Advertisement

Molecular Biodiversity, Taxonomy, and Nomenclature of Tomato Yellow Leaf Curl-like Viruses

  • Mohammad Abhary
  • Basavaprabhu L. Patil
  • Claude M. Fauquet

Tomato yellow leaf curl disease (TYLCD) is one of the most devastating plant diseases in the world and is spreading fast, covering more than 20 countries across the globe. This disease is caused by several viruses belonging to different species which altogether are referred to as “Tomato yellow leaf curl viruses” (TYLCV). Taxonomically they all belong to at least six species and 15 strains of viruses. This chapter has multiple implications such as taxonomic, nomenclatural, evolutionary, and practical, and its purpose is to provide a clear vision on the status of knowledge of molecular diversity of TYLCV-like viruses, to offer an up-to-date list of virus names and their abbreviations with their corresponding GenBank accession numbers. This study also provides a sense of geminivirus evolution in a short span of time as well as on a long timescale. Human interference is being considered as the major factor for the recent spread of these viruses, thereby promoting and selecting new recombinants, and it is probably only the beginning of what we can envisage for many other geminiviruses on the planet earth. However, it is becoming apparent that TYLCV-like viruses have a better biological fitness to compete with locally present viruses in new ecological niches and thus it would be interesting to unravel and understand more about these biological characteristics in the near future to better appreciate future emergences of geminiviruses in the world.

Keywords

Tomato Yellow Leaf Curl Virus Tomato Leaf Tomato Yellow Leaf Begomovirus Species Monopartite Begomovirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abou-Jawdah, Y. (1995). Serological reactivity of tomato yellow leaf curl geminivirus isolates from Lebanon with heterologous monoclonal antibodies. Phytopathol. Mediterr. 34, 35–37.Google Scholar
  2. Accotto, G. P., Navas-Castillo, J., Noris, E., Moriones, E., & Louro, D. (2000). Typing of tomato yellow leaf curl viruses in Europe. Eur. J. Plant Pathol. 106, 179–186.CrossRefGoogle Scholar
  3. Accotto, G. P., Bragaloni, M., Luison, D., Davino, S., & Davino, M. (2003). First report of Tomato yellow leaf curl virus (TYLCV) in Italy. Plant Pathol. 52, 799.CrossRefGoogle Scholar
  4. Ambrozevicius, L. P., Calegario, R. F., Fontes, E. P. B., Carvalho, M. G., & Zerbini, F. M. (2002). Molecular detection and phylogenetic analysis of tomato- and weed infecting geminiviruses in Southeastern Brazil. Fitopatologia Brasiliera 27, 372–377.Google Scholar
  5. Anfoka, G. H., Abhary, M., & Nakhla, M. K. (2005). Molecular identification of species of the Tomato yellow leaf curl virus complex in Jordan. J. Plant Pathol. 87, 61–66.Google Scholar
  6. Antignus, E. Y. & Cohen, S. (1994). Cloning of tomato yellow leaf curl virus (TYLCV) and the complete nucleotide sequence of a mild infectious clone Phytopathology 84, 707–712.CrossRefGoogle Scholar
  7. Bananej, K., Kheyr-Pour, A., Salekdeh, G. H. & Ahoonmanesh, A. (2004). Complete nucleotide sequence of Iranian tomato yellow leaf curl virus isolate: further evidence for natural recombination amongst begomoviruses. Arch. Virol. 149, 1435–1443.CrossRefPubMedGoogle Scholar
  8. Bedford, I. D., Briddon, R. W., Brown, J. K., Rossel, R. C., & Markham, P. G. (1994). Geminivirus transmission and biological characterization of Bemisia tabaci (Genn.) biotypes from different geographic regions. Ann. Appl. Biol. 125, 311–325.CrossRefGoogle Scholar
  9. Bird, J., Idris, A. M., Rogan, D., & Brown, J. K. (2001). Introduction of the Exotic Tomato leaf curl virus-Israel in tomato to Puerto Rico. Plant D. 85, 1028–1028.CrossRefGoogle Scholar
  10. Bonnet, J., Fraile, A., Sacristán, S., Malpica, J. M., & García-Arenal, F. (2005). Role of recombination in the evolution of natural populations of Cucumber mosaic virus, a tripartite RNA plant virus. Virology 332, 359–368.CrossRefPubMedGoogle Scholar
  11. Brown, J. K. (1994). The status of Bemisia tabaci (Genn.) as a pest and a vector in world agroecosystems. FAO Plant Prot. Bull. 42, 3–32.Google Scholar
  12. Brown, J. K. & Idris, A. M. (2005). Genetic differentiation of whitefly Bemisia tabaci mitochondrial cytochrome oxidase I, and phylogeographic concordance with the coat protein of the plant virus genus Begomovirus. Ann. Entomol. Soc. Am. 98, 827–837.CrossRefGoogle Scholar
  13. Brown, J. K. & Idris, A. M. (2006). Introduction of the exotic monopartite Tomato yellow leaf curl virus into West Coast Mexico. Plant Dis. 90, 1360.CrossRefGoogle Scholar
  14. Brown, J. K. & Nelson, M. R. (1989). Two whitefly-transmitted geminiviruses isolated from pepper affected with pepper tigre disease. Phytopathology 79, 908.CrossRefGoogle Scholar
  15. Chakraborty, S., Pandel, P. K., Banerjee, M. K., Kalloo, G., & Fauquet, C. M. (2003). Tomato leaf curl Gujarat virus, a new begomovirus species causing a severe leaf curl disease of tomato in Varanasi, India. Virology 93, 1485–1495.Google Scholar
  16. Charlesworth, B. & Charlesworth, D. (2003). Evolution: A Very Short Introduction. Oxford: Oxford University Press.Google Scholar
  17. Chatterji, A., Chatterji, U., Beachy, R. N., & Fauquet, C. M. (2000). Sequence parameters that determine specificity of binding of the replication-associated protein to its cognate site in two strains of Tomato leaf curl virus-New Delhi. Virology 273, 341–350.CrossRefPubMedGoogle Scholar
  18. Chouchane, S. G., Gorsane, F., Nakhla, M. K., Maxwell, D. P., Marrakchi, M., & Fakhfakh, H. (2006). Complete nucleotide sequence and construction of an infectious clone of a Tunisian isolate of Tomato yellow leaf curl Sardinia virus. J. Phytopathol. 154, 626–631.CrossRefGoogle Scholar
  19. Chua, K. B., Bellini, W. J., Rota, P. A., Harcourt, B. H., Tamin, A., Lam, S. K., Ksiazek, T. G., Rollin, P., Ezaki, S. R., Shieh, W. J., Goldsmith, C. S., Gubler, D. J., Roehrig, J. T., Eaton, B., Gould, A. R., Olson, J., Field, H., Daniels, P., Ling, A. E., Peters, C. J., Anderson, L. J., & Mahy, B. W. J. (2000). Nipah virus: a recently emergent deadly paramyxovirus. Science 288, 1432–1435.CrossRefPubMedGoogle Scholar
  20. Cohen, S. & Harpaz, I. (1964). Periodic, rather than continual acquisition of a new tomato virus by its vector, the tobacco whitefly (Bemisia tabaci Gennadus). Entomologia Experimentalis et Applicata 7, 155–166.CrossRefGoogle Scholar
  21. Cohen, S., Kern, J., Harpaz, I., & Ben-Joseph, R. (1988). Epidemiological studies of the tomato yellow leaf curl virus (TYLCV) in the Jordan Valley, Israel. Phytoparasitica 16, 259–270.CrossRefGoogle Scholar
  22. Credi, R., Betti, L., & Canova, A. (1989). Association of a geminivirus with a severe disease of tomato in Sicily. Phytopathol. Mediterr. 28, 223–226.Google Scholar
