Skip to main content

Screening for TYLCV-Resistance Plants using Whitefly-Mediated Inoculation

  • Chapter
Book cover Tomato Yellow Leaf Curl Virus Disease

Today, tomato yellow leaf curl disease has become the limiting factor for tomato production in many tropical and subtropical regions of the world. This disease is induced by a number of begomoviruses, the type member being Tomato yellow leaf curl virus (TYLCV), transmitted by the whitefly Bemisia tabaci (Gennadius), whose severe population outbreaks are usually associated with high incidence of the disease. Control measures in infected areas usually rely on seclusion of the whitefly vector, mainly through multiple applications of insecticides or physical barriers (Antignus & Cohen, 1994; Hilje et al., 2001; Palumbo et al., 2001; Polston & Anderson, 1997). Due to the large populations of whiteflies, and their ability to develop pesticide resistance, vector seclusion is not an ideal way of fighting the spread and damage induced by TYLCV. Hence, development of genetic resistance in the tomato host is the best solution for any virus problem, and especially for whitefly-transmitted viruses such as TYLCV, since it requires no chemical input and/or plant seclusion and may be stable and longlasting. Thus, the best way to reduce TYLCV spread is by breeding tomatoes resistant or tolerant to the virus (Lapidot & Friedmann, 2002; Morales, 2001; Pico et al., 1996).

Wild tomato species have been screened for their response to the virus and a number of TYLCV-resistant accessions identified, because no resistance has been found in the domesticated tomato (Solanum lycopersicum) (Lapidot & Friedmann, 2002; Nakhla & Maxwell, 1998; Pico et al., 1996). Thus, breeding programs have been based on the transfer of resistance genes from accessions of wild origin into the cultivated tomato. Progress in the breeding for TYLCV resistance has been slow, due in part to the complex genetics of the resistance and the presence of interspecific barriers between the wild and domesticated tomato species. The lack of an accurate and reliable mass inoculation and selection system has also slowed breeding programs. Since TYLCV is not transmitted mechanically, it is essential that inoculation protocols be developed using whiteflies, which can ensure 100% infection rate, and a standardized (as much as possible) inoculum pressure.

To succeed in a program aimed at developing resistance to TYLCV, a number of issues must be addressed: development of inoculation protocols, screening for resistant genotypes, development of a symptom-severity scale, inheritance of resistance, and determination of the effect a resistant host may have on virus epidemiology. This chapter focuses on aspects of screening for TYLCV resistance using whitefly-mediated transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou Jawdah, Y., Shebaro, W. A., & Soubra, K. H. (1995). Detection of tomato yellow leaf curl geminivirus (TYLCV) by a digoxigenin-labelled DNA probe. Phytopathol. Mediterr. 34, 52–57.

    Google Scholar 

  • Antignus, Y. & Cohen, S. (1994). Complete nucleotide sequence of an infectious clone of a mild isolate of tomato yellow leaf curl virus (TYLCV). Phytopathology 84, 707–712.

    Article  CAS  Google Scholar 

  • Bellotti, A. C. & Arias, B. (2001). Host plant resistance to whiteflies with emphasis on cassava as a case study. Crop Prot. 20, 813–824.

    Article  Google Scholar 

  • Brown, J. K., Frohlich, D. R., & Rosell, R. C. (1995). The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annu. Rev. Entomol. 40, 511–669.

    Article  CAS  Google Scholar 

  • Byrne, D. N. & Bellows, T. S. (1991). Whitefly biology. Annu. Rev. Entomol. 36, 431–457.

    Article  Google Scholar 

  • Cohen, S. & Harpaz, I. (1964). Periodic rather than continual acquisition of a new tomato virus by its vector, the tobacco whitefly (Bemisia tabaci Gennadius). Entomol. Exp. Appl. 7, 155–166.

    Article  Google Scholar 

  • Cohen, S., Kern, J., Harpaz, I., & Ben Joseph, R. (1988). Epidemiological studies of the tomato yellow leaf curl virus (TYLCV) in the Jordan Valley, Israel. Phytoparasitica 16, 259–270.

    Article  Google Scholar 

  • Czosnek, H., Kheyr-Pour, A., Gronenborn, B., Remetz, E., Zeidan, M., Altman, A., Rabinowitch, H. D., Vidavsky, S., Kedar, N., Gafni, Y., & Zamir, D. (1993). Replication of tomato yellow leaf curl virus (TYLCV) DNA in agroinoculated leaf-disks from selected tomato genotypes. Plant Mol. Biol. 22, 995–1005.

    Article  CAS  PubMed  Google Scholar 

  • Fargette, D., Leslie, M., & Harrison, B. D. (1996). Serological studies on the accumulation and localisation of three tomato leaf curl geminiviruses in resistant and susceptible Lycopersicon species and tomato cultivars. Ann. Appl. Biol. 128, 317–328.

    Article  Google Scholar 

  • Friedmann, M., Lapidot, M., Cohen, S., & Pilowsky, M. (1998). A novel source of resistance to tomato yellow leaf curl virus exhibiting a symptomless reaction to viral infection. J. Am. Soc. Hortic. Sci. 123, 1004–1007.

    Google Scholar 

  • Grimsley, N., Hohn, B., Hohn, T., & Walden, R. (1986). “Agroinfection”, an alternative route for viral infection of plants by using the Ti plasmid. Proc. Natl. Acad. Sci. USA 83, 3282–3286.

    Article  CAS  PubMed  Google Scholar 

  • Grimsley, N., Hohn, T., Davis, J. W., & Hohn, B. (1987). Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325, 177–179.

    Article  CAS  Google Scholar 

  • Hilje, L., Costa, H. S., & Stansly, P. A. (2001). Cultural practices for managing Bemisia tabaci and associated viral diseases. Crop Prot. 20, 801–812.

    Article  Google Scholar 

  • Jones, D. R. (2003). Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 109, 195–219.

    Article  Google Scholar 

  • Kasrawi, M. A., Suwwan, M. A., & Mansour, A. (1988). Sources of resistance to tomato-yellow-leafcurl virus TYLCV in Lycopersicon species. Euphytica 37, 61–64.

    Article  Google Scholar 

  • Kheyr-Pour, A., Gronenborn, B., & Czosnek, H. (1994). Agroinoculation of tomato yellow leaf curl virus (TYLCV) overcomes the virus resistance of wild Lycopersicon species. Plant Breed. 112, 228–233.

    Article  CAS  Google Scholar 

  • Lapidot, M. & Friedmann, M. (2002). Breeding for resistance to whitefly-transmitted geminiviruses. Ann. Appl. Biol. 140, 109–127.

    Article  Google Scholar 

  • Lapidot, M. & Polston, J. E. (2006). Resistance to Tomato yellow leaf curl virus in tomato. In G. Lobensteine & J. P. Carr (Eds.), Natural Resistance Mechanisms of Plants to Viruses. The Netherlands: Springer, pp. 503–520.

    Chapter  Google Scholar 

  • Lapidot, M., Friedmann, M., Lachman, O., Yehezkel, A., Nahon, S., Cohen, S., & Pilowsky, M. (1997). Comparison of resistance level to tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Dis. 81, 1425–1428.

    Article  Google Scholar 

  • Lapidot, M., Goldray, O., Ben Joseph, R., Cohen, S., Friedmann, M., Shlomo, A., Nahon, S., Chen, L., & Pilowsky, M. (2000). Breeding tomatoes for resistance to tomato yellow leaf curl begomovirus. Bull. OEPP/EPPO 30, 317–321.

    Google Scholar 

  • Lapidot, M., Friedmann, M., Pilowsky, M., Ben Joseph, R., & Cohen, S. (2001). Effect of host plant resistance to Tomato yellow leaf curl virus (TYLCV) on virus acquisition and transmission by its whitefly vector. Phytopathology 91, 1209–1213.

    Article  CAS  PubMed  Google Scholar 

  • Lapidot, M., Ben Joseph, R., Cohen, L., Machbash, Z., & Levy, D. (2006). Development of a scale for evaluation of Tomato yellow leaf curl virus-resistance level in tomato plants. Phytopathology 96, 1404–1408.

    Article  CAS  PubMed  Google Scholar 

  • Makkouk, K. M., Shehab, S., & Majdalani, S. E. (1979). Tomato yellow leaf curl incidence yield losses and transmission in Lebanon. Phytopathologische Zeitschrift (J. Phytopathol.) 96, 263–267.

    Google Scholar 

  • Morales, F. J. (2001). Conventional breeding for resistance to Bemisia tabaci-transmitted geminiviruses. Crop Prot. 20, 825–834.

    Article  Google Scholar 

  • Nakhla, M. K. & Maxwell, D. P. (1998). Epidemiology and management of tomato yellow leaf curl virus. In A. Hadidi, R. K. Khetarpal, H. Koganezawa (Eds.), Plant Virus Disease Control. St. Paul, MN: APS Press, pp. 565–583.

    Google Scholar 

  • Palumbo, J. C., Horowitz, A. R., & Prabhaker, N. (2001). Insecticidal control and resistance management for Bemisia tabaci. Crop Prot. 20, 739–766. Perring, T. M. (2001). The Bemisia tabaci species complex. Crop Prot. 20, 725–737.

    Google Scholar 

  • Perring, T. M., Cooper, A. D., Rodriguez, R. J., Farrar, C. A., & Bellows, T. S. (1993). Identification of a whitefly species by genomic and behavioural studies. Science 259, 74–77.

    Article  CAS  PubMed  Google Scholar 

  • Pico, B., Diez, M. J., & Nuez, F. (1996). Viral diseases causing the greatest economic losses to the tomato crop. II: the tomato yellow leaf curl virus—a review. Sci. Hortic. 67, 151–196.

    Google Scholar 

  • Pico, B., Diez, M., & Nuez, F. (1998). Evaluation of whitefly-mediated inoculation techniques to screen Lycopersicon esculentum and wild relatives for resistance to tomato yellow leaf curl virus. Euphytica 101, 259–271.

    Article  Google Scholar 

  • Pico, B., Ferriol, M., Diez, M. J., & Vinals, F. N. (2001). Agroinoculation methods to screen wild Lycopersicon for resistance to Tomato yellow leaf curl virus. J. Plant Pathol. 83, 215–220.

    Google Scholar 

  • Polston, J. E. & Anderson, P. K. (1997). The emergence of whitefly-transmitted geminiviruses in tomato in the western hemisphere. Plant Dis. 81, 1358–1369.

    Article  Google Scholar 

  • Schuster, D. J., Muller, T. F., Kring, J. B., & Price, J. F. (1990). Relationship of the sweetpotato whitefly to a new tomato fruit disorder in Florida. HortScience 25, 1618–1620.

    Google Scholar 

  • Segev, L., Cohen, L., & Lapidot, M. (2004). A tomato yellow leaf curl virus-resistant tomato line, TY-172, inhibits viral replication but not viral translocation. 4th International Geminivirus Symposium. Cape Town, South Africa, February 16–20, 2004.

    Google Scholar 

  • Stenger, D. C., Revington, G. N., Stevenson, M. C., & Bisaro, D. M. (1991). Replication release of geminivirus genomes from tandemly repeated copies: evidence for rolling-circle replication of a plant viral DNA. Proc. Natl. Acad. Sci. USA 88, 8029–8033.

    Article  CAS  PubMed  Google Scholar 

  • Vidavsky, F., Leviatov, S., Milo, J., Rabinowitch, H. D., Kedar, N., & Czosnek, H. (1998). Response of tolerant breeding lines of tomato, Lycopersicon esculentum, originating from three different sources (L. peruvianum, L. pimpinellifolium and L. chilense) to early controlled inoculation by tomato yellow leaf curl virus (TYLCV). Plant Breed. 117, 165–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lapidot, M. (2007). Screening for TYLCV-Resistance Plants using Whitefly-Mediated Inoculation. In: Czosnek, H. (eds) Tomato Yellow Leaf Curl Virus Disease. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4769-5_19

Download citation

Publish with us

Policies and ethics