Magnetic Fields in Semiconductor Crystal Growth

  • Hiroyuki Ozoe
  • Janusz S. Szmyd
  • Toshio Tagawa
Part of the Fluid Mechanics And Its Applications book series (FMIA, volume 80)

We may define three main categories of crystal growth techniques: growth from solid, vapour, and melt. These three main categories of crystal growth methods need careful control of the phase change. We may introduce a subcategory, growth from the solution, which is strictly already included in the above definitions, and which represents crystal growth processes of solute from an impure melt.

Keywords

Crystallization Phosphorus Furnace Convection Arsenic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Szmyd JS, Suzuki K (2000) Introduction to crystal growth processes from the melt. In: SzmydJS, Suzuki K (eds) Modelling of Transport Phenomena in Crys-tal Growth. WITPress, Southampton, pp 1-18Google Scholar
  2. 2.
    Czochralski J (1917) Ein neues Verfahren zur Messung der Kristallisation-segeschwindigkeit der Metalle. Z Phys Chem 92:219-221Google Scholar
  3. 3.
    Teal GH, Little JB (1950) The growth of germanium single crystals. Phys Rev 78:647Google Scholar
  4. 4.
    Dash WC (1959) Growth of silicon crystals free from dislocations. J Appl Phys 30:459-474CrossRefGoogle Scholar
  5. 5.
    Prasad V, Zhang H (1997) Transport phenomena in Czochralski crystal growth processes. Advances in Heat Transfer, Vol 30, Academic Press, New York, pp 313-435Google Scholar
  6. 6.
    Szmyd JS, Suzuki K (2000) Transport phenomena during growth of supercon-ducting materials by Czochralski method. In: SzmydJS, Suzuki K (eds) Mod-elling of Transport Phenomena in Crystal Growth. WITPress, Southampton, pp 279-321Google Scholar
  7. 7.
    Brown RA (1988) Theory of transport processes in single crystal growth from the melt. AIChE J 34:881-911CrossRefGoogle Scholar
  8. 8.
    Shimura F (1989) Semiconductor Silicon Crystal Technology. Academic Press, OrlandoGoogle Scholar
  9. 9.
    Hurle DTJ (1993) Crystal Pulling from the Melt. Springer-Verlag, BerlinGoogle Scholar
  10. 10.
    Hurle DTJ, Cockayne B (1994) Czochralski growth. In: HurleDTJ (ed) Hand-book of Crystal Growth. Elsevier Science BV, Amsterdam 2a:99-211Google Scholar
  11. 11.
    Dupret F, van den Bogaert N (1994) Modelling Bridgman and Czochralski growth. In: HurleDTJ (ed) Handbook of Crystal Growth Vol 2b. Elsevier Sci-ence BV, Amsterdam, pp 875-1010Google Scholar
  12. 12.
    Theuerer HC (1952) US patent No 3 060 123Google Scholar
  13. 13.
    Keck PH, Golay MJE (1953) Crystallization of silicon from a floating liquid zone. Phys Rev 89:1297CrossRefGoogle Scholar
  14. 14.
    Pfann WG (1966) Zone Melting. Wiley, New YorkGoogle Scholar
  15. 15.
    BohmJ, Lüdge A, Schröder W (1994) Crystal growth by floating zone melting. In: HurleDTJ (ed) Handbook of Crystal Growth Vol 2a. Elsevier Science BV, Amsterdam, pp 214-257Google Scholar
  16. 16.
    Kapitza P (1928) The study of the specific resistance of bismuth crystals and its change in strong magnetic fields and some allied problems. Proc Roy Soc A 119:358-443CrossRefGoogle Scholar
  17. 17.
    Pfann WG (1952) Principle of zone-melting. Trans AIME 194:747-753Google Scholar
  18. 18.
    Pfann WG (1962) Zone melting. Science 135:1101-1109CrossRefGoogle Scholar
  19. 19.
    Ozoe H (2000) Effect of a magnetic field in Czochralski silicon crystal growth. In: SzmydJS, Suzuki K (eds) Modelling of Transport Phenomena in Crystal Growth. WITPress, Southampton, pp 201-237Google Scholar
  20. 20.
    Ozoe H, Okada K (1989) The effect of the direction of the external magnetic field on the three-dimensional natural convection in a cubical enclosure. Int J Heat Mass Transfer 32:1939-1954MATHCrossRefGoogle Scholar
  21. 21.
    Okada K, Ozoe H (1992) Experimental heat transfer rates of natural convection of molten gallium suppressed under an external magnetic field in either the x, y, or z direction. J Heat Transfer 114:107-114CrossRefGoogle Scholar
  22. 22.
    Garandet JP, AlboussièreT, Moreau R (1992) Buoyancy driven convection in a rectangular enclosure with a transverse magnetic field. Int J Heat Mass Transfer 35(4):741-748MATHCrossRefGoogle Scholar
  23. 23.
    AlboussièreT, Garandet JP, Moreau R (1996) Asymptotic analysis and sym-metry in MHD convection. Phys Fluids 8(8):2215-2226MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    BühlerL (1998) Laminar buoyant magnetohydrodynamic flow in vertical rec-tangular ducts. Phys Fluids 10(1):223-235CrossRefGoogle Scholar
  25. 25.
    Barz RU, Gerbeth G, Wunderwald U, Buhrg E, Gelfgat YuM (1997) Modelling of the isothermal melt flow due to rotating magnetic fields in crystal growth. J Crystal Growth 180:410-421CrossRefGoogle Scholar
  26. 26.
    Ben Hadid H, Vaux S, Kaddeche S (2001) Three-dimensional flow transitions under a rotating magnetic field. J Crystal Growth 230:57-62CrossRefGoogle Scholar
  27. 27.
    Walker JS, Martin Witkowski L, Houchens BC (2003) Effects of a rotating magnetic field on the thermocapillary instability in the floating zone process. J Crystal Growth 252:413-423CrossRefGoogle Scholar
  28. 28.
    Tagawa T, Ozoe H (1998) The natural convection of liquid metal in a cubical enclosure with various electro-conductivities of the wall under the magnetic field. Int J Heat Mass Transfer 41:1917-1928MATHCrossRefGoogle Scholar
  29. 29.
    Molokov S, Bühler L (2003) Three-dimensional buoyant convection in a rec-tangular box with thin conducting walls in a strong horizontal magnetic field. Forschungszentrum Karlsruhe Report FZKA 6817Google Scholar
  30. 30.
    Shercliff JA (1979) Thermoelectric magnetohydrodynamics. J Fluid Mech 91(2):231-251MATHCrossRefGoogle Scholar
  31. 31.
    Moreau R, Lasker O, Tanaka M (1996) Thermoelectric and magnetohydrody-namic effects on solidifying alloys. Magnetohydrodynamics 32(2):173-177Google Scholar
  32. 32.
    Kaneda M, Tagawa T, Ozoe H (2002) Natural convection of liquid metal in a cube with Seebeck effect under a magnetic field. Int J Transport Phenom 4(3):181-191Google Scholar
  33. 33.
    Akamatsu M, Higano M, Ozoe H (2001) Elliptic temperature contours under a transverse magnetic field computed for a Czochralski melt. Int J Heat and Mass Transfer 44 3253-3264MATHCrossRefGoogle Scholar
  34. 34.
    Maekawa T, Tanasawa I (1988) Natural convection driven by buoyancy and surface tension forces under external magnetic filed. Adv Space Res 8(12): 215-218CrossRefGoogle Scholar
  35. 35.
    Chandrasekhar S (1952) XLVI. On the inhibition of convection by a magnetic field. Phil Mag 7 43:501-532MathSciNetGoogle Scholar
  36. 36.
    Nakagawa Y (1955) An experiment on the inhibition of thermal convection by a magnetic field. Nature 175:417-419CrossRefGoogle Scholar
  37. 37.
    Chandrasekhar S (1961) Hydrodynamic and Hydromagnetic Stability. Oxford University Press, OxfordMATHGoogle Scholar
  38. 38.
    Chedzey HA, Hurle DTJ (1966) Avoidance of growth-striae in semiconductor and metal crystals grown by zone melting techniques. Nature 210:933CrossRefGoogle Scholar
  39. 39.
    Utech HP, Flemings MC (1966) Elimination of solute banding in indium anti-monide crystals by growth in a magnetic field. J Appl Phys 37(5):2021-2024CrossRefGoogle Scholar
  40. 40.
    Witt AF, Herman CJ, Gatos HC (1970) Czochralski-type crystal growth in transverse magnetic fields. J Mater Sci 5:822-824CrossRefGoogle Scholar
  41. 41.
    Hoshi K, Suzuki T, Okubo Y, Isawa N (1980) Cz silicon crystal grown in trans-verse magnetic fields. Electrochem Soc Ext Abstr, St. Louis, 324:811-813Google Scholar
  42. 42.
    Hoshi K, Isawa N, Suzuki T (1984) Growth of silicon monocrystals in a magnetic field. Oyobutsuri (Applied Physics, in Japanese) 53(1):38-41Google Scholar
  43. 43.
    Suzuki T, Isawa N, Okubo Y, Hoshi K (1981) Cz silicon crystals grown in a transverse magnetic field. Semiconductor Silicon, Electrochemical Society, Pennington, pp 90-100Google Scholar
  44. 44.
    Kobayashi S (1986) Effects of an external magnetic field on solute distribution in Czochralski grown crystals-A theoretical analysis. J Crystal Growth 75:301-308CrossRefGoogle Scholar
  45. 45.
    Williams MG, Walker JS, Langlois WE (1990) Melt motion in a Czochralski puller with a weak transverse magnetic field. J Crystal Growth 100:233-253CrossRefGoogle Scholar
  46. 46.
    Ozoe H, Iwamoto M (1994) Combined effects of crucible rotation and horizontal magnetic field on dopant concentration in a Czochralski melt. J Crystal Growth 142:236-244CrossRefGoogle Scholar
  47. 47.
    Ozoe H, Toh K (1998) A technique to circumvent a singularity at a radial center with application for a three-dimensional cylindrical system. Numer Heat Transf B 33:355-365CrossRefGoogle Scholar
  48. 48.
    Mihelcic M, Wingerath K, Pirron Chr (1984) Three-dimensional simulations of the Czochralski bulk flow. J Crystal Growth 69:473-488CrossRefGoogle Scholar
  49. 49.
    Kajigaya T, Kimura T, Kadota Y (1991) Effect of the magnetic flux direction on LEC GaAs growth under magnetic field. J Crystal Growth 112:123-128CrossRefGoogle Scholar
  50. 50.
    Krauze A, Muiznieks A, Mühlbauer A, Wetzel Th, Tomzig E, Gorbunov L, Pedchenko A, Virbulis J (2004) Numerical 3D modeling of turbulent melt flow in a large CZ system with horizontal DC magnetic field. II. Comparison with measurements. J Crystal Growth 265:14-27CrossRefGoogle Scholar
  51. 51.
    Hoshikawa K (1982) Czochralski silicon crystal growth in the vertical magnetic field. Japanese J Appl Phys 21(9):L545-L547CrossRefGoogle Scholar
  52. 52.
    Langlois WE, Lee K-J (1983) Czochralski crystal growth in an axial magnetic field: Effects of joule heating. J Crystal Growth 62:481-486CrossRefGoogle Scholar
  53. 53.
    Hurle DTJ, Series RW (1985) Effective distribution coefficient in magnetic Czochralski growth. J Crystal Growth 73:1-9CrossRefGoogle Scholar
  54. 54.
    Organ AE (1985) Flow patterns in a magnetic Czochralski crystal growth sys-tem. J Crystal Growth 73:571-582CrossRefGoogle Scholar
  55. 55.
    Hjellming LN, Walker JS (1986) Melt motion in a Czochralski crystal puller with an axial magnetic field: isothermal motion. J Fluid Mech 164:237-273MATHCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Hiroyuki Ozoe
    • 1
  • Janusz S. Szmyd
    • 2
  • Toshio Tagawa
    • 3
  1. 1.Institute for Materials Chemistry and EngineeringKyushu UniversityKasugaJapan
  2. 2.University of Science and TechnologyPoland
  3. 3.Tokyo Metropolitan UniversityHinoJapan

Personalised recommendations