) detection of explosives or a suicide bomber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christesen, S., M. Carrabba, and J. Bello. 2002. Nonintrusive Raman analysis of chemical agents. Vibrational Spectroscopy-Based Sensor Systems, Proceedings of SPIE- The International Society for Optical Engineering, Vol. 4577, p. 287–293.

    CAS  Google Scholar 

  2. Ioan Balinl, Valentin Simeonov, Ilia Serikov, Sergei Bobrovnikov, Bertrand Calpini, Yuri Arshinov and Hubert van den Bergh. Simultaneous measurement of temperature, water vapor, aerosol extinction and backscatter by Raman lidar. Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), 12–16 July 2004, Matera, Italy. Gelsomina Pappalardo, Aldo Amodeo-Editors.

    Google Scholar 

  3. T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation Followed by Laser- Induced Fluorescence at Atmospheric Pressure and 24oC: A unique Scheme for Remote Detection of Explosives,” Appl. Opt., 40, 6677–6681 (2001).

    Article  CAS  Google Scholar 

  4. Arshinov Yu., Bobrovnikov S., Serikov I., Vorozhtsov A., Eisenreich N. Remote detection of chemical agents with a lidar in the solar-blind spectral region. 36th International Annual Conference of ICT & 32nd International Pyrotechnics Seminar June 28–July 1, 2005 Karlsruhe Federal Republic of Germany

    Google Scholar 

  5. A.A. Bolshakov, S.V. Oshemkov. Flourescence gas analysis in book Analtsis of inorganic gases.Leningrad, Nuaka, 1983, pp.28–36.

    Google Scholar 

  6. Wang C.C., Davis L.I. -Rev. Lett., 1974, vol. 32, p. 349.

    Article  CAS  Google Scholar 

  7. Jackson W. M. - J. Chem. Phys.,1973, vol. 59, p. 960.

    Article  Google Scholar 

  8. Gelbwachs J.A., Klein C.F., Wessel J. E. - Appl. Phys. Lett.,1977, vol. 30, N9, p. 489.

    Article  CAS  Google Scholar 

  9. M.A. Bolshov, A.V. Zybin, V.G. Koloshnikov - Quantum Electronics, 1980, V. 7, No8, p. 1808.

    CAS  Google Scholar 

  10. Application Guide AG-005 Raman Detection of Explosives. Tienta Sc., Inc. www.tientasciences.com

    Google Scholar 

  11. B.A. Vandyshev “Explosives detection by analyzing their vapors and particles” “Special-purpose technology” No 1 1998.

    Google Scholar 

  12. P. Mostak, Vapour and trase detection of explosives “Vapour and trase detection of explosives for anti-terrorism purposes” - Kluwer Academic Publishers Dordrecht Boston London 2004.

    Google Scholar 

  13. Introduction to the theory of the Raman effect by J.A. Koningstein. - D. Reidel Publishing Company Dordrecht-Holand 1972.

    Google Scholar 

  14. D. Long The Raman effect. - John Wiley & sons, LTD, 2001.

    Google Scholar 

  15. Raman spectroscopy of gases and liquids. Edited by A. Weber. - Springer, Berlin Heidelberg New York 1979.

    Google Scholar 

  16. Fluorescense and phosphorescence by Peter Pringsheim. - New York London 1949.

    Google Scholar 

  17. Laser monitoring of the atmosphere. Edited by E.D.Hinkley. - Springer, Berlin Heidelberg New York 1976.

    Google Scholar 

  18. Jeffrey I. Steinfeld, Jody Wormhoudt Explosives detection: A Challenge for Physical Chemistry. Annu. Rev. Phys. Chem. 1998. 49:203–232

    Article  Google Scholar 

  19. Hong T.Z., Tang C.P., Lin K., Yinon J, ed. 1992. Proc. Int. Symp. Anal. Detect. Explos., 4th, London, pp. 145–52.

    Google Scholar 

  20. Clapper M., Demirgian J., Robitaille G. 1996. Spectroscopy 10(7):44–49

    Google Scholar 

  21. Henderson D.O., Silberman E., Chen N., Snyder F.W. 1993. Appl. Spectrosc. 47:528–32

    Article  CAS  Google Scholar 

  22. Kneipp K., Wang Y., Dasari R.R., Feld M.S., Gilbert B.D., et al. 1995. Spectrochim. Acta 2171–75

    Google Scholar 

  23. Buried Landmine Detection with SERS. EIC Lab. Application Summary. www.eiclabs.com.

    Google Scholar 

  24. Mercado A., Janni J., Gilbert B., Steinfeld J.I., Makky W.H., ed. 1996. Proc. Explosives Detection Technology Symp. Aviation Security Techn. Conf., 2nd, Atl. City: FAA pp. 91–99.

    Google Scholar 

  25. Hargis P.J. Jr. 1997. Opt. Soc. Am. Annu. Meet., Long Beach, CA, p. 125

    Google Scholar 

  26. Wu D.D., Singh J.P., Yueh F.Y., Monts D.L. 1996. Appl. Opt. 35(21):3998–4003

    Article  CAS  Google Scholar 

  27. Arusi-Parpar, D. Hefinger, R. Lavi Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24oC:a unique scheme for remote detection of explosives Appl. Opt., vol. 40 No. 36, 2001, p. 6677–6681.

    Article  CAS  Google Scholar 

  28. R. Sausa J. Cabalo G. Centers Real-time, laser-based sensors for military and civilian applications. 24th Army science conference proceedings. http://www.asc2004.com.

    Google Scholar 

  29. Lovas F.J., Suenram R.D. 1995. Thermal Decomposition Pathways in Nitramine Propellants. Final Rep., USARO Contract 29596-CH. Gaithersburg, MD: NIST.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

BOBROVNIKOV, S. (2006). DEVELOPMENT OF METHODS AND EQUIPMENT FOR DETECTION OF EXPLOSIVES’ VAPORS IN THE ATMOSPHERE WITH LASER. In: Schubert, H., Kuznetsov, A. (eds) Detection and Disposal of Improvised Explosives. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4887-6_6

Download citation

Publish with us

Policies and ethics