• Barbara Jezierska
  • Małgorzata Witeska
Part of the NATO Science Series book series (NAIV, volume 69)


Fish living in polluted waters tend to accumulate heavy metals in their tissues. Generally, accumulation depends on metal concentration, time of exposure, way of metal uptake, environmental conditions (water temperature, pH, hardness, salinity), and intrinsic factors (fish age, feeding habits). Various metals show different affinity to fish tissues. Most of them accumulate mainly in liver, kidney and gills. Fish muscles, comparing to the other tissues, usually contain the lowest levels of metals. Metal distribution in various organs is time-related. Accumulation of metals in various organs of fish may cause structural lesions and functional disturbances.


Metal Concentration Mercury Concentration Metal Level Metal Uptake Arctic Char 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, P., 1994, Mercury accumulation profiles and their modification by interaction with cadmium and lead in the soft tissues of the cichlid Oreochromis aureus during chronic exposure, Bull. Environ. Contam. Toxicol. 53:684–692.Google Scholar
  2. Allen, P., 1995, Long-term mercury accumulation in the presence of cadmium and lead in Oreochromis aureus (Steindachner), J. Environ. Sci. Health 30 B:549–567.Google Scholar
  3. Allen-Gill, S. M, and Martynov, V. G., 1995, Heavy metal burdens in nine species of freshwater and anadromous fish from the Pechora river, northern Russia, Sci. Total Envron. 160/161:653–659.CrossRefGoogle Scholar
  4. Al-Mohanna, M. M., 1994, Residues of some heavy metals in fishes collected from (Red Sea Coast) Jisan, Saudi Arabia, J. Environ. Biol. 15:149–157.Google Scholar
  5. Baldisserotto, B., Chowdhury, M. J., and Wood, C. M., 2005, Effects of dietary calcium and cadmium on cadmium accumulation, calcium and cadmium uptake from the water, and their interactions in juvenile rainbow trout, Aquat. Toxicol. 72:99–117.CrossRefGoogle Scholar
  6. Barron, M. G., and Albeke, S., 2000, Calcium control of zinc uptake in rainbow trout, Aquat. Toxicol. 50:257–264.CrossRefGoogle Scholar
  7. Campbell, K. R., 1994, Concentrations of heavy metals associated with urban runoff in fish living in storm water treatment ponds, Arch. Environ. Contam. Toxicol. 27:352–356.CrossRefGoogle Scholar
  8. Canli, M., and Atli, G., 2003, The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species, Environ. Pollut. 121:129–136.CrossRefGoogle Scholar
  9. Cogun, H. Y. and Kargin, F., 2004, Effects of pH on the mortality and accumulation of copper in tissues of Oreochromis niloticus, Chemosphere 55:277–282.CrossRefGoogle Scholar
  10. Cuvin-Aralar, M. L. A., and Furness, R. W., 1990, Tissue distribution of mercury and selenium in minnows, Phoxinus phoxinus, Bull. Environ. Contam. Toxicol. 45:775–782.CrossRefGoogle Scholar
  11. De Wet, L. M., Schoonbee, H. J., De Wet, L. P. D., and Wiid, A. J. B., 1994, Bioaccumulation of metals by the southern mouthbrooder, Pseudocrenilabrus philander (Weber, 1897) from a mine-polluted impoundment. Water SA 20:119–126.Google Scholar
  12. Douben, P. E. T., 1989, Uptake and elimination of waterborne cadmium by the fish Noemacheilus barbatulus L. (stone loach), Arch. Environ. Contam. Toxicol. 18:576–586.CrossRefGoogle Scholar
  13. Giguere, A., Campbell, P. G. C., Hare, L., McDonald, D. G., and Rasmussen, J. B., 2004, Influence of lake chemistry and fish age on cadmium, copper, and zinc concentrations in various organs of indigenous yellow perch (Perca flavescens), Can. J. Fish. Aquat. Sci. 61:1702–1716.CrossRefGoogle Scholar
  14. Goldstein, R. M., Brigham, M. E., and Stauffer, J. C., 1996, Comparison of mercury concentrations in liver, muscle, whole bodies, and composites of fish from Red River of the North, Can. J. Fish. Aquat. Sci. 53:244–252.CrossRefGoogle Scholar
  15. Grieb,T. M., Driscoll, C. T., Gloss, S. P., Schofield, C. L., Bowie, G. L., and Porcella D. B., 1990, Factors affecting mercury accumulation in fish in the upper Michigan Peninsula, Environ. Toxicol. Chem. 9:919–930.Google Scholar
  16. Green, N. W., and Knutzen, J., 2003, Organohalogens and metals in marine fish and mussels and some relationships to biological variables at reference localities in Norway, Marine Pollut. Bull., 46:362–374.CrossRefGoogle Scholar
  17. Haines, T. A., and Brumbaugh, W. G., 1994, Metal concentration in the gill, gastrointestinal tract, and carcass of white suckers (Catostomus commersoni) in relation to lake acidity, Water, Air Soil Pollut. 73:265–274.CrossRefGoogle Scholar
  18. Horwitz, R. J., Ruppel, B., Wisniewski, S., Kiry, P., Hermanson, M., and Gilmour, C., 1995, Mercury concentrations in freshwater fishes in New Jersey, Water Air Soil Pollut. 80:885–888.CrossRefGoogle Scholar
  19. Jezierska, B., and Witeska, M., 2001, Metal Toxicity to Fish, Wydawnictwo Akademii Podlaskiej, Siedlce 318 pp.Google Scholar
  20. Kidwell, J. M., Phillips, L. J., and Birchard, G. F., 1995, Comparative analyses of contaminant levels in bottom feeding and predatory fish using the national contaminant biomonitoring program data, Bull. Environ. Contam. Toxicol. 54:919–923.CrossRefGoogle Scholar
  21. Kock, G., Triendl, M., and Hofer, R., 1996, Seasonal patterns of metal accumulation in Arctic char (Salvelinus alpinus) from an oligotrophic Alpine lake related to temperature, Can. J. Fish. Aquat. Sci. 53:780–786.CrossRefGoogle Scholar
  22. Kock, G., Triendl, M., and Hofer, R., 1998, Lead (Pb) in Arctic char (Salvelinus alpinus) from oligotrophic Alpine lakes: Gills versus digestive tract, Water Air Soil Pollut. 102,303–312.CrossRefGoogle Scholar
  23. Linde, A. R., Arribas, P., Sanchez-Galan, S., and Garcia-Vazquez, E., 1996, Eel (Anguilla anguilla) and brown trout (Salmo trutta) target species to assess the biological impact of trace metal pollution in freshwater ecosystems, Arch. Environ. Contam. Toxicol. 31:297–302.CrossRefGoogle Scholar
  24. Moiseenko, T. I., Kudryavtseva, L. P., Rodyushkin, I. V., Dauvalter, V. A., Lukin, A. A., and Kashulin, N. A., 1995, Airborne contamination by heavy metals and aluminum in the freshwater ecosystems of Kola subarctic region (Russia), Sci. Total Environ. 160/161:715–727.CrossRefGoogle Scholar
  25. Munn, M. D., and Short, T. M., 1997, Spatial heterogenity of mercury bioaccumulation by walleye in Franklin D. Roosevelt Lake and the upper Columbia River, Washington, Trans. Am. Fish. Soc. 126:477–487.CrossRefGoogle Scholar
  26. Ney, J. J., and Van Hassel, J. H., 1983, Sources of variability in accumulation of heavy metals by fishes in a roadside stream, Arch. Environ. Contam. Toxicol. 12:701–706.CrossRefGoogle Scholar
  27. Pagenkopf, G. K., 1983, Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH, and water hardness, Environ. Sci. Technol. 17:342–347.CrossRefGoogle Scholar
  28. Pelgrom, S. M. G. J., Lamers, L. P. M., Lock, R. A. C., Balm, P. H. M., and Wendelaar Bonga, S. E. 1995, Interactions between copper and cadmium modify metal organ distribution in mature tilapia, Oreochromis mossambicus, Environ. Pollut. 90:415–423.CrossRefGoogle Scholar
  29. Playle, R. C., Gensemer, R. W., and Dixon, D. G., 1992, Copper accumulation on gills of fathead minnows: influence of water hardness, complexation and pH of the gill microenvironment, Environm. Toxicol. Chem. 11:381–391.Google Scholar
  30. Somero, G. N., Chow, T. J., Yancey, P. H., and Snyder, C. B., 1977, Lead accumulation rates in tissues of the estuariane teleost fish, Gillichthys mirabilis: Salinity and temperature effects, Arch. Environm. Contam. Toxicol. 6:337–348.CrossRefGoogle Scholar
  31. Stagg, R. M., and Shuttleworth, T. J., 1982, The accumulation of copper in Platichthys flesus L. and its effects on plasma electrolyte concentrations, J. Fish Biol. 20:491–500.CrossRefGoogle Scholar
  32. Voigt, H-R., 2004, Concentrations of mercury (Hg) and cadmium (Cd), and the condition of some coastal Baltic fishes, Environmentalica Fennica 21:26 pp.Google Scholar
  33. Wicklund, A., Runn, P., and Norrgren, L., 1988, Cadmium and zinc interactions in fish: Effects of zinc on the uptake, organ distribution, and elimination of 109Cd in the zebrafish, Brachydanio rerio, Arch. Environ. Contam. Toxicol. 17:345–354.CrossRefGoogle Scholar
  34. Wiener, J. G., Martini, R. E., Sheffy, T. B., and Glass, G. E., 1990, Factors influencing mercury concentrations in walleyes in northern Wisconsin lakes, Trans. Am. Fish Soc. 119:862–870.CrossRefGoogle Scholar
  35. Yamazaki, M., Tanizaki, Y., and Shimokawa, T., 1996, Silver and other trace elements in a freshwater fish, Carasius auratus langsdorfii, from the Asakawa River in Tokyo, Japan, Environ. Pollut. 94:83–90.CrossRefGoogle Scholar
  36. Yang, H. N., and Chen, H. C., 1996, Uptake and elimination of cadmium by Japanese eel, Anguilla japonica, at various temperatures, Bull. Environ. Contam. Toxicol. 56:670–676.CrossRefGoogle Scholar
  37. Zhou, T., Weis, P., and Weis, J. S., 1998, Mercury burden in two populations of Fundulus heteroclitus after sublethal methylmercury exposure, Aquat. Toxicol. 42:37–47.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Barbara Jezierska
    • 1
  • Małgorzata Witeska
    • 1
  1. 1.Department of Animal PhysiologyUniversity of PodlasieSiedlcePoland

Personalised recommendations