Skip to main content

Management of Tomato yellow leaf curl virus: US and Israel Perspectives

  • Chapter
Tomato Yellow Leaf Curl Virus Disease

Over the last 15 years, TYLCV has been a serious problem for tomato production in many parts of the world. The virus has been known in Israel for over 40 years and in Florida since 1997 (Cohen & Nitzany, 1966; Polston et al., 1997). In Israel, tomato crops are severely affected by epidemics of TYLCV and despite almost daily spraying with insecticides, 100% yield losses have often been recorded in cases where the whitefly populations were high (Cohen & Antignus, 1994). In Florida, there have been numerous crop failures due to TYLCV and costs of production have risen. TYLCV is considered the most important pathogen of tomato in Israel and in Florida (Lapidot & Friedmann, 2002). The management of TYLCV in tomato is difficult and expensive both in protected and open field production. Often management techniques are not sufficient and economic losses are incurred. Many approaches have been used to try to decrease losses due to TYLCV although only a few are frequently effective and some cannot be used in all climates and locations. In general, no single approach is effective to manage TYLCV. Combinations of chemical and cultural techniques are employed to (1) reduce the number and movement of the whitefly vector, and (2) minimize or eliminate inoculum sources of TYLCV.

Management of TYLCV is often expensive and difficult but not always successful. In both Florida and Israel, multiple techniques are employed simultaneously to reduce incidences of TYLCV-infected plants. In Israel, TYLCV is managed primarily through the use of resistant cultivars, pesticides, cultural practices, and exclusion through the use of 50 mesh screens, and regular or UV absorbing plastics in the case of protected production. In Florida, where the majority of tomatoes are produced in open fields, the virus is managed through cultural practices and a heavy reliance on insecticides (Cohen & Antignus, 1994; Lapidot & Friedmann, 2002). The development of pesticide resistance and the loss of natural predators and parasites after repeated insecticide applications contribute to control problems and environmental concerns. The most practical control of TYLCV is the use of resistant cultivars. These unfortunately are limited and not available for all production conditions, climates and market preferences. Growers are forced to rely on other approaches to minimize yield losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, N. E., Kanan, H. O., Sugimoto, Y., Ma, Y.Q., & Inanaga, S. (2001). Effect of imidacloprid on incidence of tomato yellow leaf curl virus. Plant Dis. 85, 84–87.

    Article  CAS  Google Scholar 

  • Antignus, Y., Lapidot, M., Hadar, D., Messika, Y., & Cohen, S. (1998). Ultraviolet-absorbing screens serve as optical barriers to protect crops from virus and insect pests. J. Economic Entomol. 91, 1401–1405.

    Google Scholar 

  • Antignus, Y., Mor, N., Joseph, R. B., Lapidot, M., & Cohen, S. (1996). Ultraviolet-absorbing plastic sheets protect crops from insect pests and from virus diseases vectored by insects. Environment. Entomol. 25, 919–924.

    Google Scholar 

  • Antignus, Y., Nestel, D., Cohen, S., & Lapidot, M. (2001). Ultraviolet-deficient greenhouse environment affects whitefly attraction and flight-behavior. Environment. Entomol. 30, 394–399.

    Article  Google Scholar 

  • Berlinger, M. J., & Lebiush Mordechi, S. (1996). Physical methods for the control of Bemisia. In: D. Gerling (Ed.), Bemisia 1995: Taxonomy, Biology, Damage Control and Management. Andover: Intercept, pp. 617–634.

    Google Scholar 

  • Berlinger, M. J., Taylor, R. A. J., Lebiush Mordechi, S., Shalhevet, S., & Spharim, I. (2002). Efficiency of insect exclusion screens for preventing whitefly transmission of tomato yellow leaf curl virus of tomatoes in Israel. Bull. Entomol. Res. 92, 367–373.

    Article  CAS  PubMed  Google Scholar 

  • Byrne, D. N., & Bellows, T. S. (1991). Whitefly biology. Ann. Rev. Entomol. 36, 431–457.

    Article  Google Scholar 

  • Cahill, M., Gorman, K., Kay, S., & Denholm, I. (1996). Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). Bull. Entomol. Res. 86, 343–349.

    Article  CAS  Google Scholar 

  • Cohen, S. (1982). Control of whitefly vectors of viruses by r mulches. In K. F. Harris and K. Maramorosch (Eds.), Pathogens, Vectors and Plant Diseases, Approaches to Control.New York: Academic Press, pp. 46–56.

    Google Scholar 

  • Cohen, S. & Antignus, Y. (1994). Tomato yellow leaf curl virus, a whitefly-borne geminivirus of tomatoes. Adv. Dis. Vector Res. 10, 259–288.

    Google Scholar 

  • Cohen, S. & Berlinger, M. J. (1986). Transmission and cultural control of whitefly-borne viruses. Agriculture, Ecosystems and Environment 17, 89–97.

    Article  Google Scholar 

  • Cohen, S., Kern, J., Harpaz, I., & Ben-Joseph, R. (1988). Epidemiological studies of the tomato yellow leaf curl virus (TYLCV) in the Jordan Valley, Israel. Phytoparasitica 16, 259–270.

    Article  Google Scholar 

  • Cohen, S. & Melamed-Madjar, V. (1978). Prevention by soil mulching of the spread of tomato yellow leaf curl virus transmitted by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in Israel. Bull. Entomol. Res. 68, 465–470.

    Article  Google Scholar 

  • Cohen, S. & Nitzany, F. E. (1966). Transmission and host range of the tomato yellow leaf curl virus. Phytopathology 56, 1127–1131.

    Google Scholar 

  • Csizinszky, A. A., Schuster, D. J., & Kring, J. B. (1996). Evaluation of color mulches and oils sprays for yield and for the control of silverleaf whitefly, Bemisia argentifolii (Bellows and Perring) on tomatoes. University of Florida, December 19, 1996.

    Google Scholar 

  • Csizinszky, A., Schuster, D. J., & Polston, J. E. (1999). Effect of UV-reflective mulches on tomato yields and on the silverleaf whitefly. HortScience 34, 911–914.

    Google Scholar 

  • Elbert, A. & Nauen, R. (2000). Resistance in Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Manag. Sci. 56, 60–64.

    Article  CAS  Google Scholar 

  • Faria, J. C., Bezerra, I. C., Zerbini, F. M., Ribeiro, S. G., & Lima, M. F. (2000). Situação atual das Geminiviroses no Brasil. Fitopatol. Bras. 25, 125–137.

    Google Scholar 

  • Lapidot, M. (2002). Screening common bean (Phaseolus vulgaris) for resistance to Tomato yellow leaf curl virus. Plant Dis. 86, 429–432.

    Article  Google Scholar 

  • Lapidot, M. & Friedmann, M. (2002). Breeding for resistance to whitefly-transmitted geminiviruses. Ann. Appl. Biol. 140, 109–127.

    Article  Google Scholar 

  • Lapidot, M., Friedmann, M., Pilowsky, M., Ben-Joseph, R., & Cohen, S. (2001). The effect of host resistance on tomato yellow leaf curl virus (TYLCV) on virus acquisition and transmission by its whitefly vector. Phytopathology 91, 1209–1213.

    Article  CAS  PubMed  Google Scholar 

  • Mason, G., Rancati, M., & Bosco, D. (2000). The effect of thiamethoxam, a second generation neonicotinoid insecticide, in preventing transmission of tomato yellow leaf curl geminivirus (TYLCV) by the whitefly Bemisia tabaci (Gennadius). Crop. Prot. 19, 473–479.

    Article  CAS  Google Scholar 

  • Mansour, A. & Al-Musa, A. (1992). Tomato yellow leaf curl virus: host range and virus-vector relationships. Plant Pathol. 41, 122–125.

    Article  Google Scholar 

  • Morilla, G., Janssen, D., García-Andrés, S., Moriones, E., Cuadrado, I. M., & Bejarano, E. R. (2005). Pepper (Capsicum annuum) is a dead-end host for tomato yellow leaf curl virus. Phytopathology 95, 1089–1097.

    Google Scholar 

  • Mound, L. A. (1962). Studies on the olfaction and colour sensitivity of Bemisia tabaci (GENN.) (Homoptera, Aleurodidae). Entomol. Exp. and Appl. 5, 99–104.

    Google Scholar 

  • Palumbo, J. C., Horowitz, A. R., & Prabhaker, N. (2001). Insecticidal control and resistance management for Bemisia tabaci. Crop. Prot. 20, 739–766.

    Article  CAS  Google Scholar 

  • Polston, J. E. & Anderson, P. K. (1997). The emergence of whitefly-transmitted geminiviruses in tomato in the Western Hemisphere. Plant Dis. 81, 1358–1369.

    Article  Google Scholar 

  • Polston, J. E., McGovern, R. J., & Brown, L. G. (1997). Introduction of tomato yellow leaf curl virus in Florida and implications for the spread of this and other geminiviruses of tomato. Plant Dis. 83, 984–988.

    Article  Google Scholar 

  • Polston, J. E., Cohen, L., Sherwood, T. A., Joseph, R. B., & Lapidot, M. (2006). Capsicum species: symptomless hosts and reservoirs of tomato yellow leaf curl virus. Phytopathology 96, 447–452.

    Google Scholar 

  • Pressman, E., Shaked, R., Rosenfeld, K., & Hefetz, A. (1999). A comparative study of the efficiency of bumble bees and an electric bee in pollinating unheated greenhouse tomatoes. J. Hort. Sci. Biotech. 74, 101–104.

    Google Scholar 

  • Rafie, A., Diaz, J., & Mcleod, P. (1999). Effects of forage groundnut in reducing the sweetpotato whitefly and associated geminivirus disease in bell pepper in Honduras. Trop. Agr. 76, 208–211.

    Google Scholar 

  • Reina, J., Morilla, G., Bejarano, E. R., Rodríguez, M. D., & Janssen, D. (1999). First report of Capsicum annuum plants infected by tomato yellow leaf curl virus. Plant Dis. 83, 1176.

    Article  Google Scholar 

  • Salati, R., Nahkla, M. K., Rojas, M. R., Guzman, P., Jaquez, J., Maxwell, D. P., & Gilbertson, R. L. (2002). Tomato yellow leaf curl virus in the Dominican Republic: characterization of an infectious clone, virus monitoring in whiteflies, and identification of reservoir hosts. Phytopathology 92, 487–496.

    Article  PubMed  Google Scholar 

  • Schuster, D. J. & Gilreath, P. R. (2003). What’s up with all these whiteflies? Florida Tomato Institute Proceedings. Vol. Pro520, pp. 12–19.

    Google Scholar 

  • Ucko, O., Cohen, S., & Ben-Joseph, R. (1998). Prevention of virus epidemics by a crop-free period in the Arava region of Israel. Phytoparasitica 26, 313–321.

    Article  Google Scholar 

  • Villas Boas, G. L., Franca, F. H., Avila, A. C.D., & Bezerra, I. C. (1997). Manejo integrado da mosca-branca Bemisia argentifolii. Circular Tecnica da Embrapa Hortalicas 1–12.

    Google Scholar 

  • Zaks, Y. (1997). Recommendations for Pest Control in Vegetable Crops. Israel Ministry of Agriculture: Publication of the Agriculture Extension Service, pp. 81–83 (in Hebrew).

    Google Scholar 

  • Zeidan, O. (2005). Tomato Production Under Protected Conditions. Mashav, Cinadco and The Peres Center for Peace.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Polston, J.E., Lapidot, M. (2007). Management of Tomato yellow leaf curl virus: US and Israel Perspectives. In: Czosnek, H. (eds) Tomato Yellow Leaf Curl Virus Disease. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4769-5_15

Download citation

Publish with us

Policies and ethics