Skip to main content

Identification of Plant Genes Involved in TYLCV Replication

  • Chapter

Since there are still no chemicals that can be applied routinely to control plant virus diseases, TYLCV control strategies have been mainly focused on methods to prevent the occurrence of infection and on genetic resistance. Attempts to reduce the incidence of TYLCV by eliminating the sources of inoculum or controlling vector transmission are often ineffective (Picó et al., 1996). Attempts to derive TYLCV resistant tomato cultivars constituted the main effort of extended breeding programmes to introgress resistance from wild Lycopersicon species. Although some wild relatives of tomato are resistant, introduction of resistance traits into commercial tomatoes is however complicated by several factors. Some tolerant cultivars have been released (Lapidot et al., 1997; Friedmann et al., 1998), but no fully resistants Lycopersicon esculentum are still available.

The identification of plant genes involved in the viral life cycle may offer the opportunity to disrupt the interaction between the virus and the plant cell, thus preventing infection without introducing foreign genes in the plant. Despite differences in the properties of their genomes, all plant viruses face the same two fundamental challenges during the establishment of systemic infections in their plant hosts. The first necessity is to replicate in the infected cells. The second requirement is to move through adjacent plant cells to the vascular system, before spreading throughout the plant. Both processes depend on highly specific interactions with host proteins. Protein-protein interactions are the underpinnings of a vast number of these cellular processes. In recent years, the convergence of biochemistry, cellular and molecular biology has made available a number of powerful techniques for studying such interactions. These techniques vary in their sensitivity, efficiency and rapidity, but judicial deployment of a combination of them has proved to be effective and reliable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ach, R. A., Durfee, T., Miller, A. B., Taranto, P., Hanley-Bowdoin, L., Zambryski, P. C., & Gruissem, W. (1997). RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Mol. Cell Biol. 17, 5077–5086.

    CAS  PubMed  Google Scholar 

  • Arguello-Astorga, G., Lopez-Ochoa, L., Kong, L. J., Orozco, B. M., Settlage, S. B., & Hanley-Bowdoin, L. (2004). A novel motif in geminivirus replication proteins interacts with the plant retinoblastoma-related protein. J. Virol. 78, 4817–4826.

    Article  CAS  PubMed  Google Scholar 

  • Bagewadi, B., Chen, S., Lal, S. K., Choudhury, N. R., & Mukherjee, S. K. (2004). PCNA interacts with Indian mung bean yellow mosaic virus rep and downregulates Rep activity. J. Virol. 78, 11890–11903.

    Article  CAS  PubMed  Google Scholar 

  • Boggio, R. & Chiocca, S. (2006). Viruses and sumoylation: recent highlights. Curr. Opin. Microbiol. 9, 430–436.

    Article  CAS  PubMed  Google Scholar 

  • Bossis, G. & Melchior, F. (2006). SUMO: regulating the regulator. Cell Div. 1, 13.

    Article  PubMed  Google Scholar 

  • Castillo, A. G., Collinet, D., Deret, S., Kashoggi, A., & Bejarano, E. R. (2003). Dual interaction of plant PCNA with geminivirus replication accessory protein (Ren) and viral replication protein (Rep). Virology 312, 381–394.

    Article  CAS  PubMed  Google Scholar 

  • Castillo, A. G., Kong, L. J., Hanley-Bowdoin, L., & Bejarano, E. R. (2004). Interaction between a geminivirus replication protein and the plant sumoylation system. J. Virol. 78, 2758–2769.

    Article  CAS  PubMed  Google Scholar 

  • Cruz, S. S., Chapman, S., Roberts, A. G., Roberts, I. M., Prior, D. A., & Oparka, K. J. (1996). Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proc. Natl. Acad. Sci. USA 93, 6286–6290.

    Article  CAS  PubMed  Google Scholar 

  • Fields, S. (2005). High-throughput two-hybrid analysis (The promise and the peril). FEBS J. 272, 5391–5399.

    Article  CAS  PubMed  Google Scholar 

  • Friedmann, M., Lapidot, M., Cohen, S., & Pilowsky, M. (1998). A novel source of resistance to tomato yellow leaf curl virus (TYLCV) exhibiting a symptomless reaction to viral infection. J. Am. Soc. Hortic. Sci. 123, 1004–1006.

    Google Scholar 

  • Gietz, R. D. (2006). Yeast two-hybrid system screening. Methods Mol. Biol. 313, 345–371.

    CAS  PubMed  Google Scholar 

  • Gilbertson, R. L., Sudarshana, M., Jiang, H., Rojas, M. R., & Lucas, W. J. (2003). Limitations on geminivirus genome size imposed by plasmodesmata and virus-encoded movement protein: insights into DNA trafficking. Plant Cell 15, 2578–2591.

    Article  CAS  PubMed  Google Scholar 

  • Gurlebeck, D., Thieme, F., & Bonas, U. (2006). Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J. Plant Physiol. 163, 233–255.

    Article  PubMed  Google Scholar 

  • Gutierrez, C., Ramirez-Parra, E., Mar Castellano, M., Sanz-Burgos, A. P., Luque, A., & Mikssich, R. (2004). Geminivirus DNA replication and cell cycle interactions. Vet. Microbiol. 98, 111–119.

    Article  CAS  PubMed  Google Scholar 

  • Hanania, U., Furman-Matarasso, N., Ron, M., & Avni, A. (1999). Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant J. 19, 533–541.

    Article  CAS  PubMed  Google Scholar 

  • Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S., & Robertson, D. (2000). Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit. Rev. Biochem. Mol. Biol. 35, 105–140.

    CAS  PubMed  Google Scholar 

  • Hanley-Bowdoin, L., Settlage, S. B., & Robertson, D. (2004). Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication. Mol. Plant Pathol. 5.

    Google Scholar 

  • Hay, R. (2005). SUMO: a history of modification. Mol. Cell 18, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, R. J., Coutts, R. H., & Buck, K. W. (1989). Stability and expression of bacterial genes in replicating geminivirus vectors in plants. Nucleic Acids Res. 17, 2391–2403.

    Article  CAS  PubMed  Google Scholar 

  • Hefferon, K. L., Kipp, P., & Moon, Y. S. (2004). Expression and purification of heterologous proteins in plant tissue using a geminivirus vector system. J. Mol. Microbiol. Biotechnol. 7, 109–114.

    Article  CAS  PubMed  Google Scholar 

  • Hong, Y., Stanley, J., & van Wezel, R. (2003). Novel system for the simultaneous analysis of geminivirus DNA replication and plant interactions in Nicotiana benthamiana. J. Virol. 77, 13315–13322.

    Article  CAS  PubMed  Google Scholar 

  • Kelman, Z. (1997). PCNA: structure, functions and interactions. Oncogene 14, 629–640.

    Article  CAS  PubMed  Google Scholar 

  • Kong, L. J. & Hanley-Bowdoin, L. (2002). A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infection. Plant Cell 14, 1817–1832.

    Article  CAS  PubMed  Google Scholar 

  • Lapidot, M., Friedmann, M., Lachman, O., Yehezkel, A., Nahon, S., Cohen, S., & Pilowsky, M. (1997). Comparison of resistance yo tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Dis. 81, 1425–1428.

    Article  Google Scholar 

  • Laufs, J., Schumacher, S., Geisler, N., Jupin, I., & Gronenborn, B. (1995). Identification of the nicking tyrosine of geminivirus Rep protein. FEBS Lett. 377, 258–262.

    Article  CAS  PubMed  Google Scholar 

  • Lee, L. K., & Roth, C. M. (2003). Antisense technology in molecular and cellular bioengineering. Curr. Opin. Biotechnol. 14, 505–511.

    Article  CAS  PubMed  Google Scholar 

  • Levy, A., & Czosnek, H. (2003). The DNA-B of the non-phloem-limited bean dwarf mosaic virus (BDMV) is able to move the phloem-limited Abutilon mosaic virus (AbMV) out of the phloem, but DNA-B of AbMV is unable to confine BDMV to the phloem. Plant Mol. Biol. 53, 789–803.

    Article  CAS  PubMed  Google Scholar 

  • Lu, R., Martin-Hernandez, A. M., Peart, J. R., Malcuit, I., & Baulcombe, D. C. (2003). Virus-induced gene silencing in plants. Methods 30, 296–303.

    Article  CAS  PubMed  Google Scholar 

  • Lucioli, A., Noris, E., Brunetti, A., Tavazza, R., Ruzza, V., Castillo, A. G., Bejarano, E. R., Accotto, G. P., & Tavazza, M. (2003). Tomato yellow leaf curl Sardinia virus rep-derived resistance to homologous and heterologous geminiviruses occurs by different mechanisms and is overcome if virus-mediated transgene silencing is activated. J. Virol. 77, 6785–6798.

    Article  CAS  PubMed  Google Scholar 

  • Luque, A., Sanz-Burgos, A. P., Ramirez-Parra, E., Castellano, M. M., & Gutierrez, C. (2002). Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication. Virology 302, 83–94.

    Article  CAS  PubMed  Google Scholar 

  • Mor, T. S., Moon, Y. S., Palmer, K. E., & Mason, H. S. (2002). Geminivirus vectors for high-level expression of foreign proteins in plant cells. Biotechnol. Bioeng. 81, 430–437.

    Article  Google Scholar 

  • Morilla, G., Castillo, A. G., Preiss, W., Jeske, H., & Bejarano, E. R. (2006). A versatile transreplicationbased system to identify cellular proteins involved in geminivirus replication. J. Virol. 80, 3624–3633.

    Article  CAS  PubMed  Google Scholar 

  • Muller, S., Hoege, C., Pyrowolakis, G., & Jentsch, S. (2001). SUMO, ubiquitin’s mysterious cousin. Nat. Rev. Mol. Cell Biol. 2, 202–210.

    Article  CAS  PubMed  Google Scholar 

  • Novatchkova, M., Budhiraja, R., Coupland, G., Eisenhaber, F., & Bachmair, A. (2004). SUMO conjugation in plants. Planta 220, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, K. E., Thomson, J. A., & Rybicki, E. P. (1999). Generation of maize cell lines containing autonomously replicating maize streak virus-based gene vectors. Arch. Virol. 144, 1345–1360.

    Article  CAS  PubMed  Google Scholar 

  • Peart, J. R., Cook, G., Feys, B. J., Parker, J. E., & Baulcombe, D. C. (2002). An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J. 29, 569–579.

    Article  CAS  PubMed  Google Scholar 

  • Peele, C., Jordan, C. V., Muangsan, N., Turnage, M., Egelkrout, E., Eagle, P., Hanley-Bowdoin, L., & Robertson, D. (2001). Silencing of a meristematic gene using geminivirus-derived vectors. Plant J. 27, 357–366.

    Article  CAS  PubMed  Google Scholar 

  • Picó, B., Diez, M. J., & Nuez, F. (1996). Viral diseases causing the greatest economic losses to the tomato crop. II. The tomato yellow leaf curl Virus–a review. Sci. Horti. 6751–196.

    Google Scholar 

  • Ratcliff, F., Martin-Hernandez, A. M., & Baulcombe, D. (2001). Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 25, 237–245.

    Article  CAS  PubMed  Google Scholar 

  • Selth, L. A., Dogra, S. C., Rasheed, M. S., Healy, H., Randles, J. W., & Rezaian, M. A. (2005). A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17, 311–325.

    Article  CAS  PubMed  Google Scholar 

  • Settlage, S. B., See, R. G., & Hanley-Bowdoin, L. (2005). Geminivirus C3 protein: replication enhancement and protein interactions. J Virol. 79, 9885–9895.

    Article  CAS  PubMed  Google Scholar 

  • Sudarshana, M. R., Wang, H. L., Lucas, W. J., & Gilbertson, R. L. (1998). Dynamics of bean dwarf mosaic geminivirus cell-to-cell and long-distance movement in Phaseolus vulgaris revealed, using the green fluorescent protein. Mol. Plant Microbe Interact. 11, 277–291.

    Article  CAS  Google Scholar 

  • Timmermans, M. C., Das, O. P., & Messing, J. (1992). Trans replication and high copy numbers of wheat dwarf virus vectors in maize cells. Nucleic Acids Res. 20, 4047–4054.

    Article  CAS  PubMed  Google Scholar 

  • Tsurimoto, T. (1999). PCNA binding proteins. Front Biosci. 4, D849–D858.

    Article  CAS  PubMed  Google Scholar 

  • Warbrick, E. (2000). The puzzle of PCNA’s many partners. Bioessays 22, 997–1006.

    Article  CAS  PubMed  Google Scholar 

  • Yeh, E. T., Gong, L., & Kamitani, T. (2000). Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Castillo, A.G. et al. (2007). Identification of Plant Genes Involved in TYLCV Replication. In: Czosnek, H. (eds) Tomato Yellow Leaf Curl Virus Disease. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4769-5_12

Download citation

Publish with us

Policies and ethics