Identification of Plant Genes Involved in TYLCV Replication

  • Araceli G. Castillo
  • Gabriel Morilla
  • Rosa Lozano
  • Dominique Collinet
  • Ana Perez-Luna
  • Alaa Kashoggi
  • Eduardo Bejarano

Since there are still no chemicals that can be applied routinely to control plant virus diseases, TYLCV control strategies have been mainly focused on methods to prevent the occurrence of infection and on genetic resistance. Attempts to reduce the incidence of TYLCV by eliminating the sources of inoculum or controlling vector transmission are often ineffective (Picó et al., 1996). Attempts to derive TYLCV resistant tomato cultivars constituted the main effort of extended breeding programmes to introgress resistance from wild Lycopersicon species. Although some wild relatives of tomato are resistant, introduction of resistance traits into commercial tomatoes is however complicated by several factors. Some tolerant cultivars have been released (Lapidot et al., 1997; Friedmann et al., 1998), but no fully resistants Lycopersicon esculentum are still available.

The identification of plant genes involved in the viral life cycle may offer the opportunity to disrupt the interaction between the virus and the plant cell, thus preventing infection without introducing foreign genes in the plant. Despite differences in the properties of their genomes, all plant viruses face the same two fundamental challenges during the establishment of systemic infections in their plant hosts. The first necessity is to replicate in the infected cells. The second requirement is to move through adjacent plant cells to the vascular system, before spreading throughout the plant. Both processes depend on highly specific interactions with host proteins. Protein-protein interactions are the underpinnings of a vast number of these cellular processes. In recent years, the convergence of biochemistry, cellular and molecular biology has made available a number of powerful techniques for studying such interactions. These techniques vary in their sensitivity, efficiency and rapidity, but judicial deployment of a combination of them has proved to be effective and reliable.

Keywords

Maize Filtration Tyrosine Lysine Oligomer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ach, R. A., Durfee, T., Miller, A. B., Taranto, P., Hanley-Bowdoin, L., Zambryski, P. C., & Gruissem, W. (1997). RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Mol. Cell Biol. 17, 5077–5086.PubMedGoogle Scholar
  2. Arguello-Astorga, G., Lopez-Ochoa, L., Kong, L. J., Orozco, B. M., Settlage, S. B., & Hanley-Bowdoin, L. (2004). A novel motif in geminivirus replication proteins interacts with the plant retinoblastoma-related protein. J. Virol. 78, 4817–4826.CrossRefPubMedGoogle Scholar
  3. Bagewadi, B., Chen, S., Lal, S. K., Choudhury, N. R., & Mukherjee, S. K. (2004). PCNA interacts with Indian mung bean yellow mosaic virus rep and downregulates Rep activity. J. Virol. 78, 11890–11903.CrossRefPubMedGoogle Scholar
  4. Boggio, R. & Chiocca, S. (2006). Viruses and sumoylation: recent highlights. Curr. Opin. Microbiol. 9, 430–436.CrossRefPubMedGoogle Scholar
  5. Bossis, G. & Melchior, F. (2006). SUMO: regulating the regulator. Cell Div. 1, 13.CrossRefPubMedGoogle Scholar
  6. Castillo, A. G., Collinet, D., Deret, S., Kashoggi, A., & Bejarano, E. R. (2003). Dual interaction of plant PCNA with geminivirus replication accessory protein (Ren) and viral replication protein (Rep). Virology 312, 381–394.CrossRefPubMedGoogle Scholar
  7. Castillo, A. G., Kong, L. J., Hanley-Bowdoin, L., & Bejarano, E. R. (2004). Interaction between a geminivirus replication protein and the plant sumoylation system. J. Virol. 78, 2758–2769.CrossRefPubMedGoogle Scholar
  8. Cruz, S. S., Chapman, S., Roberts, A. G., Roberts, I. M., Prior, D. A., & Oparka, K. J. (1996). Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proc. Natl. Acad. Sci. USA 93, 6286–6290.CrossRefPubMedGoogle Scholar
  9. Fields, S. (2005). High-throughput two-hybrid analysis (The promise and the peril). FEBS J. 272, 5391–5399.CrossRefPubMedGoogle Scholar
  10. Friedmann, M., Lapidot, M., Cohen, S., & Pilowsky, M. (1998). A novel source of resistance to tomato yellow leaf curl virus (TYLCV) exhibiting a symptomless reaction to viral infection. J. Am. Soc. Hortic. Sci. 123, 1004–1006.Google Scholar
  11. Gietz, R. D. (2006). Yeast two-hybrid system screening. Methods Mol. Biol. 313, 345–371.PubMedGoogle Scholar
  12. Gilbertson, R. L., Sudarshana, M., Jiang, H., Rojas, M. R., & Lucas, W. J. (2003). Limitations on geminivirus genome size imposed by plasmodesmata and virus-encoded movement protein: insights into DNA trafficking. Plant Cell 15, 2578–2591.CrossRefPubMedGoogle Scholar
  13. Gurlebeck, D., Thieme, F., & Bonas, U. (2006). Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J. Plant Physiol. 163, 233–255.CrossRefPubMedGoogle Scholar
  14. Gutierrez, C., Ramirez-Parra, E., Mar Castellano, M., Sanz-Burgos, A. P., Luque, A., & Mikssich, R. (2004). Geminivirus DNA replication and cell cycle interactions. Vet. Microbiol. 98, 111–119.CrossRefPubMedGoogle Scholar
  15. Hanania, U., Furman-Matarasso, N., Ron, M., & Avni, A. (1999). Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant J. 19, 533–541.CrossRefPubMedGoogle Scholar
  16. Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S., & Robertson, D. (2000). Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit. Rev. Biochem. Mol. Biol. 35, 105–140.PubMedGoogle Scholar
  17. Hanley-Bowdoin, L., Settlage, S. B., & Robertson, D. (2004). Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication. Mol. Plant Pathol. 5.Google Scholar
  18. Hay, R. (2005). SUMO: a history of modification. Mol. Cell 18, 1–12.CrossRefPubMedGoogle Scholar
  19. Hayes, R. J., Coutts, R. H., & Buck, K. W. (1989). Stability and expression of bacterial genes in replicating geminivirus vectors in plants. Nucleic Acids Res. 17, 2391–2403.CrossRefPubMedGoogle Scholar
  20. Hefferon, K. L., Kipp, P., & Moon, Y. S. (2004). Expression and purification of heterologous proteins in plant tissue using a geminivirus vector system. J. Mol. Microbiol. Biotechnol. 7, 109–114.CrossRefPubMedGoogle Scholar
  21. Hong, Y., Stanley, J., & van Wezel, R. (2003). Novel system for the simultaneous analysis of geminivirus DNA replication and plant interactions in Nicotiana benthamiana. J. Virol. 77, 13315–13322.CrossRefPubMedGoogle Scholar
  22. Kelman, Z. (1997). PCNA: structure, functions and interactions. Oncogene 14, 629–640.CrossRefPubMedGoogle Scholar
  23. Kong, L. J. & Hanley-Bowdoin, L. (2002). A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infection. Plant Cell 14, 1817–1832.CrossRefPubMedGoogle Scholar
  24. Lapidot, M., Friedmann, M., Lachman, O., Yehezkel, A., Nahon, S., Cohen, S., & Pilowsky, M. (1997). Comparison of resistance yo tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Dis. 81, 1425–1428.CrossRefGoogle Scholar
  25. Laufs, J., Schumacher, S., Geisler, N., Jupin, I., & Gronenborn, B. (1995). Identification of the nicking tyrosine of geminivirus Rep protein. FEBS Lett. 377, 258–262.CrossRefPubMedGoogle Scholar
  26. Lee, L. K., & Roth, C. M. (2003). Antisense technology in molecular and cellular bioengineering. Curr. Opin. Biotechnol. 14, 505–511.CrossRefPubMedGoogle Scholar
  27. Levy, A., & Czosnek, H. (2003). The DNA-B of the non-phloem-limited bean dwarf mosaic virus (BDMV) is able to move the phloem-limited Abutilon mosaic virus (AbMV) out of the phloem, but DNA-B of AbMV is unable to confine BDMV to the phloem. Plant Mol. Biol. 53, 789–803.CrossRefPubMedGoogle Scholar
  28. Lu, R., Martin-Hernandez, A. M., Peart, J. R., Malcuit, I., & Baulcombe, D. C. (2003). Virus-induced gene silencing in plants. Methods 30, 296–303.CrossRefPubMedGoogle Scholar
  29. Lucioli, A., Noris, E., Brunetti, A., Tavazza, R., Ruzza, V., Castillo, A. G., Bejarano, E. R., Accotto, G. P., & Tavazza, M. (2003). Tomato yellow leaf curl Sardinia virus rep-derived resistance to homologous and heterologous geminiviruses occurs by different mechanisms and is overcome if virus-mediated transgene silencing is activated. J. Virol. 77, 6785–6798.CrossRefPubMedGoogle Scholar
  30. Luque, A., Sanz-Burgos, A. P., Ramirez-Parra, E., Castellano, M. M., & Gutierrez, C. (2002). Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication. Virology 302, 83–94.CrossRefPubMedGoogle Scholar
  31. Mor, T. S., Moon, Y. S., Palmer, K. E., & Mason, H. S. (2002). Geminivirus vectors for high-level expression of foreign proteins in plant cells. Biotechnol. Bioeng. 81, 430–437.CrossRefGoogle Scholar
  32. Morilla, G., Castillo, A. G., Preiss, W., Jeske, H., & Bejarano, E. R. (2006). A versatile transreplicationbased system to identify cellular proteins involved in geminivirus replication. J. Virol. 80, 3624–3633.CrossRefPubMedGoogle Scholar
  33. Muller, S., Hoege, C., Pyrowolakis, G., & Jentsch, S. (2001). SUMO, ubiquitin’s mysterious cousin. Nat. Rev. Mol. Cell Biol. 2, 202–210.CrossRefPubMedGoogle Scholar
  34. Novatchkova, M., Budhiraja, R., Coupland, G., Eisenhaber, F., & Bachmair, A. (2004). SUMO conjugation in plants. Planta 220, 1–8.CrossRefPubMedGoogle Scholar
  35. Palmer, K. E., Thomson, J. A., & Rybicki, E. P. (1999). Generation of maize cell lines containing autonomously replicating maize streak virus-based gene vectors. Arch. Virol. 144, 1345–1360.CrossRefPubMedGoogle Scholar
  36. Peart, J. R., Cook, G., Feys, B. J., Parker, J. E., & Baulcombe, D. C. (2002). An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J. 29, 569–579.CrossRefPubMedGoogle Scholar
  37. Peele, C., Jordan, C. V., Muangsan, N., Turnage, M., Egelkrout, E., Eagle, P., Hanley-Bowdoin, L., & Robertson, D. (2001). Silencing of a meristematic gene using geminivirus-derived vectors. Plant J. 27, 357–366.CrossRefPubMedGoogle Scholar
  38. Picó, B., Diez, M. J., & Nuez, F. (1996). Viral diseases causing the greatest economic losses to the tomato crop. II. The tomato yellow leaf curl Virus–a review. Sci. Horti. 6751–196.Google Scholar
  39. Ratcliff, F., Martin-Hernandez, A. M., & Baulcombe, D. (2001). Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 25, 237–245.CrossRefPubMedGoogle Scholar
  40. Selth, L. A., Dogra, S. C., Rasheed, M. S., Healy, H., Randles, J. W., & Rezaian, M. A. (2005). A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17, 311–325.CrossRefPubMedGoogle Scholar
  41. Settlage, S. B., See, R. G., & Hanley-Bowdoin, L. (2005). Geminivirus C3 protein: replication enhancement and protein interactions. J Virol. 79, 9885–9895.CrossRefPubMedGoogle Scholar
  42. Sudarshana, M. R., Wang, H. L., Lucas, W. J., & Gilbertson, R. L. (1998). Dynamics of bean dwarf mosaic geminivirus cell-to-cell and long-distance movement in Phaseolus vulgaris revealed, using the green fluorescent protein. Mol. Plant Microbe Interact. 11, 277–291.CrossRefGoogle Scholar
  43. Timmermans, M. C., Das, O. P., & Messing, J. (1992). Trans replication and high copy numbers of wheat dwarf virus vectors in maize cells. Nucleic Acids Res. 20, 4047–4054.CrossRefPubMedGoogle Scholar
  44. Tsurimoto, T. (1999). PCNA binding proteins. Front Biosci. 4, D849–D858.CrossRefPubMedGoogle Scholar
  45. Warbrick, E. (2000). The puzzle of PCNA’s many partners. Bioessays 22, 997–1006.CrossRefPubMedGoogle Scholar
  46. Yeh, E. T., Gong, L., & Kamitani, T. (2000). Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1–14.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Araceli G. Castillo
    • 1
  • Gabriel Morilla
    • 1
  • Rosa Lozano
    • 1
  • Dominique Collinet
    • 1
  • Ana Perez-Luna
    • 1
  • Alaa Kashoggi
    • 1
  • Eduardo Bejarano
    • 1
  1. 1.Unidad de Genética, Departamento de Biología Celular, Genética y FisiologíaUniversidad de MálagaSpain

Personalised recommendations