Skip to main content

Flow Control and Propulsion in Poor Conductors

  • Chapter
Magnetohydrodynamics

Part of the book series: Fluid Mechanics And Its Applications ((FMIA,volume 80))

The possibility to act on a fluid flow in a contactless way, offered by magnetohydrodynamics (MHD), stimulated the imagination of aerodynamists and naval engineers relatively early.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ritchie W (1832) Experimental researches in voltaic electricity and electromag-netism. Phil Trans Roy Soc London 122:279-298

    Article  MathSciNet  Google Scholar 

  2. Resler EL Jr, Sears WR (1958) The prospects for magneto-aerodynamics. J Aero Sci 25:235-245, 258

    MathSciNet  Google Scholar 

  3. Busemann A (1961) Is aerodynamics breaking an ionic barrier? NASA-TM-X-56147

    Google Scholar 

  4. Fraishtadt V, Kuranov A, Sheikin E (1998) Use of MHD systems in hypersonic aircraft. Tech Phys 43:1309-1313

    Article  Google Scholar 

  5. Macheret S, Shneider M, Miles R (2002) Magnetohydrodynamic control of hypersonic flows and scramjet inlets using electron beam ionization. AIAA J 40:74-81

    Article  Google Scholar 

  6. Poggie J, Gaitonde D (2002) Magnetic control of flow past a blunt body: Numer-ical validation and exploration. Phys Fluids 14:1720-1731

    Article  Google Scholar 

  7. Moses R (2005) Regenerative aerobraking. Space Technology and Applications International Forum, Albuquerque

    Google Scholar 

  8. Chazot O, Zuber M (2003) Introduction to Magneto-Fluid-Dynamics for Aerospace Applications. VKI LS 2004-01, Rhode-Saint-Genèse

    Google Scholar 

  9. Rice W (1961) Propulsion system. US Patent 2,997,013

    Google Scholar 

  10. Friauf J (1961) Electromagnetic ship propulsion. ASNE J:139-142

    Google Scholar 

  11. Way S (1967) Electromagnetic propulsion for cargo submarines. AIAA-paper 1967-0363

    Google Scholar 

  12. Lin T, Gilbert J (1995) Studies of helical magnetohydrodynamic seawater flow in fields up to twelve teslas. J Prop Power 11:1349-1355

    Article  Google Scholar 

  13. Nishigaki K, Sha C, Takeda M, Peng Y, Zhou K, Yang D, Suyama AH, Qing Q, Yan L, Kiyoshi T, Wada H (2000) Elementary study on superconducting electromagnetic ships with helical insulating wall. Cryogenics 40:353-359

    Article  Google Scholar 

  14. Convert D (1995) Propulsion Magnetohydrodynamique en Eau de Mer. Ph.D. thesis, Universite Joseph Fourier, Grenoble

    Google Scholar 

  15. Phillips O (1962) The prospects for magnetohydrodynamic ship propulsion. J Ship Res 5:43-51

    Google Scholar 

  16. Thibault J (1994) Status of MHD ship propulsion. In: 2nd International Conference on Energy Transfer in MHD Flows, Aussois

    Google Scholar 

  17. Sutton G, Sherman A (1965) Engineering Magnetohydrodynamics. McGrawHill, New York

    Google Scholar 

  18. Doss E, Geyer H (1990) The need for superconducting magnets for MHD sea-water propulsion. In: Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, Reno

    Google Scholar 

  19. Khonichev V, Yakovlev V (1978) Motion of a sphere by a variable magnetic dipole in an infinite conductive fluid, produced by a variable magnetic dipole located within the sphere. J Appl Mech Techn Phys 19:760-765

    Article  Google Scholar 

  20. Saji Y, Iwata A, Sato M, Kita H (1992) Fundamental studies of a supercon-ducting electro-magnetic ship thruster to be driven by an alternating magnetic field. Adv Cryog Eng 37:463-471

    Google Scholar 

  21. Khonichev V, Yakovlev V (1980) Motion of a plane plate of finite width in a viscous conductive liquid, produced by electromagnetic forces. J Appl Mech Techn Phys 21:77-84

    Article  Google Scholar 

  22. Shatrov V, Yakovlev V (1981) Change in the hydrodynamic drag of a sphere set in motion by electrodynamic forces. J Appl Mech Techn Phys 22:817-823

    Article  Google Scholar 

  23. Yakovlev V (1980) Theory of an induction MHD propeller with a free field. J Appl Mech Techn Phys 21:376-384

    Article  Google Scholar 

  24. Saji Y, Kitano M, Iwata A (1978) Basic study of superconducting electromag-netic thrust device for propulsion in seawater. Adv Cryog Eng 23:159-169

    Google Scholar 

  25. Iwata A, Saji Y, Sato S (1980) Construction of model ship ST-500 with super-conducting electromagnetic thrust system. In: Rizutto C (ed) Proceedings of the 8th International Cryogenic Engineering Conference, Genova

    Google Scholar 

  26. Khonichev V, Yakovlev V (1980) Theory of a free-field conduction propulsion unit. J Appl Mech Techn Phys 21:666-673

    Article  Google Scholar 

  27. Shatrov V, Yakovlev V (1985) Hydrodynamic drag of a ball containing a conduction-type source of electromagnetic fields. J Appl Mech Techn Phys 26:19-24

    Article  Google Scholar 

  28. Pohjavirta A, Kettunen L (1991) Feasibility study of an electromagnetic thruster for ship propulsion. IEEE Trans Mag 27:3735-3742

    Article  Google Scholar 

  29. Convert D, Thibault JP (1995) External MHD propulsion. Magnetohydrody-namics 31:290-297

    MATH  Google Scholar 

  30. Motora S, Takezawa S (1994) Development of MHD ship propulsion and results of sea trials of an experimental ship YAMATAO-1. In: 2nd International Conference on Energy Transfer in MHD Flows, Aussois

    Google Scholar 

  31. Meng J, Henoch C, Hrubes J (1994) Seawater electromagnetohydrodynamics: A new frontier. Magnetohydrodynamics 30:401-418

    Google Scholar 

  32. Meng J, Hendricks P, Hrubes J, Henoch C (1995) Experimental studies of a seawater superconducting electromagnetic thruster: A continuing quest for higher magnetohydrodynamic propulsion efficiency. Magnetohydrodynamics 31: 279-289

    Google Scholar 

  33. Bashkatov V (1991) Reactive forces in magneto-hydrodynamics and their appli-cation for MHD-jet propulsive ocean ships. In: International Symposium on Superconducting Magnetohydrodynamic Ship Propulsion, Kobe

    Google Scholar 

  34. Tada E (1992) Propulsive analysis for high efficient superconducting EMT-powered ships. In: Tani J, Takagi T (eds) Electromagnetic Forces and Applications. Elsevier, Amsterdam

    Google Scholar 

  35. Yan L, Sha C, Zhou K, Peng Y, Yang A, Qin J (2000) Progress of the MHD ship propulsion project in China. IEEE Trans Appl Superconductivity 10:951-954

    Article  Google Scholar 

  36. Yan L, Wang Z, Xue C, Gao Z, Zhao B (2000) Development of the super-conducting magnet system for HEMS-1 MHD model ship. IEEE Trans Appl Superconductivity 10:955-958

    Article  Google Scholar 

  37. Yan L, Sha C, Peng Y, Zhou K, Yang A, Qing Q, Nishigaki K, Takeda M, Suyama D, Kiyoshi T, Wada H (2002) Results from a 14 T superconducting MHD propulsion experiment. AIAA-paper 2002-2172

    Google Scholar 

  38. Font G, Dudley S (2004) Magnetohydrodynamic propulsion for the classroom. Phys Teach 42:410-415

    Article  Google Scholar 

  39. Petit JP (1983) Is supersonic flight, without shock wave, possible? In: Proceedings of the 8th International Conference on MHD Electrical Power Generation, Moscow

    Google Scholar 

  40. Lebrun B, Petit J (1989) Shock wave annihilation by MHD action in supersonic flows: Quasi-one dimensional steady analysis and thermal blockage. Eur J Mech B Fluids 8:163-178

    MATH  Google Scholar 

  41. Lebrun B, Petit J (1989) Shock wave annihilation by MHD action in supersonic flows: Two-dimensional steady non-isentropic analysis, Anti-shock criterion, and shock tube simulations for isentropic flows. Eur J Mech B Fluids 8:307-326

    MATH  Google Scholar 

  42. Gailitis A, Lielausis O (1961) On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte. Appl Magnetohydrodynamics, Rep Phys Inst 12:143-146

    Google Scholar 

  43. Drazin P, Reid W (1981) Hydrodynamic Stability. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  44. Tsinober AB, Shtern AG (1967) On the possibility to increase the stability of the flow in the boundary layer by means of crossed electric and magnetic fields. Magnetohydrodynamics 3:103-105

    Google Scholar 

  45. Lielausis O, Gailitis A, Dukure R (1991) Boundary layer control by means of electromagnetic forces. In: Proceedings of the International Conference on Energy Transfer in Magnetohydrodynamic Flows, Cadarache

    Google Scholar 

  46. Weier T, Albrecht T, Mutschke G, Gerbeth G (2004) Seawater flow transition and separation control. In: International Workshop on Flow Control by Tailored Magnetic Fields, Dresden

    Google Scholar 

  47. Zhilyaev M, Khmel T, Yakovlev V (1991) Boundary-layer stability in magneto-hydrodynamic streamlining of a plate with an internal source of electromagnetic fields. Magnetohydrodynamics 27:184-189

    MATH  Google Scholar 

  48. Albrecht T, Grundmann R, Mutschke G, Gerbeth G (2005) Numerical inves-tigation of transition control in low conductive fluids. In: Joint 15th Riga and 6th PAMIR International Conference Fundamental and Applied MHD, Rigas Jurmala

    Google Scholar 

  49. Gad-el Hak M (2000) Flow Control: Passive, Active, and Reactive Flow Man-agement. Cambridge University Press, Cambridge

    Google Scholar 

  50. Shtern A (1970) Feasibility of modifying the boundary layer by crossed electric and magnetic fields. Magnetohydrodynamics 6:407-411

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Weier, T., Shatrov, V., Gerbeth, G. (2007). Flow Control and Propulsion in Poor Conductors. In: Magnetohydrodynamics. Fluid Mechanics And Its Applications, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4833-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-4833-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4832-6

  • Online ISBN: 978-1-4020-4833-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics