Skip to main content

Effect of AC Magnetic Fields on Free Surfaces

  • Chapter
Magnetohydrodynamics

Part of the book series: Fluid Mechanics And Its Applications ((FMIA,volume 80))

When a liquid metal is submitted to an alternating magnetic field, electromagnetic forces, called Lorentz or Laplace forces, may be created in the metal due to the interaction between the induced electric currents and the applied magnetic field. When the magnetic field is pulsating and according to its frequency f (which vanishes in the case of DC magnetic field), the electromagnetic forces generate various effects both on the bulk motion and at the free surface of the liquid metal [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sneyd AD (1994) Theory of electromagnetic stirring by AC fields. IMA J Math Appl Bus Indust (invited review article) 5(2):87-113

    MATH  MathSciNet  Google Scholar 

  2. Fautrelle Y, Perrier D, Etay J (2003) Free surface controlled by magnetic fields. Trans ISIJ Int 43(6):801-806

    Article  Google Scholar 

  3. Moreau R (1990) Magnetohydrodynamics. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  4. Taberlet E, Fautrelle Y (1985) Turbulent stirring in a experimental induction furnace. J Fluid Mech 159:409-431

    Article  Google Scholar 

  5. Mestel AJ (1982) Magnetic levitation of liquid metals. J Fluid Mech 117:27-43

    Article  MATH  MathSciNet  Google Scholar 

  6. Sneyd AD, Moffatt HK (1982) Fluid dynamical aspects of the levitation melting process. J Fluid Mech 117:45-70

    Article  MATH  MathSciNet  Google Scholar 

  7. Okress EC, Wroughton DM, Comenetz C, Brace PN, Kelly JCK (1952) Elec-tromagnetic levitation of solid and molten metals. J Appl Phys 23:545-552

    Article  Google Scholar 

  8. Brancher JP, Etay J, Sero-Guillaume O (1983) Formage de lames liquides, cal-culs et expériences. J de Mec Théor Appl 2(6):977-989

    MATH  Google Scholar 

  9. Etay J, Garnier M (1984) Some applications of high frequency magnetic field in metallurgical applications of magnetohydrodynamics. In: Proceedings of IUTAM Symposium. The Metals Society, London, pp 190-196

    Google Scholar 

  10. Shercliff JA (1981) Magnetic shaping of molten metals. Proc R Soc Lond 375:455-473

    Article  Google Scholar 

  11. Barbier JN, Fautrelle Y, Evans JW, Cremer P (1982) Simulation numérique des fours chauffés par induction. J de Mec Théor Appl 1(3):533-556

    Google Scholar 

  12. Leclerq I (1989) Ph.D. dissertation. Institut National Polytechnique de Greno-ble, France

    Google Scholar 

  13. Fautrelle Y, Perrier D, Etay J (2003) Free surface deformations of a liquid metal drop submitted to a middle-frequency AC magnetic field. In: Proceedings of the 4th International Conference on Electromagnetic Processing of Materials, Lyon, France, 14-17 October 2003, pp 279-282

    Google Scholar 

  14. Mohring J-U, Karcher Ch (2002) Electromagnetic pinch in an annulus: experi-mental investigation and analytical modelling. In: Proceedings of the 5th Inter-national PAMIR Conference on Fundamental and Applied MHD, Ramatuelle, France, 16-20 September 2002, I, pp 143-148

    Google Scholar 

  15. Galpin JM, Fautrelle Y (1992) Liquid metal flows induced by low frequency alternating fields. J Fluid Mech 239:383-408

    Article  Google Scholar 

  16. Galpin JM, Fautrelle Y, Sneyd A (1992) Parametric instability in low frequency magnetic stirring. J Fluid Mech 239:409-427

    Article  MATH  Google Scholar 

  17. Fautrelle Y, Sneyd A (2005) Surface waves created by low-frequency magnetic fields. Eur J Mech B/Fluids 24:91-112

    Article  MATH  MathSciNet  Google Scholar 

  18. Debray F, Fautrelle Y (1994) Free surface deformation frequencies of an elec-tromagnetically excited mercury layer. Exp Fluids 16:316-322

    Article  Google Scholar 

  19. Fautrelle Y, Etay J, Daugan S (2005) Free surface waves generated by low frequency alternating magnetic fields. J Fluid Mech 527:285-301

    Article  MATH  Google Scholar 

  20. Garnier M, Moreau R (1983) Effect of finite conductivity on the inviscid stability of an interface. J Fluid Mech 127:365-377

    Article  MATH  Google Scholar 

  21. Mac Hale EJ, Melcher JR (1982) Instability of a planar liquid layer in an alter-nating magnetic field. J Fluid Mech 114:27-40

    Article  Google Scholar 

  22. Karcher Ch, Kocourek V, Schulze D (2003) Experimental investigations of elec-tromagnetic instabilities of free surfaces in a liquid metal drop. In: Nacke B, Baake E (eds) Proceedings of International Scientific Colloquium “Modelling for Electromagnetic Processing”, Institute for Electrothermal Processes, University of Hannover, Germany, pp 105-110

    Google Scholar 

  23. Deepak, Evans JW (1995) The stability of an interface between viscous fluids subjected to a high-frequency magnetic field and consequences for electromag-netic casting. J Fluid Mech 287:133-150

    Article  MATH  MathSciNet  Google Scholar 

  24. Iwai K, Suda M, Asai S (1994) Damping behaviour of surface wave motion on molten metals by imposing a high frequency magnetic field. In: Proceedings of International Symposium on Electromagnetic processing of Materials EPM ’94, Nagoya, Japan, 25-28 October. Iron and Steel Institute of Japan, Tokyo, pp 127-131

    Google Scholar 

  25. Fautrelle Y, Sneyd A (1998) Instability of a plane conducting free surface sub-mitted to an alternating magnetic field. J Fluid Mech 375:65-83

    Article  MATH  MathSciNet  Google Scholar 

  26. Li T, Sassa K, Asai S (1994) Dynamic meniscus behavior in continuous cast-ing mold with intermittent high frequency magnetic field and surface quality of products. In: Proceedings of International Symposium On Electromagnetic Processing of Materials EPM ’94, Nagoya, Japan, 25-28 October, The Iron and Steel Institute of Japan, Tokyo, pp 242-247

    Google Scholar 

  27. Takeuchi E, Miyazawa K (2000) Electromagnetic casting technology of steel. In: Proceedings of the 3rd International Symposium on Electromagnetic Processing of Materials EPM’ 00, The Iron and Steel Institute of Japan, Tokyo, pp 20-27

    Google Scholar 

  28. Perrier D, Fautrelle Y, Etay J (2003) Experimental and theoretical studies of the motion generated by a two-frequency magnetic field at the free surface of a gallium pool. Metall Mat Trans B 34(5):669-678

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Fautrelle, Y., Sneyd, A., Etay, J. (2007). Effect of AC Magnetic Fields on Free Surfaces. In: Magnetohydrodynamics. Fluid Mechanics And Its Applications, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4833-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-4833-3_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4832-6

  • Online ISBN: 978-1-4020-4833-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics