Dynamo Experiments

  • Agris Gailitis
  • Olgerts Lielausis
  • Gunter Gerbeth
  • Frank Stefani
Part of the Fluid Mechanics And Its Applications book series (FMIA, volume 80)

The long history of laboratory experiments on homogeneous dynamo action is delineated. It is worked out what sort of insight can be expected from experiments, and what not. Special focus is laid on the principle and the main results of the Riga dynamo experiment which is shown to represent a genuine hydromagnetic dynamo with a non-trivial saturation mechanism that relies mainly on the fluidity of the electrically conducting medium.

Keywords

Permeability Vortex Titanium Migration Mercury 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rüdiger G, Hollerbach R (2004) The magnetic universe. Wiley, Weinheim, GermanyGoogle Scholar
  2. 2.
    Valet JP (2003) Time variations in geomagnetic intensity. Rev Geophys 41:1004CrossRefGoogle Scholar
  3. 3.
    Valet JP, Meynadier L (1993) Geomagnetic field intensity and reversals during the past 4 million years. Nature 366:234-238CrossRefGoogle Scholar
  4. 4.
    Tarduno JA, Cottrell RD, Smirnov AV (2001) High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals. Science 291:1779-1783CrossRefGoogle Scholar
  5. 5.
    Heller R, Merrill RT, McFadden PL (2003) The two states of paleomagnetic field intensities for the past 320 million years. Phys Earth Planet Inter 135:211-223CrossRefGoogle Scholar
  6. 6.
    Glatzmaier GA (2002) Geodynamo simulations - How realistic are they? Annu Rev Earth Planet Sci 30:237-257CrossRefGoogle Scholar
  7. 7.
    Hale GE (1908) On the probable existence of a magnetic field in sunspots. Astrophys J 28:315-343CrossRefGoogle Scholar
  8. 8.
    Larmor J (1919) How could a rotating body such as the sun become a magnet? Rep Brit Assoc Adv Sci:159-160Google Scholar
  9. 9.
    Ossendrijver M (2003) The solar dynamo. Astron Astrophys Rev 11:287-367CrossRefGoogle Scholar
  10. 10.
    Kouveliotou C et al. (1998) An X-ray pulsar with a superstrong magnetic field in the soft gammaray repeater SGR 1806-20. Nature 393:235-237CrossRefGoogle Scholar
  11. 11.
    Beck R et al. (1996) Galactic magnetism: Recent developments and perspectives. Annu Rev Astron Astrophys 34:155-206CrossRefGoogle Scholar
  12. 12.
    Kronberg PP (2002) Intergalactic magnetic fields. Phys Today 55(12):40-46CrossRefGoogle Scholar
  13. 13.
    Balbus SA (2003) Enhanced angular momentum transport in accretion disks. Annu Rev Astron Astrophys 41:555-597CrossRefGoogle Scholar
  14. 14.
    Roberts PH, Scott S (1965) On the analysis of secular variation. 1. A hydromagnetic constraint - Theory. J Geomag Geoelectr 17:137-151Google Scholar
  15. 15.
    Gailitis A et al. (2002) Colloquium: Laboratory experiments on hydromagnetic dynamos. Rev Mod Phys 74:973-990CrossRefGoogle Scholar
  16. 16.
    Lehnert B (1958) An experiment on axisymmetric flow of liquid sodium in a magnetic field. Arkiv f Fysik 13(10):109-116Google Scholar
  17. 17.
    Lowes FJ, Wilkinson I (1963) Geomagnetic dynamo - A laboratory model. Nature 198:1158-1160CrossRefGoogle Scholar
  18. 18.
    Lowes FJ, Wilkinson I (1968) Geomagnetic dynamo - An improved laboratory model. Nature 219:717-718CrossRefGoogle Scholar
  19. 19.
    Wilkinson I (1984) The contribution of laboratory dynamo experiments to our understanding of the mechanism of generation of planetary magnetic fields. Geophys Surv 7(1):107-122CrossRefGoogle Scholar
  20. 20.
    Herzenberg A (1958) Geomagnetic dynamos. Philos Trans R Soc Lond A 250:543-585CrossRefMathSciNetGoogle Scholar
  21. 21.
    Brandenburg A, Moss D, Soward AM (1998) New results for the Herzenberg dynamo: Steady and oscillatory solutions. Proc R Soc Lond A 454:1283-1300MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Steenbeck M, Krause F, Rädler KH (1966) Berechnung der mittleren Lorentz-Feldstärke v × B für ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinflußter Bewegung. Z Naturforschung 21A:369-376Google Scholar
  23. 23.
    Krause F, Rädler KH (1980) Mean-field magnetohydrodynamics and dynamo theory. Akademie, BerlinMATHGoogle Scholar
  24. 24.
    Steenbeck M et al. (1967) Der experimentelle Nachweis einer elektromotorischen Kraft längs eines äußeren Magnetfeldes, induziert durch eine Strömung flüssigen Metalls (α-Effekt). Mber Dtsch Akad Wiss Berlin 9:714-719Google Scholar
  25. 25.
    Gans RF (1971) Hydromagnetic precession in a cylinder. J Fluid Mech 45:111-130MATHCrossRefGoogle Scholar
  26. 26.
    Malkus WVR (1968) Precession of Earth as cause of geomagnetism. Science 160:259-264CrossRefGoogle Scholar
  27. 27.
    Tilgner A (2005) Precession driven dynamos. Phys Fluids 17:034104CrossRefMathSciNetGoogle Scholar
  28. 28.
  29. 29.
    Bevir MK (1973) Possibility of electromagnetic self-excitation in liquid-metal flows in fast reactors. J Br Nucl Energy Soc 12:455-458Google Scholar
  30. 30.
    Pierson ES (1975) Electromagnetic self-excitation in liquid-metal fast breeder reactor. Nucl Sci Eng 57:155-163Google Scholar
  31. 31.
    Kirko IM et al. (1982) On the existence of thermoelectric currents in the reactor BN-600 of Beloyarskaia nuclear power plant. Dokl Akad Nauk SSSR 266:854-856Google Scholar
  32. 32.
    Alemany A et al. (2000) Experimental investigation of dynamo effect in the secondary pumps of the fast breeder reactor Superphenix. J Fluid Mech 403:263-276MATHCrossRefGoogle Scholar
  33. 33.
    Gailitis A et al. (2000) Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility. Phys Rev Lett 84:4365-4368CrossRefGoogle Scholar
  34. 34.
    Müller M, Stieglitz R (2000) Can the Earth’s magnetic field be simulated in the laboratory? Naturwissenschaften 87:381-390CrossRefGoogle Scholar
  35. 35.
    Gailitis A (1967) Self-excitation conditions for a laboratory model of a geomagnetic dynamo. Magnetohydrodynamics 3(3):23-29Google Scholar
  36. 36.
    Busse FH (1975) Model of geodynamo. Geophys J R Astr Soc 42:437-459MATHGoogle Scholar
  37. 37.
    Roberts GO (1972) Dynamo action of fluid motions with 2-dimensional periodicity. Philos Trans R Soc Lond A 271:411-454MATHCrossRefGoogle Scholar
  38. 38.
    Rädler KH et al. (2002) On the mean-field theory of the Karlsruhe dynamo experiment I. Kinematic theory. Magnetohydrodynamics 38:41-71Google Scholar
  39. 39.
    Stieglitz R, Müller U (2001) Experimental demonstration of a homogeneous two-scale dynamo. Phys Fluids 13:561-564CrossRefGoogle Scholar
  40. 40.
    Müller U, Stieglitz R (2002) The Karlsruhe dynamo experiment. Nonl Proc Geophys 9:165-170CrossRefGoogle Scholar
  41. 41.
    Stieglitz R, Müller U (2002) Experimental demonstration of a homogeneous two-scale dynamo. Magnetohydrodynamics 38:27-33Google Scholar
  42. 42.
    Müller U, Stieglitz R, Horanyi S (2004) A two-scale hydromagnetic dynamo experiment. J Fluid Mech 498:31-71MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Müller U, Stieglitz R, Busse F (2004) On the sensitivity of dynamo action to the system’s magnetic diffusivity. Phys Fluids 16:L87-L90CrossRefGoogle Scholar
  44. 44.
    Peffley NL, Cawthorne AB, Lathrop DP (2000) Toward a self-generating magnetic dynamo: The role of turbulence. Phys Rev E 61:5287-5294CrossRefGoogle Scholar
  45. 45.
    Shew WL, Sisan DR, Lathrop DP (2002) Mechanically forced and thermally driven flows in liquid sodium. Magnetohydrodynamics 38:121-127Google Scholar
  46. 46.
    Sisan DR et al. (2004) Experimental observation and characterization of the magnetorotational instability. Phys Rev Lett 93:114502CrossRefGoogle Scholar
  47. 47.
    Bourgoin M et al. (2002) Magnetohydrodynamics measurements in the von Karman sodium experiment. Phys Fluids 14:3046-3058CrossRefGoogle Scholar
  48. 48.
    Marié L et al. (2002) Open questions about homogeneous fluid dynamos: The VKS experiment. Magnetohydrodynamics 38:163-176Google Scholar
  49. 49.
    Petrélis F et al. (2003) Nonlinear magnetic induction by helical motion in a liquid sodium turbulent flow. Phys Rev Lett 90:174501CrossRefGoogle Scholar
  50. 50.
    Forest CB et al. (2002) Hydrodynamic and numerical modeling of a spherical homogeneous dynamo experiment. Magnetohydrodynamics 38:107-120Google Scholar
  51. 51.
    Nornberg MD, Spence EJ, Kendrick RD, Forest CB (2006) Measurements of the magnetic field induced by a turbulent flow of liquid metal. Phys Plasmas 13:055901CrossRefGoogle Scholar
  52. 52.
    Cardin P et al. (2002) Towards a rapidly rotating liquid sodium dynamo experiment. Magnetohydrodynamics 38:177-189Google Scholar
  53. 53.
    Dormy E, Cardin P, Jault D (1998) MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field. Earth Planet Sci Lett 160:15-30CrossRefGoogle Scholar
  54. 54.
    Hollerbach R, Skinner S (2001) Instabilities of magnetically induced shear layers and jets. Proc R Soc Lond A 457:785-802MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Schaeffer N, Cardin P (2006) Quasi-geostrophic kinematic dynamos at low magnetic Prandtl number. Earth Planet Sci Lett 245:595-604CrossRefGoogle Scholar
  56. 56.
    Frick P et al. (2002) Non-stationary screw flow in a toroidal channel: Way to a laboratory dynamo experiment. Magnetohydrodynamics 38:143-162Google Scholar
  57. 57.
    Dobler W, Frick P, Stepanov R (2003) Screw dynamo in a time-dependent pipe flow. Phys Rev E 67:056309CrossRefMathSciNetGoogle Scholar
  58. 58.
    Noskov V et al. (2004) Magnetic field rotation in the screw gallium flow. Eur Phys J B 41:561-568CrossRefGoogle Scholar
  59. 59.
    Colgate SA, Li H, Pariev V (2001) The origin of the magnetic fields of the universe: The plasma astrophysics of the free energy of the universe. Phys Plasmas 8:2425-2431CrossRefGoogle Scholar
  60. 60.
    Colgate SA et al. (2002) The New Mexico αω dynamo experiment: Modelling astrophysical dynamos. Magnetohydrodynamics 38:129-142Google Scholar
  61. 61.
    Ponomarenko YB (1973) On the theory of hydromagnetic dynamos. J Appl Mech Tech Phys 14:775-779CrossRefGoogle Scholar
  62. 62.
    Gailitis A, Freibergs Y (1976) Theory of a helical MHD dynamo. Magnetohydrodynamics 12:127-129Google Scholar
  63. 63.
    Gailitis A, Freibergs Y (1980) Nature of the instability of a turbulent dynamo. Magnetohydrodynamics 16:116-121Google Scholar
  64. 64.
    Gailitis A (1996) Project of a liquid sodium MHD dynamo experiment. Magnetohydrodynamics 32:58-62Google Scholar
  65. 65.
    Gailitis A et al. (2004) Riga dynamo experiment and its theoretical background. Phys Plasmas 11:2838-2843CrossRefMathSciNetGoogle Scholar
  66. 66.
    Gailitis A et al. (2002) On back-reaction effects in the Riga dynamo experiment. Magnetohydrodynamics 38:15-26Google Scholar
  67. 67.
    Gailitis A et al. (1987) Experiment with a liquid-metal model of an MHD dynamo. Magnetohydrodynamics 23:349-353Google Scholar
  68. 68.
    Gailitis A et al. (2001) Magnetic field saturation in the Riga dynamo experiment. Phys Rev Lett 86:3024-3027CrossRefGoogle Scholar
  69. 69.
    Gailitis A et al. (2001) On the results of the Riga dynamo experiments. Magnetohydrodynamics 37:71-80Google Scholar
  70. 70.
    Gailitis A et al. (2002) Dynamo experiments at the Riga sodium facility. Magnetohydrodynamics 38:5-14Google Scholar
  71. 71.
    Gailitis A et al. (2003) The Riga dynamo experiment. Surv Geophys 24:247-267CrossRefGoogle Scholar
  72. 72.
    Ponty Y, Politano H, Pinton JF (2004) Simulation of induction at low magnetic Prandtl number. Phys Rev Lett 92:144503CrossRefGoogle Scholar
  73. 73.
    Rosner R, Rüdiger G, Bonanno A (eds) (2004) MHD Couette Flows: Experiments and Models. AIP Conference Proceedings:733Google Scholar
  74. 74.
    Stefani F, Gerbeth G (2005) Asymmetric polarity reversals, bimodal field distribution, and coherence resonance in a spherically symmetric mean-field dynamo model. Phys Rev Lett 94:184506CrossRefGoogle Scholar
  75. 75.
    Xu M, Stefani F, Gerbeth G (2005) How to actualize reversals in dynamo experiments? http://www.cosis.net/abstracts/IAGA2005/00618/IAGA2005-A-00618.pdf

Copyright information

© Springer 2007

Authors and Affiliations

  • Agris Gailitis
    • 1
  • Olgerts Lielausis
    • 1
  • Gunter Gerbeth
    • 2
  • Frank Stefani
    • 2
  1. 1.Institute of PhysicsUniverity of LatviaLatvia
  2. 2.Forschungszentrum RossendorfGermany

Personalised recommendations