Skip to main content

Magnetic Fields in Semiconductor Crystal Growth

  • Chapter
Magnetohydrodynamics

Part of the book series: Fluid Mechanics And Its Applications ((FMIA,volume 80))

We may define three main categories of crystal growth techniques: growth from solid, vapour, and melt. These three main categories of crystal growth methods need careful control of the phase change. We may introduce a subcategory, growth from the solution, which is strictly already included in the above definitions, and which represents crystal growth processes of solute from an impure melt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szmyd JS, Suzuki K (2000) Introduction to crystal growth processes from the melt. In: SzmydJS, Suzuki K (eds) Modelling of Transport Phenomena in Crys-tal Growth. WITPress, Southampton, pp 1-18

    Google Scholar 

  2. Czochralski J (1917) Ein neues Verfahren zur Messung der Kristallisation-segeschwindigkeit der Metalle. Z Phys Chem 92:219-221

    Google Scholar 

  3. Teal GH, Little JB (1950) The growth of germanium single crystals. Phys Rev 78:647

    Google Scholar 

  4. Dash WC (1959) Growth of silicon crystals free from dislocations. J Appl Phys 30:459-474

    Article  Google Scholar 

  5. Prasad V, Zhang H (1997) Transport phenomena in Czochralski crystal growth processes. Advances in Heat Transfer, Vol 30, Academic Press, New York, pp 313-435

    Google Scholar 

  6. Szmyd JS, Suzuki K (2000) Transport phenomena during growth of supercon-ducting materials by Czochralski method. In: SzmydJS, Suzuki K (eds) Mod-elling of Transport Phenomena in Crystal Growth. WITPress, Southampton, pp 279-321

    Google Scholar 

  7. Brown RA (1988) Theory of transport processes in single crystal growth from the melt. AIChE J 34:881-911

    Article  Google Scholar 

  8. Shimura F (1989) Semiconductor Silicon Crystal Technology. Academic Press, Orlando

    Google Scholar 

  9. Hurle DTJ (1993) Crystal Pulling from the Melt. Springer-Verlag, Berlin

    Google Scholar 

  10. Hurle DTJ, Cockayne B (1994) Czochralski growth. In: HurleDTJ (ed) Hand-book of Crystal Growth. Elsevier Science BV, Amsterdam 2a:99-211

    Google Scholar 

  11. Dupret F, van den Bogaert N (1994) Modelling Bridgman and Czochralski growth. In: HurleDTJ (ed) Handbook of Crystal Growth Vol 2b. Elsevier Sci-ence BV, Amsterdam, pp 875-1010

    Google Scholar 

  12. Theuerer HC (1952) US patent No 3 060 123

    Google Scholar 

  13. Keck PH, Golay MJE (1953) Crystallization of silicon from a floating liquid zone. Phys Rev 89:1297

    Article  Google Scholar 

  14. Pfann WG (1966) Zone Melting. Wiley, New York

    Google Scholar 

  15. BohmJ, Lüdge A, Schröder W (1994) Crystal growth by floating zone melting. In: HurleDTJ (ed) Handbook of Crystal Growth Vol 2a. Elsevier Science BV, Amsterdam, pp 214-257

    Google Scholar 

  16. Kapitza P (1928) The study of the specific resistance of bismuth crystals and its change in strong magnetic fields and some allied problems. Proc Roy Soc A 119:358-443

    Article  Google Scholar 

  17. Pfann WG (1952) Principle of zone-melting. Trans AIME 194:747-753

    Google Scholar 

  18. Pfann WG (1962) Zone melting. Science 135:1101-1109

    Article  Google Scholar 

  19. Ozoe H (2000) Effect of a magnetic field in Czochralski silicon crystal growth. In: SzmydJS, Suzuki K (eds) Modelling of Transport Phenomena in Crystal Growth. WITPress, Southampton, pp 201-237

    Google Scholar 

  20. Ozoe H, Okada K (1989) The effect of the direction of the external magnetic field on the three-dimensional natural convection in a cubical enclosure. Int J Heat Mass Transfer 32:1939-1954

    Article  MATH  Google Scholar 

  21. Okada K, Ozoe H (1992) Experimental heat transfer rates of natural convection of molten gallium suppressed under an external magnetic field in either the x, y, or z direction. J Heat Transfer 114:107-114

    Article  Google Scholar 

  22. Garandet JP, AlboussièreT, Moreau R (1992) Buoyancy driven convection in a rectangular enclosure with a transverse magnetic field. Int J Heat Mass Transfer 35(4):741-748

    Article  MATH  Google Scholar 

  23. AlboussièreT, Garandet JP, Moreau R (1996) Asymptotic analysis and sym-metry in MHD convection. Phys Fluids 8(8):2215-2226

    Article  MATH  MathSciNet  Google Scholar 

  24. BühlerL (1998) Laminar buoyant magnetohydrodynamic flow in vertical rec-tangular ducts. Phys Fluids 10(1):223-235

    Article  Google Scholar 

  25. Barz RU, Gerbeth G, Wunderwald U, Buhrg E, Gelfgat YuM (1997) Modelling of the isothermal melt flow due to rotating magnetic fields in crystal growth. J Crystal Growth 180:410-421

    Article  Google Scholar 

  26. Ben Hadid H, Vaux S, Kaddeche S (2001) Three-dimensional flow transitions under a rotating magnetic field. J Crystal Growth 230:57-62

    Article  Google Scholar 

  27. Walker JS, Martin Witkowski L, Houchens BC (2003) Effects of a rotating magnetic field on the thermocapillary instability in the floating zone process. J Crystal Growth 252:413-423

    Article  Google Scholar 

  28. Tagawa T, Ozoe H (1998) The natural convection of liquid metal in a cubical enclosure with various electro-conductivities of the wall under the magnetic field. Int J Heat Mass Transfer 41:1917-1928

    Article  MATH  Google Scholar 

  29. Molokov S, Bühler L (2003) Three-dimensional buoyant convection in a rec-tangular box with thin conducting walls in a strong horizontal magnetic field. Forschungszentrum Karlsruhe Report FZKA 6817

    Google Scholar 

  30. Shercliff JA (1979) Thermoelectric magnetohydrodynamics. J Fluid Mech 91(2):231-251

    Article  MATH  Google Scholar 

  31. Moreau R, Lasker O, Tanaka M (1996) Thermoelectric and magnetohydrody-namic effects on solidifying alloys. Magnetohydrodynamics 32(2):173-177

    Google Scholar 

  32. Kaneda M, Tagawa T, Ozoe H (2002) Natural convection of liquid metal in a cube with Seebeck effect under a magnetic field. Int J Transport Phenom 4(3):181-191

    Google Scholar 

  33. Akamatsu M, Higano M, Ozoe H (2001) Elliptic temperature contours under a transverse magnetic field computed for a Czochralski melt. Int J Heat and Mass Transfer 44 3253-3264

    Article  MATH  Google Scholar 

  34. Maekawa T, Tanasawa I (1988) Natural convection driven by buoyancy and surface tension forces under external magnetic filed. Adv Space Res 8(12): 215-218

    Article  Google Scholar 

  35. Chandrasekhar S (1952) XLVI. On the inhibition of convection by a magnetic field. Phil Mag 7 43:501-532

    MathSciNet  Google Scholar 

  36. Nakagawa Y (1955) An experiment on the inhibition of thermal convection by a magnetic field. Nature 175:417-419

    Article  Google Scholar 

  37. Chandrasekhar S (1961) Hydrodynamic and Hydromagnetic Stability. Oxford University Press, Oxford

    MATH  Google Scholar 

  38. Chedzey HA, Hurle DTJ (1966) Avoidance of growth-striae in semiconductor and metal crystals grown by zone melting techniques. Nature 210:933

    Article  Google Scholar 

  39. Utech HP, Flemings MC (1966) Elimination of solute banding in indium anti-monide crystals by growth in a magnetic field. J Appl Phys 37(5):2021-2024

    Article  Google Scholar 

  40. Witt AF, Herman CJ, Gatos HC (1970) Czochralski-type crystal growth in transverse magnetic fields. J Mater Sci 5:822-824

    Article  Google Scholar 

  41. Hoshi K, Suzuki T, Okubo Y, Isawa N (1980) Cz silicon crystal grown in trans-verse magnetic fields. Electrochem Soc Ext Abstr, St. Louis, 324:811-813

    Google Scholar 

  42. Hoshi K, Isawa N, Suzuki T (1984) Growth of silicon monocrystals in a magnetic field. Oyobutsuri (Applied Physics, in Japanese) 53(1):38-41

    Google Scholar 

  43. Suzuki T, Isawa N, Okubo Y, Hoshi K (1981) Cz silicon crystals grown in a transverse magnetic field. Semiconductor Silicon, Electrochemical Society, Pennington, pp 90-100

    Google Scholar 

  44. Kobayashi S (1986) Effects of an external magnetic field on solute distribution in Czochralski grown crystals-A theoretical analysis. J Crystal Growth 75:301-308

    Article  Google Scholar 

  45. Williams MG, Walker JS, Langlois WE (1990) Melt motion in a Czochralski puller with a weak transverse magnetic field. J Crystal Growth 100:233-253

    Article  Google Scholar 

  46. Ozoe H, Iwamoto M (1994) Combined effects of crucible rotation and horizontal magnetic field on dopant concentration in a Czochralski melt. J Crystal Growth 142:236-244

    Article  Google Scholar 

  47. Ozoe H, Toh K (1998) A technique to circumvent a singularity at a radial center with application for a three-dimensional cylindrical system. Numer Heat Transf B 33:355-365

    Article  Google Scholar 

  48. Mihelcic M, Wingerath K, Pirron Chr (1984) Three-dimensional simulations of the Czochralski bulk flow. J Crystal Growth 69:473-488

    Article  Google Scholar 

  49. Kajigaya T, Kimura T, Kadota Y (1991) Effect of the magnetic flux direction on LEC GaAs growth under magnetic field. J Crystal Growth 112:123-128

    Article  Google Scholar 

  50. Krauze A, Muiznieks A, Mühlbauer A, Wetzel Th, Tomzig E, Gorbunov L, Pedchenko A, Virbulis J (2004) Numerical 3D modeling of turbulent melt flow in a large CZ system with horizontal DC magnetic field. II. Comparison with measurements. J Crystal Growth 265:14-27

    Article  Google Scholar 

  51. Hoshikawa K (1982) Czochralski silicon crystal growth in the vertical magnetic field. Japanese J Appl Phys 21(9):L545-L547

    Article  Google Scholar 

  52. Langlois WE, Lee K-J (1983) Czochralski crystal growth in an axial magnetic field: Effects of joule heating. J Crystal Growth 62:481-486

    Article  Google Scholar 

  53. Hurle DTJ, Series RW (1985) Effective distribution coefficient in magnetic Czochralski growth. J Crystal Growth 73:1-9

    Article  Google Scholar 

  54. Organ AE (1985) Flow patterns in a magnetic Czochralski crystal growth sys-tem. J Crystal Growth 73:571-582

    Article  Google Scholar 

  55. Hjellming LN, Walker JS (1986) Melt motion in a Czochralski crystal puller with an axial magnetic field: isothermal motion. J Fluid Mech 164:237-273

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ozoe, H., Szmyd, J.S., Tagawa, T. (2007). Magnetic Fields in Semiconductor Crystal Growth. In: Magnetohydrodynamics. Fluid Mechanics And Its Applications, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4833-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-4833-3_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4832-6

  • Online ISBN: 978-1-4020-4833-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics