Skip to main content

Liquid Metal Magnetohydrodynamics for Fusion Blankets

  • Chapter
Magnetohydrodynamics

Part of the book series: Fluid Mechanics And Its Applications ((FMIA,volume 80))

The realization of controlled thermonuclear fusion could lead to a significant contribution to future energy demands. The reaction between the fuel components tritium and deuterium requires temperatures above 108 K so that any confinement using solid walls is excluded. At these temperatures the fuels are ionized and form an electrically highly conducting plasma that can be confined by strong magnetic fields to a defined volume. During the past decades different concepts of magnetic confinement have been investigated and a number of conceptual designs for commercial or experimental fusion reactors have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mirror Advanced Reactor Study (MARS) (1984) Technical Report UCRL-53480, Lawrence Livermore National Laboratory, Livermore, CA

    Google Scholar 

  2. Hunt JCR, Hancox R (1971) The use of liquid lithium as coolant in a toroidal fusion reactor. Technical Report CLM-R 115, Culham Laboratory, England

    Google Scholar 

  3. Lielausis O (1975) Liquid-metal magnetohydrodynamics. Atomic Energy Rev 13(3):527-581

    Google Scholar 

  4. Hunt JCR, Holroyd RJ (1977) Applications of laboratory and theoretical MHD duct flow studies in fusion reactor technology. Technical Report CLM-R169, Culham Laboratory, England

    Google Scholar 

  5. MüllerU, BühlerL (2001) Magnetofluiddynamics in Channels and Containers. Springer, Wien/New York

    Google Scholar 

  6. WalkerJS (1986) Laminar duct flows in strong magnetic fields. In: BranoverH, Lykoudis PS, Mond M (eds) Liquid-metal Flows and Magnetohydrodynamics. American Institute of Aeronautics and Astronautics, Monterey, CA

    Google Scholar 

  7. Walker JS (1981) Magnetohydrodynamic flows in rectangular ducts with thin conducting walls. J de Mécanique 20(1):79-112

    MATH  Google Scholar 

  8. BühlerL, Molokov S (1994) Magnetohydrodynamic flows in ducts with insulat-ing coatings. Magnetohydrodynamics 30(4):439-447

    MATH  Google Scholar 

  9. Shercliff JA (1953) Steady motion of conducting fluids in pipes under transverse magnetic fields. Proc Camb Phil Soc 49:136-144

    Article  MATH  MathSciNet  Google Scholar 

  10. Hunt JCR (1965) Magnetohydrodynamic flow in rectangular ducts. J Fluid Mech 21:577-590

    Article  MATH  MathSciNet  Google Scholar 

  11. Hunt JCR, Leibovich S (1967) Magnetohydrodynamic flow in channels of variable cross-section with strong transverse magnetic fields. J Fluid Mech 28(2):241-260

    Article  MATH  Google Scholar 

  12. Di Piazza I, Ciofalo M (2002) MHD free convection in a liquid-metal filled cubic enclosure. I. Differential heating. Int J Heat Mass Transf 45(7):1477-1492

    Article  MATH  Google Scholar 

  13. Kharicha A, Molokov S, Aleksandrova S, BühlerL (2004) Buoyant convection in the HCLL blanket in a strong uniform magnetic field. Technical Report FZKA 6959, Forschungszentrum Karlsruhe

    Google Scholar 

  14. Myasnikov MV, Kalyutik AI (1997) Numerical simulation of incompressible MHD flows in channels with a sudden expansion. Magnetohydrodynamics 33(4): 342-349

    MATH  Google Scholar 

  15. Sterl A (1990) Numerical simulation of liquid-metal MHD flows in rectangular ducts. J Fluid Mech 216:161-191

    Article  MATH  Google Scholar 

  16. Aitov TN, Kalyutik AI, Tananaev AV (1979) Numerical investigation of three-dimensional MHD flow in a curved channel of rectangular cross section. Magnetohydrodynamics 15(4):458-462

    Google Scholar 

  17. Schumann U (1976) Numerical simulation of the transition from three- to two-dimensional turbulence under a uniform magnetic field. J Fluid Mech 74:31-58

    Article  MATH  Google Scholar 

  18. Moreau R (1990) Magnetohydrodynamics. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  19. BühlerL (1995) Magnetohydrodynamic flows in arbitrary geometries in strong, nonuniform magnetic fields. Fusion Technol 27:3-24

    Google Scholar 

  20. Walker JS, Ludford GSS, Hunt JCR (1971) Three-dimensional MHD duct flows with strong transverse magnetic fields. Part 2. Variable-area rectangular ducts with conducting sides. J Fluid Mech 46:657-684

    Article  MATH  Google Scholar 

  21. Roberts PH (1967) Singularities of Hartmann layers. Proc R Soc Lond 300(A):94-107

    MATH  Google Scholar 

  22. Hua TQ, Walker JS (1989) MHD flow in insulating circular ducts for fusion blankets. Fusion Technol 15:699-704

    Google Scholar 

  23. Widlund O (2003) Wall functions for numerical modeling of laminar MHD flows. Eur J Mech B/Fluids 22(3):221-237

    Article  MATH  MathSciNet  Google Scholar 

  24. Kulikovskii AG (1968) Slow steady flows of a conducting fluid at large Hartmann numbers. Fluid Dynamics 3(1):1-5

    Google Scholar 

  25. McCarthy KA, Tillack MS, Abdou MA (1989) Analysis of liquid metal MHD flow using an iterative method to solve the core flow equations. Fusion Eng Des 8:257-264

    Article  Google Scholar 

  26. Hua TQ, Walker JS (1991) MHD considerations for poloidal-toroidal coolant ducts of self-cooled blankets. Fusion Technol 19:951-960

    Google Scholar 

  27. Smith DL, Baker CC, Sze DK, Morgan GD, Abdou MA, Piet SJ, Schultz SR, Moir RW, Gordon JD (1985) Ovierview of the blanket comparison and selection study. Fusion Technol 8(1):10-113

    Google Scholar 

  28. Chang C, Lundgren S (1961) Duct flow in magnetohydrodynamics. Zeitschrift für angewandte Mathematik und Physik XII:100-114

    Article  MathSciNet  Google Scholar 

  29. Abdou MA et al. (1983) Blanket comparison and selection study-interim report. Technical Report ANL/FPP-83-1 I, Argonne National Laboratory

    Google Scholar 

  30. Kirillov IR, RF DEMO team (2000) Lithium cooled blanket of RF DEMO reactor. Fusion Eng Des 49-50:457-465

    Article  Google Scholar 

  31. Lavrent’ev IV (1989) MHD-flow at high Rm, N and Ha. In: LielpetrisJ, Moreau R (eds) Liquid Metal Magnetohydrodynamics, Kluwer Academic, Dordrecht 21-43

    Google Scholar 

  32. Madarame H, Tillack MS (1986) MHD flow in liquid metal blankets with helical vanes. J Fac Eng, Univ Tokyo (B) 38(4):1-18

    Google Scholar 

  33. Picologlou BF, Reed CB, Hua TQ, Barleon L, Kreuzinger H, Walker JS (1989) MHD flow tailoring in first wall coolant channels of self-cooled blankets. Fusion Eng Des 8:297-303

    Article  Google Scholar 

  34. Reed CB, Picologlou BF (1989) Side wall flow instabilities in liquid metal MHD flow under blanket relevant conditions. Fusion Technol 15:705-715

    Google Scholar 

  35. BurrU, Barleon L, MüllerU, Tsinober AB (2000) Turbulent transport of momentum and heat in magnetohydrodynamic rectangular duct flow with strong side wall jets. J Fluid Mech 406:247-279

    Article  MATH  Google Scholar 

  36. Ting AL, Walker JS, Moon TJ, Reed CB, Picologlou BF (1991) Linear stability analysis for high-velocity boundary layers in liquid-metal magnetohydrodynamic flows. Int J Engng Sci, 29(8):939-948

    Article  MATH  Google Scholar 

  37. GiancarliL, BühlerL, Fischer U, Enderle R, Maisonnier D, Pascal C, Pereslavtsev P, Poitevin Y, Portone A, Sardain P, Szczepanski J, Ward D (2003) In-vessel component designs for a self-cooled lithium-lead fusion reactor. Fusion Eng Des 69(1-4):763-768

    Article  Google Scholar 

  38. Pérez AS, Giancarli L, Molon S, Salavy JF (1995) Progress on the design of the TAURO breeding blanket concept. Technical Report DMT 95/575 (SERMA/LCA/1829), CEA

    Google Scholar 

  39. Raffray AR, Jones R, Aiello G, Billone M, Giancarli L, Golfier H, Hasegawa A, Katoh Y, Kohyama A, Nishio S, Riccardi B, Tillack MS (2001) Design and material issues for high performance SiCf/SiC-based fusion power cores. Fusion Eng Des 55(1):55-95

    Article  Google Scholar 

  40. MalangS, Bojarsky E, BühlerL, Deckers H, Fischer U, Norajitra P, Reiser H (1993) Dual coolant liquid metal breeder blanket. In: FerroC, Gasparotto M, Knoepfel H (eds) Fusion Technol 1992, Proceedings of the 17th Symposium on Fusion Technol, Rome, Italy, 14-18 September 1992. Elsevier, Amsterdam 1424-1428

    Google Scholar 

  41. Norajitra P, BühlerL, Fischer U, Malang S, Reimann G, Schnauder H (2002) The EU advanced dual coolant blanket concept. Fusion Eng Des 61-62:449-453

    Article  Google Scholar 

  42. Sze DK, Tillack M, El-Guebaly L (2000) Blanket system selection for the ARIES-ST. Fusion Eng Des 48(3-4):371-378

    Article  Google Scholar 

  43. Bühler L, Molokov S (1993) Magnetohydrodynamic flows in ducts with insulating coatings. Technical Report KfK 5103, Kernforschungszentrum Karlsruhe

    Google Scholar 

  44. Walker JS, Wells WM (1979) Stress in liquid lithium modules in a TOKAMAK blanket due to changing poloidal magnetic field. In: Proceedings of the 8th Symposium on Engineering Problems of Fusion Research, San Francisco, California, November 13-16. IEEE Pub No 79CH1441-5 NPS, pp 394-398

    Google Scholar 

  45. Holroyd RJ, Mitchell JTD (1984) Liquid lithium as a coolant for TOKAMAK fusion reactors. Nuclear Engng Des/Fusion 1:17-38

    Article  Google Scholar 

  46. Walker JS, Wells WM (1979) Forces on liquid lithium modules in a TOKAMAK blanket due to the pulsed poloidal magnetic field. Technical Report ORNL/TM-6907, Oak Ridge National Laboratory

    Google Scholar 

  47. Madarame H, Taghavi K, Tillack MS (1985) The influence of leakage currents on the MHD pressure drop. Fusion Technol 8:264-269

    Google Scholar 

  48. Malang S, Arheidt K, Barleon L, Borgstedt HU, Casal V, Fischer U, Link W, Reimann J, Rust K, Schmidt G (1988) Self-cooled liquid-metal blanket concept. Fusion Technol 14:1343-1356

    Google Scholar 

  49. Barleon L, Lenhart L, Mack HJ, Sterl A, Thomauske K (1989) Investigations on liquid metal MHD in straight ducts at high Hartmann numbers and interaction parameters. In: Müller U, Rehme K, Rust K (eds) Proceedings of the 4th Inter-national Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Karlsruhe, October 10-13. G Braun, Karlsruhe, pp 857-862

    Google Scholar 

  50. Molokov S, Bühler L (1994) Liquid metal flow in a U-bend in a strong uniform magnetic field. J Fluid Mech 267:325-352

    Article  MATH  Google Scholar 

  51. Moon TJ, Walker JS (1990) Liquid metal flow through a sharp elbow in the plane of a strong magnetic field. J Fluid Mech 213:397-418

    Article  Google Scholar 

  52. Moon TJ, Hua TQ, Walker JS (1991) Liquid-metal flow in a backward elbow in the plane of a strong magnetic field. J Fluid Mech 227:273-292

    Article  MATH  Google Scholar 

  53. Stieglitz R, Barleon L, Bühler L, Molokov S (1996) Magnetohydrodynamic flow through a right-angle bend in a strong magnetic field. J Fluid Mech 326:91-123

    Article  MATH  Google Scholar 

  54. Stieglitz R, Molokov S (1997) Experimental study of magnetohydrodynamic flows in electrically coupled bends. J Fluid Mech 343:1-28

    Article  Google Scholar 

  55. Reimann J, Barleon L, Bühler L, Lenhart L, Malang S, Molokov S, Platnieks I, Stieglitz R (1995) Magnetohydrodynamic investigations of a self-cooled Pb-17Li blanket with poloidal-radial-toroidal ducts. Fusion Eng Des 27:593-606

    Google Scholar 

  56. Giancarli L, Severi Y, Baraer L, Leroy P, Mercier J, Proust E, Quintric-Bossy J (1992) Water-cooled lithium-lead blanket design studies for demo reactor: Def-inition and recent developments of the box-shaped concept. Fusion Technol 21:2081-2088

    Google Scholar 

  57. Giancarli L, Ferrari M, Fütterer MA, Malang S (2000) Candidate blanket concepts for a European fusion power plant study. Fusion Eng Des 49-50:445-456

    Article  Google Scholar 

  58. Rampal G, Poitevin Y, Li-Puma A, Rigal E, Szczepanski J, Boudot C (2005) HCLL TBM for ITER - design studies. Fusion Eng Des 75-79:917-922

    Article  Google Scholar 

  59. Abdou MA, the APEX TEAM (2001) On the exploration of innovative concepts for fusion chamber technology. Fusion Eng Des 54:181-247

    Article  Google Scholar 

  60. Molokov S, Reed CB (2000) Review of free-surface MHD experiments and modelling. Technical Report ANL/TD/TM99-08, Argonne National Laboratory

    Google Scholar 

  61. Smolentsev S, Abdou MA (2005) Open-surface MHD flow over a curved wall in the 3-d thin-shear-layer approximation. Appl Math Model 29(3):215-234

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Bühler, L. (2007). Liquid Metal Magnetohydrodynamics for Fusion Blankets. In: Magnetohydrodynamics. Fluid Mechanics And Its Applications, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4833-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-4833-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4832-6

  • Online ISBN: 978-1-4020-4833-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics