Skip to main content

Biotic and Abiotic Stress Responses in Tomato Breeding Lines Resistant and Susceptible to Tomato Yellow Leaf Curl Virus

  • Chapter
Tomato Yellow Leaf Curl Virus Disease

In the eyes of a tomato grower, resistance to TYLCV, as opposed to susceptibility, is defined by the absence of, or mild, disease symptoms, and acceptable yield. In resistant cultivars and breeding lines, the amount of virus that can be detected with molecular tools is usually smaller than that in the susceptible plants, especially during the first 4 weeks after inoculation. Genetic studies have indicated that several genes, expressed as quantative trait loci (QTL), are involved in providing the resistance phenotype described above. Several QTLs have been localized to tomato chromosomes using polymorphic DNA markers (see Part V, Chapter 2). However, the molecular basis of resistance to TYLCV remains totally unknown. Moreover, the physiological state of susceptible vs. resistant plants, before and after inoculation, has never been compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, Z., & Clarke, A. K. (2002). Cutting edge of chloroplast proteolysis. Trends Plant Sci. 7, 451–456.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, J. V., & Davis, D. G. (2004). Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol. Plant 120, 421–433.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez, M. E., Pennell, R. I., Meijer, P. J., Ishikawa, A., Dixon, R. A., & Lamb, C. (1998). Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell. 92, 773–784.

    Article  CAS  PubMed  Google Scholar 

  • Bogre, L., Ligterink, W., Meskiene, I., Barker, P. J., Heberle-Bors, E., Huskisson, N. S., Hirt, H. (1997). Wounding induces the rapid and transient activation of a specific MAP kinase pathway. Plant Cell. 9, 75–83.

    Article  PubMed  Google Scholar 

  • Bogre, L., Meskiene, I., Heberle-Bors, E., & Hirt, H. (2000). Stressing the role of MAP kinases in mitogenic stimulation. Plant Mol. Biol. 43, 705–718.

    Article  CAS  PubMed  Google Scholar 

  • Bolwell, G. P. (1999). Role of active oxygen species and NO in plant defense responses. Curr. Opin. Plant Biol. 2, 287–294.

    Article  CAS  PubMed  Google Scholar 

  • Cessna, S. G., Sears, V. E., Dickman, M. B., & Low, P. S. (2000). Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12, 2191–2200.

    Article  CAS  PubMed  Google Scholar 

  • Desikan, R., Hancock, J. T., Ichimura, K., Shinozaki, K., & Neill, S. J. (2001). Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol. 126, 1579–1587.

    Article  CAS  PubMed  Google Scholar 

  • De Vos, M., Van Oosten, V. R., Van Poecke, R. M., Van Pelt, J. A., Pozo, M. J., Mueller, M. J., Buchala, A. J., Metraux, J. P., Van Loon, L. C., Dicke, M., & Pieterse, C. M. (2005). Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol. Plant Microbe Inter. 18, 923–937.

    Article  Google Scholar 

  • Hammerschmidt, R., Kuc, J. (1995). Induced Resistance to Disease in Plants. Dordrecht: Kluwer.

    Google Scholar 

  • Halperin, T., & Adam, Z. (1996). Degradation of mistargeted OEE33 in the chloroplast stroma. Plant Mol. Biol. 30, 925–933.

    Article  CAS  PubMed  Google Scholar 

  • Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–8 (Review).

    Google Scholar 

  • Haussuhl, K., Andersson, B., & Adamska, I. (2001). A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J. 20, 713–722.

    Article  CAS  PubMed  Google Scholar 

  • Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T., & Shinozaki, K. (2000). Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 24, 655–665.

    Article  CAS  PubMed  Google Scholar 

  • Jolly, C., & Morimoto, R. I. (2000). Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst. 92, 1564–1572 (Review).

    Google Scholar 

  • Katiyar-Agarwal, S., Agarwal, M., & Grover, A. (2003). Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol. Biol. 51, 677–686.

    Article  CAS  PubMed  Google Scholar 

  • Nuhse, T. S., Peck, S. C., Hirt, H., & Boller, T. (2000). Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J. Biol. Chem. 275, 7521–7526.

    Article  CAS  PubMed  Google Scholar 

  • Parsell, D. A., & Lindquist, S. (1993). The role of heat-shock proteins in thermotolerance. Philos. Trans. R. Soc. Lond. B Biol. Sci. 339, 279–285.

    Article  CAS  PubMed  Google Scholar 

  • Pareek, A., Singla, S. L., & Grover, A. (1995). Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant Mol. Biol. 29, 293–301.

    Article  CAS  PubMed  Google Scholar 

  • Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., & Shinozaki, K. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31, 279–292.

    Article  CAS  PubMed  Google Scholar 

  • Seo, S., Okamoto, M., Iwai, T., Iwano, M., Fukui, K., Isogai, A., Nakajima, N., & Ohashi, Y. (2000). Reduced levels of chloroplast FtsH protein in tobacco mosaic virus-infected tobacco leaves accelerate the hypersensitive reaction. Plant Cell 12, 917–932.

    Article  CAS  PubMed  Google Scholar 

  • Tal, M., & Shannon, M. C. (1983). Salt tolerance in two wild relatives of the cultivated tomato: responses of Lycopersican esculentum, L. cheesmani, L. peruvianum, Solanum pennelli, and F1 hybrids of high salinity. Aust. J. Plant Physiol. 10, 109–117.

    Google Scholar 

  • Van Loon, L. C. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis PR-1 type proteins. Physiol. Mol. Plant Pathol. 55, 85–97.

    Article  Google Scholar 

  • Vidavsky, F., & Czosnek, H. (1998). Tomato breeding lines immune and tolerant to tomato yellow leaf curl virus (TYLCV) issued from Lycopersicon hirsutum. Phytopathology 88, 910–914.

    Google Scholar 

  • Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9, 244–252.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Gorovits, R., Czosnek, H. (2007). Biotic and Abiotic Stress Responses in Tomato Breeding Lines Resistant and Susceptible to Tomato Yellow Leaf Curl Virus. In: Czosnek, H. (eds) Tomato Yellow Leaf Curl Virus Disease. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4769-5_13

Download citation

Publish with us

Policies and ethics