Skip to main content

Part of the book series: NATO Science Series ((NAIV,volume 69))

Abstract

The use of activated carbon may help overcome the toxicity of organic pollutants to microbes and plants during soil bioremediation. Experiments were conducted with 3,4-dichloroaniline (DCA), 2,4,6-trinitrotoluene (TNT), and polychlorinated biphenyls (PCB) to demonstrate that activated carbon (AC) can reduce the toxicity of readily available chemicals in soil by transferring them to a less toxic soil fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Bakhaeva, L. P., Vasilyeva, G. K., Surovtseva, E. G., and Mukhin, V. M., 2001, Microbial degradation of 3,4-dichloroaniline adsorbed to activated carbon, Microbiol. 70:277–284.

    Article  CAS  Google Scholar 

  • Bansal, R. C., Donnet, J-B., and Stoeckli, F., 1988, Active Carbon, Marcel Dekker, NY, 482 p.

    Google Scholar 

  • Bedard, D. L. and Quensen, J. F., 1995, Microbial reductive dechlorination of polychlorinated biphenyls, in: Microbial Transformation and Degradation of Toxic Organic Chemicals, L. Y. Young and C. E. Cerniglia, eds., Wiley, NY., 650 p.

    Google Scholar 

  • Bobovnikova, Ts. I., Alekseeva, L. B., Dibtseva, A. V., Chernik, G. V., Orlinsky, D. B., Priputina, I. V., and Pleskachevskaya, G. A., 2000, The influence of a capacitor plant in Serpukhov on vegetable contamination by polychlorinated biphenyls, Sci. Total Environ. 246:51–60.

    Article  CAS  Google Scholar 

  • Bordeleau, L. M. and Bartha, R., 1972, Biochemical transformation of herbicide-derived anilines. Purification and characterization of causative enzymes, Can. J. Microbiol. 18:1865–1871.

    Article  CAS  Google Scholar 

  • Boria, J., Taleon, D.M., Auresenia, J., Gallardo, S., 2005, Polychlorinated biphenyls and their biodegradation, Process Biochemistry 40(6): 1999–2013.

    Article  CAS  Google Scholar 

  • Bucheli, T. D., and Gustafsson, R., 2003, Soot sorption of non-ortho and ortho substituted PCBs, Chemosphere 53:514–522.

    Article  CAS  Google Scholar 

  • Khodadoust, A. P., Sorial, G. A., Wilson, G. J., Suidan, M. T., Griffiths, R. A., and Brenner, R. C., 1999, Integrated system for remediation of contaminated soils, J. Environ. Engin.- ASCE 125:1033–1041.

    Article  CAS  Google Scholar 

  • Komancova, M., Jurcova, I., Kochankova, L., and Burkhard, J., 2003, Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonads sp. 2, Chemosphere 50:537–543.

    Article  CAS  Google Scholar 

  • Mukhin, V. M., Dubonosov, V. T., and Shmelev, S. I., 1995, Application of active carbons for detoxification of soils contaminated with pesticide residues, Russian Chem. J. 6:135–138.

    Google Scholar 

  • O’Brien, G., 1992, Estimation of the romoval of organic priority pollutants by the powdered activated carbon treatment process, Water Environ. Res. 64:877–883.

    CAS  Google Scholar 

  • Pradhan, S. P. and Srivastava, V. J., 1997, A pilot-scale demonstration of an innovative soil remediation process: Air emissions quality, J. Air Waste Manag. Assoc. 47:710–715.

    CAS  Google Scholar 

  • Rieger, P. G. and Knackmuss, H-J., 1995, Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil, in: J. C. Spain, ed., Biodegradation of Nitroaromatic Compounds. Plenum Press, New York, pp. 1–18.

    Google Scholar 

  • Strek, H. J., Weber, J. B., Shea, P. J., Mrozek Jr., E., and Overcash, M. R., 1981, Reduction of polychlorinated biphenyl toxicity and uptake of carbon-14 activity by plants through the use of activated carbon, J. Agr. Food Chem. 29:288–293.

    Article  CAS  Google Scholar 

  • Surovtseva, E. G., Ivoilov, V. S., Vasilyeva, G. K., and Beljaev, V. N., 1996, Degradation of chloroanilines by some representatives of genera Aquaspirillum and Paracoccus, Microbiol. 65:563–638.

    Google Scholar 

  • Surovtseva, E. G., Vasilyeva, G. K., and Volnova, A. I., 1984, 3,4-dichloroaniline as a sole source of nitrogen and carbon for the mixed bacterial culture, Microbiol. 53:5–9.

    Google Scholar 

  • Tessmer, C. H., Vidic, R. D., and Uranowski, L. J., 1997, Impact of oxygen-containing surface functional groups on activated carbon adsorption of phenols, Environ. Sci. Technol. 31:1872–1878.

    Article  CAS  Google Scholar 

  • van Gestel, C. A. M., van der Waarde, J. J., Derksen, J. G. M., van der Hoek, E. E., Veul, M. F. X. W., Bouwens, S., Rusch, B., Kronenburg, R., and Stokman, G. N. M., 2001, The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils, Environ. Toxicol. Chem. 20:1438–1449.

    Article  Google Scholar 

  • Vasilyeva, G. K., Bakhaeva, L. P., Strijakova, E. R., and Shea, P. J., 2003, Biodegradation of 3,4-dichloroaniline and 2,4,6-trinitrotoluene in soil in the presence of natural adsorbents, Environ. Chem. Lett. 1:176–183.

    Article  CAS  Google Scholar 

  • Vasilyeva, G. K, Bakhaeva, L. P., and Surovtseva, E. G., 1996, The use of in situ soil adsorptive bioremediation following an accidental spill of propanil in the Krasnodar region of Russia, Land Contam. Reclam. 4:263–268.

    Google Scholar 

  • Vasilyeva, G. K., Kreslavski, V. D., Shea, P. J., and Oh, B-T., 2001, Potential of activated carbon to decrease 2,4,6-trinitritoluene toxicity and accelerate soil decontamination, Environ. Toxicol. Chem. 20:965–971.

    Article  CAS  Google Scholar 

  • Vasilyeva, G. K., Kreslavski, V. D., Shea, P. J., and Bollag, J-M., 2002, Accelerated transformation and binding of 2,4,6-trinitrotoluene in soil amended with activated carbon, in: A. Violante, P. M. Huang, J. M. Bollag, and L. Gianfreda, eds., Soil Mineral-Organic Matter-Microorganism Interactions and Ecosysstems Health, Development in Soil Science 28 B, Elsevier, Amsterdam, pp. 157–168.

    Google Scholar 

  • Vasilyeva, G. K., Surovtseva, E. G., and Belousov, V. S., 1994, Microbial method for the clean-up of soil contaminated with propanil and 3,4-dichloroaniline, Microbiol. 63:75–80.

    Google Scholar 

  • Vasilyeva, G. K., Surovtseva, E. G., Semenyuk, N. N., Glagolev, M. V., and Panikov, N. S., 1995, A method for enumerating chloroaniline-degrading microorganisms in soil proceeding from the substrate half-degradation period, Microbiol. 64:480–488.

    Google Scholar 

  • Zhu D., Pignatello J.J. (2005) Characteristization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ. Sci.Thechnol. 39: 2033–2041.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Vasilyeva, G.K., Strijakova, E.R., Shea, P.J. (2006). USE OF ACTIVATED CARBON FOR SOIL BIOREMEDIATION. In: Twardowska, I., Allen, H.E., Häggblom, M.M., Stefaniak, S. (eds) Soil and Water Pollution Monitoring, Protection and Remediation. NATO Science Series, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4728-2_20

Download citation

Publish with us

Policies and ethics