How Analogous is Generation of Vorticity and Passive Vectors (Magnetic Fields)?

  • Arkady Tsinober
Part of the Fluid Mechanics And Its Applications book series (FMIA, volume 80)

A brief account is presented on analogies between the processes of evolution of vorticity and magnetic field and related problems starting from the very beginning and including the most recent results. The emphasis is made on essential differences as contrasted to similarities. This is seen already on a purely kinematic level which is the main theme of this communication.

Keywords

Vortex Anisotropy Steam Vorticity Steam Boiler 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lundquist S(1952) Studies in magneto-hydrodynamics. Arkiv för Fysik 5(15):297-347MathSciNetGoogle Scholar
  2. 2.
    Batchelor GK (1950) On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc Roy Soc London A201:405-416MathSciNetGoogle Scholar
  3. 3.
    Batchelor GK (1951) Magnetic fields and turbulence in a fluid of high conduc-tivity, in Problems of Cosmical Aerodynamics. In: Proceeding of a Symposium on “Problems of motion of gaseous masses of cosmical dimensions”, Paris, 16-19 August 1949, Central Air Documents Office, pp 149-155 It is noteworthy that among the participants of this Meeting were such prominent people as Alfven H., Burgers JM, Hoyle F, Kampé de Fériet J, von Karman Th, Liepmann H, von Neumann J, and Spitzer LGoogle Scholar
  4. 4.
    Chandrasekhar S (1951) The invariant theory of isotropic turbulence in magne-tohydrodynamics. Proc Roy Soc 204A:435-449MathSciNetGoogle Scholar
  5. 5.
    Chandrasekhar S (1951) The invariant theory of isotropic turbulence in magnetohydrodynamics. Proc Roy Soc 207A:301-306MathSciNetGoogle Scholar
  6. 6.
    Schlüter A, Biermann L(1950) Interstellare Magnetfelder. Z Naturforsch 5a:237-251Google Scholar
  7. 7.
    Biermann L, Schlüter A (1951) Cosmic radiation and cosmic magnetic fields II. Origin of cosmic magnetic fields. Phys Rev 82:863-868MATHCrossRefGoogle Scholar
  8. 8.
    Taylor GI (1938) Production and dissipation of vorticity in a turbulent fluid. Proc Roy Soc London A164:15-23Google Scholar
  9. 9.
    Helmholz H (1858) On integrals of the hydrodynamical equations which express vortex motion. Translated from Germain by Tait PG, 1867 with a letter by Lord Kelvin (Thomson W) in London Edinburgh Dublin Phil Mag J Sci, Fourth series 33:485-512Google Scholar
  10. 10.
    Kelvin Lord Thomson W (1880) Vibration of columnar vortex. London Edin-burgh Dublin Phil Mag J Sci, Fifth series 33:485-512; also (1910) in Mathemat-ical and physical papers, vol 4, Cambridge University PressGoogle Scholar
  11. 11.
    Landau LD, Lifshits EM (1957) Electrodynamics of continuous media, 1st edn. Nauka, Moscow. English thanslation by Pergamon in 1960Google Scholar
  12. 12.
    Landau LD, Lifshits EM (1981) Electrodynamics of continuous media, 2nd edn. Nauka, English thanslation by Pergamon in 1984Google Scholar
  13. 13.
    Kraichnan RH, Kimura Y (1994) Probability distributions in hydrodynamic turbulence. Progr Astron Aeronaut 162:19-27Google Scholar
  14. 14.
    Lüthi B, Tsinober A, Kinzelbach W (2005) Lagrangian measurement of vorticity dynamics in turbulent flow. J Fluid Mech 528:87-118MATHCrossRefGoogle Scholar
  15. 15.
    Ohkitani K (2002) Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows. Phys Rev E65:046304, 1-12MathSciNetGoogle Scholar
  16. 16.
    Tsinober A (2001) An informal introduction to turbulence. Kluwer Academic, DordrechtMATHGoogle Scholar
  17. 17.
    Tsinober A (2005) On how different are genuine and “passive” turbulence. In: Peinke J et al. (eds). Progress in Turbulence, Springer, pp 31-36Google Scholar
  18. 18.
    Tsinober A, Galanti B (2003) Exploratory numerical experiments on the differ-ences between genuine and “passive” turbulence. Phys Fluids 15:3514-3531CrossRefMathSciNetGoogle Scholar
  19. 19.
    Schekochihin AA, Cowley SC, Taylor SF, Maron JL, McWilliams JC (2004) Simulations of the small-scale turbulent dynamo. Astrophys J 612(1):276-307CrossRefGoogle Scholar
  20. 20.
    Gomez T, Politano H, Pouquet A (1999) On the validity of a nonlocal approach for MHD turbulence. Phys Fluids 11:2298-2306MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Yaglom AM (1949) Local structure of the temperature field in a turbulent flow. Dokl Akad Nauk SSSR 69(6):743-746MATHMathSciNetGoogle Scholar
  22. 22.
    Kinney RM, Chandran B, Cowley S, McWilliams JC (2000) Magnetic field growth and saturation in plasmas with large magnetic Prandtl number. I. The two-dimensional case. Astrophys J 545:907-921Google Scholar
  23. 23.
    Dar G, Verma MK, Eswaran V (2001) Energy transfer in two-dimensional magnetohydrodynamic turbulence: formalism and numerical results. Physica D157:207-225Google Scholar
  24. 24.
    Maron J, Goldreich P (2001) Similuations of incompresible MHD turbulence. Astrophys J 554:1175-1196CrossRefGoogle Scholar
  25. 25.
    Müller W-C, Biskamp D, Grappin R (2003) Statistical anisotropy of magneto-hydrodynamic turbulence. Phys Rev E67:066302/1-4Google Scholar
  26. 26.
    Tsinober A (1990) MHD flow drag reduction. In: Bushnell DM, Hefner JN (eds) Viscous Drag Reduction in Boundary layers. AIAA 123:327-349Google Scholar
  27. 27.
    Zikanov O, Thess A (1998) Direct numerical simulation of forced MHD turbu-lence at low magnetic Reynolds number. J Fluid Mech 358:299-333MATHCrossRefGoogle Scholar
  28. 28.
    Reynolds O (1874) On the extent and action of the heating surface of steam boilers. Proc Lit Phil Soc Manchester 14:7-12Google Scholar
  29. 29.
    Reynolds O (1894) Study of fluid motion by means of coloured bands. Nature 50:161-164CrossRefGoogle Scholar
  30. 30.
    Antonov NV, Hnatich M, Honkonen J, Jurchishin M (2003) Turbulence with pressure: Anomalous scaling of a passive vector field. Phys Rev E 68(4):046306-1-25Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Arkady Tsinober
    • 1
  1. 1.Department of Fluid MechanicsTel Aviv UniversityIsrael

Personalised recommendations