  23. Crespi, S., Noris, E., Vaira, A. M., & Accotto, G. P. (1995). Molecular characterization of cloned DNA from a tomato yellow leaf curl virus isolate from Sicily. Phytopathol Mediterr. 34, 93–99.Google Scholar
  24. Czosnek, H. & Laterrot, H. (1997). A worldwide survey of tomato yellow leaf curl viruses. Arch. Virol. 142, 1391–1406.CrossRefPubMedGoogle Scholar
  25. Czosnek, H., Navot, N., & Laterrot, H. (1990). Geographical distribution of tomato yellow leaf curl virus. A first survey using a specific DNA probe. Phytopathol. Mediterr. 29, 1–6.Google Scholar
  26. Delatte, H., Dalmon, A., Rist, D., Soustrade, I., Wuster, G., Lett, J. M., Goldbach, W. R., Peterschmitt, M., & Reynaud, B. (2003). Tomato yellow leaf curl virus can be acquired and transmitted by Bemisia tabaci (Gennadius) from tomato fruit. Plant Dis. 87, 1297–1300.CrossRefGoogle Scholar
  27. Delatte, H., Martin, D. P., Naze, F., Goldbach, R., Reynaud, B., Peterschmitt, M., & Lett, J. M. (2005). South West Indian Ocean islands tomato begomovirus populations represent a new major monopartite begomovirus group. J. Gen. Virol. 86, 1533–1542.CrossRefPubMedGoogle Scholar
  28. Dembele, D. & Noussourou, M. (1991). Tomato yellow leaf curl virus in Mali (in French). In: H. Laterrot, C. Trousse (Eds.), Proceedings of the Seminar of EEC: Resistance of the Tomato to TYLCV. Avignon, France, pp. 17–20.Google Scholar
  29. Eagle, P. A., Orozco, B. M. & Hanley-Bowdoin, L. (1994). A DNA sequence required for geminivirus replication also mediates transcriptional regulation. Plant Cell 6, 1157–1170.CrossRefPubMedGoogle Scholar
  30. Fauquet, C. M. & Stanley, J. (2003). Geminivirus Classification and Nomenclature: progress and problems. Ann. Appl. Biol. 142, 165–189.CrossRefGoogle Scholar
  31. Fauquet, C. M. & Stanley, J. (2005). Revising the way we conceive and name viruses below the species level: a review of geminivirus taxonomy calls for new standardized isolate descriptors. Arch. Virol. 150, 2151–2179.CrossRefPubMedGoogle Scholar
  32. Fauquet, C. M., Maxwell, D. P., Gronenborn, B., & Stanley, J. (2000). Revised proposal for naming geminiviruses. Arch. Virol. 145, 1743–1761.CrossRefPubMedGoogle Scholar
  33. Fauquet, C. M., Bisaro, D. M., Briddon, R. W., Brown, J. K., Harrison, B. D., Rybicki, E. P., Stenger, D. C., & Stanley, J. (2003). Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Arch. Virol. 148, 405–421.CrossRefPubMedGoogle Scholar
  34. Fauquet, C. M., Sawyer, S., Idris, A. M., & Brown, J. K. (2005). Sequence analysis and classification of apparent recombinant begomoviruses infecting tomato in the Nile and Mediterranean Basins. Phytopathology 95, 549–555.CrossRefPubMedGoogle Scholar
  35. Fauquet, C. M., Briddon, R. W., Brown, J. K., Moriones, E., Stenger, D. C., Stanley, J., Zerbini, M., & Zhou, X. (2007). Update of the list of species, strain and isolates in the family Geminiviridae. Virol. J. (submitted).Google Scholar
  36. García-Andrés, S., Monci, F., Navas-Castillo, J., & Moriones, E. (2006). Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: Evidence for the presence of a new virus species of recombinant nature. Virology 350, 433–442.CrossRefPubMedGoogle Scholar
  37. García-Andrés, S., Monci, F., Sanchez-Campos, S., & Moriones, E. (2006). A recombinant between the ES strain of Tomato yellow leaf curl Sardinia virus (TYLCSV-ES[1]) and Tomato yellow leaf curl virus TYLCV)(cross-over points in the intergenic region and REn ORF. http://www.ncbi.nlm.nih.gov accession AY227892.
  38. Hahn, B. H., Shaw, G. M., De Cock, K. M., & Sharp, P. M. (2000). AIDS as a zoonosis: scientific and public health implications. Science 287, 607–614.CrossRefPubMedGoogle Scholar
  39. Hanley-Bowdoin, L., Settlage, S. B., Orozoo, B. M., Nagar, S., & Robertson, D. (1999). Geminiviruses: Models for plant DNA replication, transcription, and cell cycle regulation. Crit. Rev. Plant Sci. 18, 71–106.CrossRefGoogle Scholar
  40. Harrison, B. D. & Robinson, D. J. (1999). Natural genomic and antigenic variation in whitefly-transmitted geminiviruses (begomoviruses). Annu. Rev. Phytopathol. 37, 369–398.CrossRefPubMedGoogle Scholar
  41. Herrmann, F. (1921). Selection of a variety of tomato resistant to leaf-curl. Fur. Obst-und. Gartenbau zu Proskau. 1918–1919; 111.Google Scholar
  42. Hong, Y. G. & Harrison, B. D. (1995). Nucleotide sequences from tomato leaf curl viruses from different countries: evidence for three geographically separate branches in the evolution of the coat protein of whitefly-transmitted geminiviruses. J. Gen. Virol. 76, 2043–2049.CrossRefPubMedGoogle Scholar
  43. Howarth, A. J. & Vandemark, G. J. (1998). Phylogeny of geminiviruses. J. Gen. Virol. 70, 2717–2727.CrossRefGoogle Scholar
  44. Idris, A. M. & Brown, J. K. (2005). Evidence for interspecific-recombination for three monopartite begomoviral genomes associated with the tomato leaf curl disease from central Sudan. Arch. Virol. 150, 1003–1012.CrossRefPubMedGoogle Scholar
  45. Jovel, J., Reski, G., Rothenstein, D., Ringel, M., Frischmuth, T., & Jeske, H. (2004). Sida micrantha mosaic is associated with a complex infection of begomoviruses different from Abutilon mosaic virus. Arch. Virol. 149, 829–841.CrossRefPubMedGoogle Scholar
  46. Kato, K., Onuki, M., Fuji, S., & Hanada, K. (1998). The first occurrence of tomato yellow leaf curl virus in tomato (Lycopersicon esculentum Mill.) in Japan. Ann. Phytopathol. Soc. Japan 64, 552–559.Google Scholar
  47. Kheyr-Pour, A., Bendahmane, M., Matzeit, M., Accotto, G. P., Crespi, S., & Gronenborn, B. (1991). Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res. 19, 6763–6769.CrossRefPubMedGoogle Scholar
  48. Kirthi, N., Maiya, S. P., Murthy, M. R., & Savithri, H. S. (2002). Evidence for recombination among the tomato leaf curl virus strains/species from Bangalore, India. Arch. Virol. 147, 255–272.CrossRefPubMedGoogle Scholar
  49. Lapidot, M. & Friedman, M. (2002). Breeding for resistance to whitefly-transmitted geminiviruses. Ann. Appl. Biol. 140, 109–127.CrossRefGoogle Scholar
  50. Louro, D., Noris, E., Veratti, F. & Accotto, G. P. (1996). First report of tomato yellow leaf curl virus in Portugal. Plant Dis. 80, 1079.Google Scholar
  51. Makkouk, K. M., Shehab, S., & Madjalani, S. E. (1979). Tomato yellow leaf curl: incidence, yield losses and transmission in Lebanon. Phytopathol. Z. 96, 263–267.CrossRefGoogle Scholar
  52. Martin, D. P., Williamson, C., & Posada, D. (2005). RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21, 260–262.CrossRefPubMedGoogle Scholar
  53. Monci, F., Sanchez-Campos, S., Navas-Castillo, J., & Moriones, E. (2002). A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 303, 317–326.CrossRefPubMedGoogle Scholar
  54. Morilla, G., Antúnez, C., Bejarano, E. R., Janssen, D., & Cuadrado, I. M. (2003). A new Tomato yellow leaf curl virus strain in southern Spain. Plant Dis. 87, 1004.CrossRefGoogle Scholar
  55. Morilla, G., Janssen, D., García-Andrés, S., Moriones, E., Cuadrado, I. M., & Bejarano, E. R. (2005). Pepper (Capsicum annuum), is a dead-end host for Tomato yellow leaf curl virus (TYLCV). Phytopathology 95, 1089–1097.CrossRefPubMedGoogle Scholar
  56. Morilla, G., Krenz, B., Jeske, H., Bejarano, E. R., & Wege, C. (2004). Tete-a-tete of Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus in single nuclei. J. Virol. 78, 10715–10723.CrossRefPubMedGoogle Scholar
  57. Moriones, E. & Navas-Castillo, J. (2000). Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res. 71, 123–134.CrossRefPubMedGoogle Scholar
  58. Nakhla, M. K. & Maxwell, D. P. (1998). Epidemiology and management of tomato yellow leaf curl disease. In: A. Hadid, R. K. Khetarpal, & H. Koganezawa (Eds.), Plant Virus Disease Control. St Paul, MN, USA: APS Press, pp. 565–583.Google Scholar
  59. Nakhla, M. K., Mazyad, H. M., & Maxwell, D. P. (1993). Molecular characterization of four Tomato yellow leaf curl virus isolates from Egypt and development of diagnosis methods. Phytopathol Mediterr. 32, 163–173.Google Scholar
  60. Navas-Castillo, J., Sanchez-Campos, S., Díaz, J. A., Saez-Alonso, E., & Moriones, E. (1997). First report of tomato yellow leaf curl virus-Is in Spain: Coexistence of two different geminiviruses in the same epidemic outbreak. Plant Dis. 81, 1461.CrossRefGoogle Scholar
  61. Navas-Castillo, J., Sánchez-Campos, S., Díaz, J. A., Sáez-Alonso, E., & Moriones, E. (1999). Tomato yellow leaf curl virus-Is causes a novel disease of common bean and severe epidemics in tomato in Spain. Plant Dis. 83, 29–32.CrossRefGoogle Scholar
  62. Navas-Castillo, J., Sanchez-Campos, S., Noris, E., Louro, D., Accotto, G. P., & Moriones, E. (2000). Natural recombination between Tomato yellow leaf curl virus-Is and Tomato leaf curl virus. J. Gen. Virol. 81, 2797–2801.Google Scholar
  63. Navot, N., Pichersky, E., Zeidan, M., Zamir, D., & Czosnek, H. (1991). Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic molecule. Virology 185, 151–161.CrossRefPubMedGoogle Scholar
  64. Noris, E., Hidalgo, E., Accotto, G. P., & Moriones, E. (1994). High similarity among the tomato yellow leaf curl virus isolates from the western Mediterranean basin: the nucleotide sequence of an infectious clone from Spain. Arch. Virol. 135, 165–170.CrossRefPubMedGoogle Scholar
  65. Ooi, K., Ohshita, S., Ishii, I., & Yahara, T. (1997). Molecular phylogeny of geminivirus infecting wild plants in Japan. J. Plant Res. 110, 247–257.CrossRefGoogle Scholar
  66. Padidam, M., Beachy, R. N., & Fauquet, C. M. (1995a). Classification and identification of geminiviruses using sequence comparisons. J. Gen. Virol. 76, 249–263.CrossRefPubMedGoogle Scholar
  67. Padidam, M., Beachy, R. N., & Fauquet, C. M. (1995b). Tomato leaf curl from India has a bipartite genome and coat protein is not essential for infectivity. J. Gen. Virol. 76, 25–35.CrossRefPubMedGoogle Scholar
  68. Padidam, M., Sawyer, S., & Fauquet, C. M. (1999). Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218–225.CrossRefPubMedGoogle Scholar
  69. Perring, T. M., Cooper, A. D., Rodriguez, R. J., Farrar, C. A., & Bellows, T. S. Jr. (1993). Identification of a whitefly species by genomic and behavioral studies. Science 259, 74–77.CrossRefPubMedGoogle Scholar
  70. Polston, J. E. & Anderson, P. K. (1997). Emergence of whitefly transmitted geminiviruses in tomato in the Western Hemisphere. Plant Dis. 81, 1358–1369.CrossRefGoogle Scholar
  71. Polston, J. E., Cohen, L., Sherwood, T. A., Ben-Joseph, R., & Lapidot, M. (2006). Capsicum species: Symptomless hosts and reservoirs of Tomato yellow leaf curl virus. Phytopathology 96, 447–452.CrossRefPubMedGoogle Scholar
  72. Polston, J. E., McGovern, R. J., & Brown, L. G. (1999). Introduction of Tomato yellow leaf curl virus in Florida and implications for the spread of this and other geminiviruses of tomato. Plant Dis. 83, 984–988.CrossRefGoogle Scholar
  73. Preiss, W. & Jeske, H. (2003). Multitasking in replication is common among geminiviruses. J. Virol. 77, 2972–2980.CrossRefPubMedGoogle Scholar
  74. Quiñones, M., Fonseca, D., Martínez, Y., & Accotto, G. (2002). First report of Tomato yellow leaf curl virus infecting pepper plants in Cuba. Plant Dis. 86, 73.CrossRefGoogle Scholar
  75. Reina, J., Jiménez, J., Bejarano, E. R., Guerra, J. M., Cuadrado, I. M., & García, C. (1994). El Virus del rizado amarillo del tomate (TYLCV). Hortifruticultura 6, 36–40.Google Scholar
  76. Rojas, A., Kvarnheden, A., Marcenaro, D., & Valkonen, J. P. (2005). Sequence characterization of tomato leaf curl Sinaloa virus and tomato severe leaf curl virus: phylogeny of New World begomoviruses and detection of recombination. Arch. Virol. 150, 1281–1299.CrossRefPubMedGoogle Scholar
  77. Roossinck, M. J. (1997). Mechanisms of plant virus evolution. Ann. Rev. Phytopathol. 35, 191–209.CrossRefGoogle Scholar
  78. Roye, M. E., Wernecke, M. E., McLaughlin, W. A., Nakhla, M. K., & Maxwell, D. P. (1999). Tomato dwarf leaf curl virus, a new bipartite geminivirus associated with tomatoes and peppers in Jamaica and mixed infection with tomato yellow leaf curl virus. Plant Pathol. 48, 370–378.CrossRefGoogle Scholar
  79. Rybicki, E. P. (1994). A phylogenetic and evolutionary justification for three genera of Geminiviridae. Arch. Virol. 139, 49–78.CrossRefPubMedGoogle Scholar
  80. Rybicki, E. P. & Pietersen, G. (1999). Plant virus problems in the developing world. Adv. Virus Res. 53, 127–175.CrossRefPubMedGoogle Scholar
  81. Salati, R., Nahkla, M. K., Rojas, M. R., Guzman, P., Jaquez, J., Maxwell, D. P., & Gilbertson, R. L. (2002). Tomato yellow leaf curl virus in the Dominican Republic: characterization of an infectious clone, virus monitoring in whiteflies, and identification of reservoir hosts. Phytopathology 92, 487–496.CrossRefPubMedGoogle Scholar
  82. Sanchez-Campos, S., Navas-Castillo, J., Camero, R., Soria, C., Diaz, J. A., & Moriones, E. (1999). Displacement of Tomato yellow leaf curl virus (TYLCV)-Sr by TYLCV-Is in tomato epidemics in Spain. Phytopathology 89, 1038–1043.CrossRefPubMedGoogle Scholar
  83. Sánchez-Campos, S., Díaz, J. A., Monci, F., Bejarano, E. R., Reina, J., Navas-Castillo, J., Aranda, M. A., & Moriones, E. (2002). High genetic stability of the begomovirus Tomato yellow leaf curl Sardinia virus in southern Spain over an 8-year period. Phytopathology 92, 842–849.CrossRefPubMedGoogle Scholar
  84. Sanz, A. I., Fraile, A., Gallego, J. M., Malpica, J. M., & Garcia-Arenal, F. (1999). Genetic variability of natural populations of cotton leaf curl geminivirus, a single-stranded DNA virus. J. Mol. Evol. 49, 672–681.CrossRefPubMedGoogle Scholar
  85. Sanz, A. I., Fraile, A., García-Arenal, F., Zhou, X., Robinson, D. J., Khalid, S., Butt, T., & Harrison, B. (2000). Multiple infection, recombination and genome relationships among begomovirus isolates found in cotton and other plants in Pakistan. J. Gen. Virol. 81, 1839–1849.PubMedGoogle Scholar
  86. Sawyer, S. (1989). Statistical tests for detecting gene convertions. Mol. Biol. Evol. 6, 526–538.PubMedGoogle Scholar
  87. Schrag, S. J. & Wiener, P. (1995). Emerging infectious disease: what are the relative roles of ecology and evolution? Trends Ecol. Evol. 10, 319–324.CrossRefGoogle Scholar
  88. Schuster, D. J., Kring, J. B. & Price, J. B. (1991). Association of the sweetpotato whitefly with a silverleaf disorder of squash. HortScience 26, 155–156.Google Scholar
  89. Shih, S. L., Green, S. K., Tsai, W. S., Lee, L. M., Wang, J. T., & Tesfaye, A. (2006). First report of a begomovirus associated with tomato yellow leaf curl disease in Ethiopia. Plant Dis. 90, 974.CrossRefGoogle Scholar
  90. Stanley, J. (1995). Analysis of African cassava mosaic virus recombinants suggests strand nicking occurs within the conserved nonanucleotide motif during the initiation of rolling circle DNA replication. Virology 206, 707–712.CrossRefPubMedGoogle Scholar
  91. Stanley, J., Bisaro, D. M., Briddon, R. W., Brown, J. K., Fauquet, C. M., Harrison, B. D., Rybicki, E. P., & Stenger, D. C. (2005). Geminiviridae. In C. M. Fauquet, M.A., Mayo, J., Maniloff, U., Desselberger & L.A. Ball (Eds.), Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. London: Elsevier/Academic Press, pp. 301–326.Google Scholar
  92. Tahiri, A., Sekkat, A., Bennani, A., Granier, M., Delvare, G., & Peterschmitt, M. (2006). Distribution of tomato-infecting begomoviruses and Bemisia tabaci biotypes in Morocco Ann. Appl. Biol. 149, 175.Google Scholar
  93. Tesoriero, L. & Azzopardi, S. (2006). Tomato yellow leaf curl virus in Australia. Primefact 220, 1–2.Google Scholar
  94. Ueda, S., Kimura, T., Onuki, M., Hanada, K., & Iwanami, T. (2004). Three distinct groups of isolates of Tomato yellow leaf curl virus in Japan and construction of an infectious clone. J. Gen. Plant Pathol. 70, 232–238.CrossRefGoogle Scholar
  95. Wernecke, M., Roye, M. E., & McLaughlin, W. (1995). Identification of tomato yellow leaf curl geminivirus (TYLCV-Is) in tomatoes and pepper in Jamaica. In Proceedings of Biology and Molecular Epidemiology of Geminiviruses. Tucson, AZ, p. 17.Google Scholar
  96. Wu, J. B., Dai, F. M., & Zhou, X. P. (2006). First Report of Tomato yellow leaf curl virus in China. Plant Dis. 90, 1359.CrossRefGoogle Scholar
  97. Xie, Y. & Zhou, X. P. (2003). Molecular characterization of squash leaf curl Yunnan virus, a new begomovirus and evidence for recombination. Arch. Virol. 148, 2047–2054.CrossRefPubMedGoogle Scholar
  98. Yassin, A. M. & Nour, M. A. (1965). Tomato leaf curl disease in the Sudan and their relation to tobacco leaf curl. Ann. Appl. Biol. 56, 207–217.CrossRefGoogle Scholar
  99. Yassin, A. M. & Nour, M. A. (1965). Tomato leaf curl disease, its effect on yield and varietal susceptibility. Sudan Agric. J. 1, 3–7.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Mohammad Abhary
    • 1
  • Basavaprabhu L. Patil
    • 1
  • Claude M. Fauquet
    • 1
  1. 1.International Laboratory for Tropical Agricultural Biotechnology (ILTAB)Donald Danforth Plant Science CenterSt. LouisUSA

Personalised recommendations