Skip to main content

Biological Oscillators and Timers: Models and Mechanisms

  • Chapter
Introducing Biological Rhythms
  • 1279 Accesses

Abstract

Within the realm of life, there is a structural organization, a hierarchy of components, extending from subatomic particles (e.g., electrons, protons) to organisms and ecosystems. How these components function (physiology), individually and in networks, depends not only upon the presence of the correct components and where they occur, but when. Individual components and sites of action are represented by structural units, while “when” represents the temporal organization of life and the measurable unit known as time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alabadi D, Yanovsky MJ, Mas P, Harmer SL, Kay SA. (2002) Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr Biol 12(9): 757–761.

    PubMed  CAS  Google Scholar 

  • Andronov AA, Vitt AA, Khaikin SE. (1966) Theory of Oscillators. New York: Dover Publication, 815 pp.

    Google Scholar 

  • Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, Sangoram AM, King DP, Pinto LH, Takahashi JS. (1997) Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89(4): 655–667.

    PubMed  CAS  Google Scholar 

  • Aronson BD, Johnson KA, Loros JJ, Dunlap JC. (1994) Negative feedback defining a circadian clock: autoregulation in the clock gene frequency. Science 263(5153):1578–1584.

    PubMed  CAS  Google Scholar 

  • Ashburner M, Bonner JJ. (1979) The induction of gene activity in Drosophila by heat shock. Cell 17(2): 241–254.

    PubMed  CAS  Google Scholar 

  • Ashmore LJ, Sehgal A. (2003) A fly’s eye view of circadian entrainment. J Biol Rhythms 18(3): 206–216.

    PubMed  Google Scholar 

  • Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G. (1996) White collar-1, central regulator of blue-light responses in Neurospora, is a zinc-finger protein. EMBO J 15(7): 1650–1657.

    PubMed  CAS  Google Scholar 

  • Balsalobre A. (2002) Clock genes in mammalian peripheral tissues. Cell Tissue Res 309(1):193–199 (Review).

    PubMed  CAS  Google Scholar 

  • Banerjee D, Kwok A, Lin SY, Slack FJ. (2005) Developmental timing in C. elegans is regulated by kin-20 and tim-1, homologs of core circadian clock genes. Dev Cell 8(2):287–295.

    PubMed  CAS  Google Scholar 

  • Bargiello TA, Young MW. (1984) Molecular genetics of a biological clock in Drosophila. Proc Natl Acad Sci USA 81: 2142–2146.

    PubMed  CAS  Google Scholar 

  • Baylies MK, Bargiello TA, Jackson FR, Young MW. (1987) Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock. Nature 326(6111): 390–392.

    PubMed  CAS  Google Scholar 

  • Bell-Pedersen D, Crosthwaite SK, Lakin-Thomas PL, Merrow M, Økland M. (2004) The Neurospora circadian clock: simple or complex? Phil Trans R Soc Lond 356:1697–1709.

    Google Scholar 

  • Betz A, Sel’kov E. (1969) Control of phosphofructokinase [PFK] activity in conditions simulating those of glycolysing yeast extract. FEBS Lett 3(1): 5–9.

    PubMed  CAS  Google Scholar 

  • Bjarnason GA, Jordan RC, Wood PA, Li Q, Lincoln DW, Sothern RB, Hrushesky WJ, Ben-David Y. (2001) Circadian expression of clock genes in human oral mucosa and skin. Amer J Path 158(5): 1793–1801.

    PubMed  CAS  Google Scholar 

  • Blau J, Young MW. (1999) Cycling vrille expression is required for a functional Drosophila clock. Cell 99(6): 661–671.

    PubMed  CAS  Google Scholar 

  • Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS. (2003) Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood 102(12): 4143–4145.

    PubMed  CAS  Google Scholar 

  • Briggs TS, Rauscher WC. (1973) An oscillating iodine clock. J Chem Edu 5: 496.

    Google Scholar 

  • Brody S, Martins SA. (1979) Circadian rhythms in Neurospora crassa: effects of unsaturated fatty acids. J Bacteriol 137(2): 912–915.

    PubMed  CAS  Google Scholar 

  • Brown F, Hastings W, Palmer JD. (1970) The Biological Clock, Two Views. New York: Academic Press, 94 pp.

    Google Scholar 

  • Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA. (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103(7): 1009–1017.

    PubMed  CAS  Google Scholar 

  • Bünning E. (1936) Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber Dtsch Bot Ges 54: 590–607.

    Google Scholar 

  • Bünning E. (1973) The Physiological Clock, 3rd edn. Berlin: Springer-Verlag, 258 pp.

    Google Scholar 

  • Burgoyne RD. (1978) A model for the molecular basis of circadian rhythms involving monovalent ion-mediated translational control. FEBS Lett 94(1): 17–19.

    PubMed  CAS  Google Scholar 

  • Busse H-G. (1973) Some experiments of a chemical periodic reaction in liquid phase. In: Biological and Biochemical Oscillators. Chance B, Pye EK, Ghosh AK, Hess B, eds. New York: Academic Press, pp. 63–69.

    Google Scholar 

  • Carré IA. (1999) Putative components of the Arabidopsis circadian clock. Biol Rhythm Res 30(3): 259–263.

    Google Scholar 

  • Chabre M. (1987) The G protein connection: is it in the membrane or cytoplasm? Trends Biochem Sci 12: 213–215.

    CAS  Google Scholar 

  • Chance B, Pye EK, Ghosh AK, Hess B. (1973) Biological and Biochemical Oscillators. New York: Academic Press, 534 pp.

    Google Scholar 

  • Chay TR. (1981) A model for biological oscillations. Proc Natl Acad Sci USA 78(4):2204–2207.

    PubMed  CAS  Google Scholar 

  • Cheng P, Yang Y, Heintzen C, Liu Y. (2001a) Coiled-coil domain-mediated FRQ-FRQ interaction is essential for its circadian clock function in Neurospora. EMBO J 20(1–2):101–110.

    PubMed  CAS  Google Scholar 

  • Cheng P, Yang Y, Liu Y. (2001b) Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock. Proc Natl Acad Sci USA 98(13): 7408–7413.

    PubMed  CAS  Google Scholar 

  • Chernavskii DS, Palamarchuk EK, Polezhaev AA, Solyanik GI. (1977) A mathematical model of periodic processes in membranes (with application to cell cycle regulation). Biosystems 9(4): 187–193.

    PubMed  CAS  Google Scholar 

  • Cosgrove JW, Brown IR. (1983) Heat shock protein in mammalian brain and other organs after a physiologically relevant increase in body temperature induced by D-lysergic acid diethylamide. Proc Natl Acad Sci USA 80(2): 569–573.

    PubMed  CAS  Google Scholar 

  • Crews ST, Fan C-M. (1999) Remembrance of things PAS: regulation of development by bHLH-PAS proteins. Curr Opin Genet Dev 9(5): 580–587.

    PubMed  CAS  Google Scholar 

  • Crosthwaite SK, Loros JJ, Dunlap JC. (1995) Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell 81(7): 1003–1012.

    PubMed  CAS  Google Scholar 

  • Crosthwaite SK, Dunlap JC, Loros JJ. (1997) Neurospora WC-1 and WC-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276(5313): 763–769.

    PubMed  CAS  Google Scholar 

  • Cummings FW. (1975) A biochemical model of the circadian clock. J Theor Biol 55(2):455–470.

    PubMed  CAS  Google Scholar 

  • Cyran SA, Buchsbaum AM, Reddy KL, Lin M-C, Glossop NR, Hardin PE, Young MW, Storti RV, Blau J. (2003) vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112(3): 329–341.

    PubMed  CAS  Google Scholar 

  • Davidenko JM, Pertsov AV, Salomonsz R, Baxter W, Jalife J. (1992) Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355(6358):349–351.

    PubMed  CAS  Google Scholar 

  • Denault DL, Loros JJ, Dunlap JC. (2001) WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. EMBO J 20(1–2): 109–117.

    PubMed  CAS  Google Scholar 

  • Ditty JL, Williams SB, Golden SS. (2003) A cyanobacterial circadian timing mechanism. Rev Genet 37: 513–543 (Review).

    CAS  Google Scholar 

  • Dobra KW, Ehret CF. (1977) Circadian regulation of glycogen, tyrosine aminotransferase, and several respiratory parameters in solid agar cultures of Tertahymena pyriformis. In: Proc XII Intl Conf Intl Soc Chronobiol, Washington, DC, 1975. Milano: Il Ponte, pp. 589–594.

    Google Scholar 

  • Dunlap J. (1998) Circadian rhythms. An end in the beginning. Science 280(5369):1548–1549.

    PubMed  CAS  Google Scholar 

  • Dunlap JC. (1999) Molecular bases for circadian clocks. Cell 96(2): 271–290 (Review).

    PubMed  CAS  Google Scholar 

  • Dunlap JC, Loros JJ. (2004) The Neurospora circadian system. J Biol Rhythms 19(5):414–424.

    PubMed  CAS  Google Scholar 

  • Dunlap JC, Loros JJ, Denault D, Lee K, Froehlich A, Colot H, Shi M, Pregueiro A. (2004) Genetics and molecular biology of circadian rhythms. In: The Mycota III. Biochemistry and Molecular Biology, 2nd edn. Brambl R, Marzluf GA, eds. Berlin: Springer-Verlag, pp. 209–229.

    Google Scholar 

  • Edmunds LN Jr, Cirillo VP. (1974) On the interplay among cell cycle, biological clock and membrane transport control systems. Intl J Chronobiol 2(3): 233–246 (Review).

    Google Scholar 

  • Edmunds LN Jr. (1988) Cellular and Molecular Bases of Biological Clocks. Models and Mechanisms for Circadian Timekeeping. New York: Springer-Verlag, 497 pp.

    Google Scholar 

  • Edmunds LN Jr. (1992) Cellular and molecular aspects of circadian oscillators: models and mechanisms for biological timekeeping. In: Biological Rhythms in Clinical and Laboratory Medicine. Touitou Y, Haus E, eds. Berlin: Springer-Verlag, pp. 35–54.

    Google Scholar 

  • Ehret CF, Trucco E. (1967) Molecular models for the circadian clock: I. The chronon concept. J Theor Biol 15(2): 240–262 (Review).

    PubMed  CAS  Google Scholar 

  • Ehret CF. (1980) The chronon theory of circadian rhythm control. In: Chronobiology: Principles and Applications to Shifts in Schedules. Scheving LE, Halberg F, eds. Alphen aan den Rijn: Sijthoff & Noordhoff, pp. 229–247.

    Google Scholar 

  • Emery P, So WV, Kaneko M, Hall JC, Rosbash M. (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95(5): 669–679.

    PubMed  CAS  Google Scholar 

  • Engelmann W. (1973) A slowing down of circadian rhythms by lithium ions. Z Naturforsch 28: 733–736.

    CAS  Google Scholar 

  • Engelmann W. (1996) Leaf movement rhythms as hands of biological clocks. In: Vistas on Biorhythmicity. Greppin H, Degli Agosti R, Bonzon M, eds. Geneva: University of Geneva Press, pp. 51–76.

    Google Scholar 

  • Eriksson ME, Hanano S, Southern MM, Hall A, Millar AJ. (2003) Response regulator homologues have complementary, light-dependent functions in the Arabidopsis circadian clock. Planta 218(1): 159–162.

    PubMed  CAS  Google Scholar 

  • Estabrook RW, Srere P, eds. (1981) Current Topics in Cellular Regulation, Vol. 18-Biological Cycles. New York: Academic Press, 573 pp.

    Google Scholar 

  • Farré EM, Harmer SL, Harmon FG, Yonovsky MJ, Kay SA. (2005) Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15(1):47–54.

    PubMed  Google Scholar 

  • Feldman JF, Hoyle MN. (1973) Isolation of circadian clock mutants of Neurospora crassa. Genetics 75(4): 605–613.

    PubMed  CAS  Google Scholar 

  • Foster RG, Kreitzman L. (2004) Rhythms of Life. The Biological Clocks that Control the Daily Lives of Every Living Thing. New Haven and London: Yale University Press, 276 pp.

    Google Scholar 

  • Francis CD, Sargent ML. (1979) Effects of temperature perturbations on circadian conidiation in Neurospora. Plant Physiol 64(6): 1000–1004.

    PubMed  Google Scholar 

  • Froehlich AC, Liu Y, Loros JJ, Dunlap JC. (2002) White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297(5582): 815–819.

    PubMed  CAS  Google Scholar 

  • Froehlich AC, Loros JJ, Dunlap JC. (2003) Rhythmic binding of a White Collar containing complex to the frequency promoter is inhibited by FREQUENCY. Proc Natl Acad Sci USA 100(10): 5914–5919.

    PubMed  CAS  Google Scholar 

  • Fujimori T, Sato E, Yamashino T, Mizuno T. (2005) PRR5 (pseudo-response regulator 5) plays antagonistic roles to CCA1 (circadian clock-associated 1) in Arabidopsis thaliana. Biosci Biotechnol Biochem 69(2): 426–430.

    PubMed  CAS  Google Scholar 

  • Garceau N, Liu Y, Loros JJ, Dunlap JC. (1997) Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell 89(3): 469–476.

    PubMed  CAS  Google Scholar 

  • Gekakis N, Saez L, Delahaye-Brown AM, Myers MP, Sehgal A, Young MW, Weitz CJ. (1995) Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science 270(5237): 811–815.

    PubMed  CAS  Google Scholar 

  • Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280(5369): 1564–1569.

    PubMed  CAS  Google Scholar 

  • Gerisch G. (1976) Extracellular cyclic-amp phosphodiesterase regulation in agar plate cultures of Dictyostelium discoideum. Cell Differ 5(1): 21–25.

    PubMed  CAS  Google Scholar 

  • Gerisch G. (1987) Cyclic AMP and other signals controlling cell development and differentiation in Dictyostelium. Ann Rev Biochem 56: 853–879.

    PubMed  CAS  Google Scholar 

  • Gillanders SW, Saunders DS. (1992) A coupled pacemaker-slave model for the insect photoperiodic clock: interpretation of ovarian diapause data in Drosophila melanogaster. Biol Cybern 67(5): 451–459.

    PubMed  CAS  Google Scholar 

  • Glass L, Mackey MC. (1988) From Clocks to Chaos, The Rhythms of Life. Princeton, NJ: Princeton University Press, 248 pp.

    Google Scholar 

  • Goldbeter A, Caplan SR. (1976) Oscillatory enzymes. Ann Rev Biophys Bioeng 5: 449–476 (Review).

    CAS  Google Scholar 

  • Golden SS. (2003) Timekeeping in bacteria: the cyanobacterial circadian clock. Curr Opin Microbiol 6(6): 535–540 (Review).

    PubMed  CAS  Google Scholar 

  • Golden SS. (2004) Meshing the gears of the cyanobacterial circadian clock. Proc Natl Acad Sci USA 101(38): 13697–13698.

    PubMed  CAS  Google Scholar 

  • Gooch VD, Freeman L, Lakin-Thomas PL. (2004) Time-lapse analysis of the circadian rhythms of conidiation and growth rate in Neurospora. J Biol Rhythms 19(6): 493–503.

    PubMed  Google Scholar 

  • Goodwin BC. (1965) Oscillatory behaviour in enzymatic control processes. Adv Enzyme Regul 3: 425–438.

    PubMed  CAS  Google Scholar 

  • Gorman MR. (2003) Melatonin implants disrupt developmental synchrony regulated by flexible interval timers. J Neuroendocrinol 15(11): 1084–1094.

    PubMed  CAS  Google Scholar 

  • Grobbelaar N, Huang TC, Lin HY, Chow TJ. (1986) Dinitrogen-fixing endogenous rhythm in Synechococcus RF-1. FEMS Microbiol Lett 37: 173–178.

    CAS  Google Scholar 

  • Gross JD, Peacey MJ, Trevan DJ. (1976) Signal emission and signal propagation during early aggregation in Dictyostelium discoideum. J Cell Sci 22(3): 645–656.

    PubMed  CAS  Google Scholar 

  • Gross JD. (1994) Developmental decisions in Dictyostelium discoideum. Microbiol Rev 58(3): 330–351 (Review).

    PubMed  CAS  Google Scholar 

  • Gwinner E. (1977) Circannual rhythms in bird migration. Ann Rev Ecol Syst 8: 381–405.

    Google Scholar 

  • Haest CWM, De Gier J, van Deenen LLM. (1969) Changes in the chemical and the barrier properties of the membrane lipids of E. coli by variation of the temperature of growth. Chem Phys Lipids 3(4): 413–417.

    PubMed  CAS  Google Scholar 

  • Hall JC. (1995) Tripping along the trail to the molecular mechanisms of biological clocks. Trends Neurosci 18(5): 230–240.

    PubMed  CAS  Google Scholar 

  • Hall JC. (2003) Genetics and molecular biology of rhythms in Drosophila and other insects. Adv Genet 48: 1–280 (Review).

    PubMed  CAS  Google Scholar 

  • Hall A, Bastow RM, Davis SJ, Hanano S, McWatters HG, Hibberd V, Doyle MR, Sung S, Halliday KJ, Amasino RM, Millar AJ. (2003) The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. Plant Cell 15(11): 2719–2729.

    PubMed  CAS  Google Scholar 

  • Hamner KC. (1960) Photoperiodism and circadian rhythms. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol 25. New York: Long Island Biol Assoc, pp. 269–277.

    Google Scholar 

  • Hardeland R, Coto-Montes A, Poeggeler B. (2003) Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Intl 20(6): 921–962 (Review).

    CAS  Google Scholar 

  • Hardin PE, Hall JC, Rosbash M. (1990) Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343(6258): 536–540.

    PubMed  CAS  Google Scholar 

  • Hardin PE. (2004) Transcription regulation within the circadian clock: the E-box and beyond. J Biol Rhythms 19(5): 348–360.

    PubMed  CAS  Google Scholar 

  • Harley CB. (1991) Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256(2–6): 271–282.

    PubMed  CAS  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290(5499): 2110–2113.

    PubMed  CAS  Google Scholar 

  • Harmer SL, Panda S, Kay SA. (2001) Molecular bases of circadian rhythms. Ann Rev Cell Dev Biol 17: 215–253 (Review).

    CAS  Google Scholar 

  • Harms E, Kivimae S, Young MW, Saez L. (2004) Posttranscriptional and posttranslational regulation of clock genes. J Biol Rhythms 19(5): 361–373.

    PubMed  CAS  Google Scholar 

  • Hazel JR. (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Ann Rev Physiol 57: 19–42 (Review).

    CAS  Google Scholar 

  • He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y. (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297(5582): 840–843.

    PubMed  CAS  Google Scholar 

  • Hess B, Boiteux A. (1971) Oscillatory phenomena in biochemistry. Ann Rev Biochem 40: 237–258 (Review).

    PubMed  CAS  Google Scholar 

  • Hess B. (1977) Oscillating reactions. Trends Biochem Sci 2: 193–195.

    CAS  Google Scholar 

  • Hicks KA, Albertson TM, Wagner DR. (2001) EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13(6): 1281–1292.

    PubMed  CAS  Google Scholar 

  • Hillman WS. (1956) Injury of tomato plants by continuous light and unfavorable photoperiodic cycles. Amer J Bot 43: 89–96.

    Google Scholar 

  • Hillman WS. (1973) Non-circadian photoperiodic timing in the aphid Megoura. Nature 242: 128–129.

    Google Scholar 

  • Hillman WS. (1976) Biological rhythms and physiological timing. Ann Rev Plant Physiol 27: 159–179.

    CAS  Google Scholar 

  • Holmgren M, Scheffer M. (2001) El Niño as a window of opportunity for the restoration of degraded arid ecosystems. Ecosystems 4: 151–159.

    Google Scholar 

  • Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K. (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419(6909): 841–844.

    PubMed  CAS  Google Scholar 

  • Iglesias A, Satter RL. (1983) H+ fluxes in exercised Samanea motor tissue: II. Rhythmic properties. Plant Physiol 72: 570–572.

    PubMed  CAS  Google Scholar 

  • Ikeda M, Nomura M. (1997) cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem Biophys Res Commun 233(1): 258–264.

    PubMed  CAS  Google Scholar 

  • Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH, Kondo T. (1998) Expression of a gene cluster kaiABC as a circadian feedback process in Cyanobacteria. Science 281(5382): 1519–1523.

    PubMed  CAS  Google Scholar 

  • Iwasaki H, Taniguchi Y, Ishiura M, Kondo T. (1999) Physical interactions among circadian clock proteins KaiA, KaiB and KaiC in cyanobacteria. EMBO J 18(5): 1137–1145.

    PubMed  CAS  Google Scholar 

  • Iwasaki H, Williams SB, Kitayama Y, Ishiura M, Golden SS, Kondo T. (2000) A kaiCinteracting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell 101(2): 223–233.

    PubMed  CAS  Google Scholar 

  • Iwasaki H, Kondo T. (2000) The current state and problems of circadian clock studies in cyanobacteria. Plant Cell Physiol 41(9): 1013–1020 (Review).

    PubMed  CAS  Google Scholar 

  • Iwasaki H, Kondo T. (2004) Circadian timing mechanism in the prokaryotic clock system of cyanobacteria. J Biol Rhythms 19(5): 436–444.

    PubMed  CAS  Google Scholar 

  • Jacklet JW. (1988–89) Circadian pacemaker neurons: membranes and molecules. J Physiol (Paris) 83(3): 164–171.

    Google Scholar 

  • Jeon M, Gardner HF, Miller EA, Deshler J, Rougvie AE. (1999) Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science 286(5442): 1141–1146.

    PubMed  CAS  Google Scholar 

  • Johnsson A, Karlsson HG. (1972) A feedback model for biological rhythms: I. Mathematical description and basic properties of the model. J Theor Biol 36(1): 153–174.

    PubMed  CAS  Google Scholar 

  • Johnsson A, Karlsson HG, Engelmann W. (1972) Phase shift effects in the Kalanchoë petal rhythm due to two or more light pulses. A theoretical and experimental study. Physiol Plant 28: 134–142.

    Google Scholar 

  • Kaplan D, Glass L. (1995) Understanding Nonlinear Dynamics. New York: Springer-Verlag, 420 pp.

    Google Scholar 

  • Kay SA, Millar AJ. (1995) New models in vogue for circadian clocks. Cell 83(3): 361–364 (Review).

    PubMed  CAS  Google Scholar 

  • Keener JP, Hoppensteadt FC, Rinzel J. (1981) Integrate-and-fire models of nerve membrane response to oscillatory input. Siam J Appl Math 41(3): 503–517.

    Google Scholar 

  • Kim WY, Geng R, Somers DE. (2003) Circadian phase-specific degradation of the F-box protein ZTL is mediated by the proteasome. Proc Natl Acad Sci USA 100(8): 4933–4938

    PubMed  CAS  Google Scholar 

  • King DP, Vitaterna MH, Chang AM, Dove WF, Pinto LH, Turek FW, Takahashi JS. (1997a) The mouse Clock mutation behaves as an antimorph and maps within the W19H deletion, distal of Kit. Genetics 146(3): 1049–1060.

    PubMed  CAS  Google Scholar 

  • King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS. (1997b) Positional cloning of the mouse circadian clock gene. Cell 89(4): 641–653.

    PubMed  CAS  Google Scholar 

  • King DP, Takahashi JS. (2000) Molecular genetics of circadian rhythms in mammals. Ann Rev Neurosci 23: 713–742 (Review).

    PubMed  CAS  Google Scholar 

  • Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS, Young MW. (1998) The Drosophila gene double-time encodes a protein closely related to human casein kinase Iε. Cell 94(1): 97–107.

    PubMed  CAS  Google Scholar 

  • Kloss B, Rothenfluh A, Young MW, Saez L. (2001) Phosphorylation of period is influenced by cycling physical associations of double-time, period, and timeless in the Drosophila clock. Neuron 30(3): 699–706.

    PubMed  CAS  Google Scholar 

  • Klotter K. (1960) General properties of oscillating systems. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: The Biological Laboratory, pp. 185–187.

    Google Scholar 

  • Kondo T, Tsinoremas NF, Golden SS, Johnson CH, Kutsuna S, Ishiura M. (1994) Circadian clock mutants of Cyanobacteria. Science 266(5188): 1233–1236.

    PubMed  CAS  Google Scholar 

  • Kondo T, Ishiura M. (1999) The circadian clocks of plants and cyanobacteria. Trends in Plant Science 4(5): 171–176 (Review).

    PubMed  Google Scholar 

  • Konopka RJ, Benzer S. (1971) Clock mutants of Drosophila melanogaster. Proc Nat Acad Sci USA 68(9): 2112–2116.

    PubMed  CAS  Google Scholar 

  • Konopka RJ, Orr D. (1980) Effects of a clock mutation on the subjective day—Implications for a membrane model of the Drosophila circadian clock. In: Development and Neurobiology of Drosophila. Siddiqi O, Babu P, Hall LM, Hall JC, eds. New York: Plenum Press, pp. 409–416.

    Google Scholar 

  • Koukkari WL, Soulen TK. (1981) Circadian time structure of vascular flowering plants. In: Neoplasms-Comparative Pathology of Growth in Animals, Plants, and Man. Kaiser HE, ed. Baltimore: Williams and Wilkins, pp. 175–184.

    Google Scholar 

  • Koukkari WL, Warde SB. (1985) Rhythms and their relations to hormones. In: Encyclopedia of Plant Physiology, New Series, Vol. 11: Hormonal Regulation of Development III. Pharis RP, Reid DM, eds. Berlin: Springer-Verlag, pp. 37–77.

    Google Scholar 

  • Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM. (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98(2): 193–205.

    PubMed  CAS  Google Scholar 

  • Kuno N, Møller SG, Shinomura T, Xu X, Chua NH, Furuya M. (2003) The novel MYB protein Early-phytochrome-responsive1 is a component of a slave circadian oscillator in Arabidopsis. Plant Cell 15(10): 2476–2488.

    PubMed  CAS  Google Scholar 

  • Kusanagi H, Mishima K, Satoh K, Echizenya M, Katoh T, Shimizu T. (2004) Similar pro-files in human period1 gene expression in peripheral mononuclear and polymorphonuclear cells. Neurosci Lett 365(2): 124–127.

    PubMed  CAS  Google Scholar 

  • Kyriacou CP, Hall JC. (1980) Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuation in the male’s courtship song. Proc Nat Acad Sci USA 77(11): 6729–6733.

    PubMed  CAS  Google Scholar 

  • Lakin-Thomas PL, Brody S, Coté CG. (1997) Temperature compensation and membrane composition in Neurospora crassa. Chronobiol Intl 14(5): 445–454.

    CAS  Google Scholar 

  • Lakowski B, Hekimi S. (1996) Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272(5264): 1010–1013.

    PubMed  CAS  Google Scholar 

  • Lee K, Loros JJ, Dunlap JC. (2000) Interconnected feedback loops in the Neurospora circadian system. Science 289(5476): 107–110.

    PubMed  CAS  Google Scholar 

  • Lees AD. (1966) Photoperiodic timing mechanisms in insects. Nature 210(40): 986–989.

    PubMed  CAS  Google Scholar 

  • Lin CY, Roberts JK, Key JL. (1984) Acquisition of thermotolerance in soybean seedlings: synthesis and accumulation of heat shock proteins and their cellular localization. Plant Physiol 74: 152–160.

    PubMed  CAS  Google Scholar 

  • Lincoln GA, Andersson H, Hazlerigg D. (2003) Clock genes and the long-term regulation of prolactin secretion: evidence for a photoperiod/circannual timer in the pars tuberalis. J Neuroendocrinol 15: 390–397.

    PubMed  CAS  Google Scholar 

  • Linden H, Macino G. (1997) White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16(1): 98–109.

    PubMed  CAS  Google Scholar 

  • Linden H, Ballario P, Macino G. (1997) Blue light regulation in Neurospora crassa. Fungal Genet Biol 22(3): 141–150 (Review).

    PubMed  CAS  Google Scholar 

  • Liu Y, Merrow M, Loros JJ, Dunlap JC. (1998) How temperature changes reset a circadian oscillator. Science 281(5378): 825–829.

    PubMed  CAS  Google Scholar 

  • Liu Y, Loros J, Dunlap JC. (2000) Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. Proc Natl Acad Sci USA 7(1): 234–239.

    Google Scholar 

  • Lloyd AL, Lloyd D. (1993) Hypothesis: the central oscillator of the circadian clock is a controlled chaotic attractor. Biosystems 29(2–3): 77–85.

    PubMed  CAS  Google Scholar 

  • Lloyd AL, Lloyd D. (1995) Chaos: its significance and detection in biology. Biol Rhythm Res 26(2): 233–252.

    Google Scholar 

  • Loros JJ, Denome SA, Dunlap JC. (1989) Molecular cloning of genes under the control of the circadian clock in Neurospora. Science 243(4889): 385–388.

    PubMed  CAS  Google Scholar 

  • Lumsden PJ, Miller AJ. (1998) Biological Rhythms and Photoperiodism in Plants. Oxford: BIOS Scientific Publication, 284 pp.

    Google Scholar 

  • Majercak J, Sidote D, Hardin PE, Edery I. (1999) How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24(1): 219–230.

    PubMed  CAS  Google Scholar 

  • Martens UM, Chavez EA, Poon SSS, Schmoor C, Landsdorp PM. (2000) Accumulation of short telomeres in human fibroblasts prior to replicative senescence. Exp Cell Res 256(1): 291–299.

    PubMed  CAS  Google Scholar 

  • Martinek S, Inonog S, Manoukian AS, Young MW. (2001) A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105(6): 769–779.

    PubMed  CAS  Google Scholar 

  • Más P, Kim WY, Somers DE, Kay SA. (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426(6966): 567–570.

    PubMed  Google Scholar 

  • McClung CR. (2001) Circadian rhythms in plants. Ann Rev Plant Physiol Plant Mol Biol 52: 139–162 (Review).

    CAS  Google Scholar 

  • McClung CR, Fox BA, Dunlap JC (1989) The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature 339(6225): 558–562.

    PubMed  CAS  Google Scholar 

  • Merrow M, Franchi L, Dragovic Z, Gorl M, Johnson J, Brunner M, Macino G, Roenneberg T. (2001) Circadian regulation of the light input pathway in Neurospora crassa. EMBO J 20(3): 307–315.

    PubMed  CAS  Google Scholar 

  • Michael TP, Salomé PA, McClung CR. (2003) Two Arabidopsis circadian oscillators can be distinguished by differential temperature sensitivity. Proc Natl Acad Sci USA 100(11): 6878–6883.

    PubMed  CAS  Google Scholar 

  • Millar AJ, Short SR, Chua NH, Kay SA. (1992) A novel circadian phenotype based on fire-fly luciferase expression in transgenic plants. Plant Cell 4(9): 1075–1087.

    PubMed  CAS  Google Scholar 

  • Millar AJ, Carré IA, Strayer CA, Chua NH, Kay SA. (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267(5201): 1161–1163.

    PubMed  CAS  Google Scholar 

  • Millar AJ. (2003) A suite of photoreceptors entrains the plant circadian clock. J Biol Res 18(3): 217–226.

    CAS  Google Scholar 

  • Minorsky N. (1962) Nonlinear Oscillations. Princeton, NJ: Van Nostrand, 714 pp.

    Google Scholar 

  • Mitsui A, Kumazawa S, Takahashi A, Ikemoto H, Cao S, Arai T. (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323: 720–722.

    CAS  Google Scholar 

  • Mitsui A, Cao S, Takahashi A, Arai T. (1987) Growth synchrony and cellular parameter of unicellular nitrogen-fixing marine cyanobacterium, Synechococcus sp. strain Miami BG 043511 under continuous illumination. Physiol Plant 69(1): 1–8.

    CAS  Google Scholar 

  • Moore-Ede MC, Sulzman FM, Fuller CA. (1982) The Clocks That Time Us. Physiology of the Circadian Timing System. Cambridge, MA: Harvard University Press, 448 pp.

    Google Scholar 

  • Morgan LW, Greene AV, Bell-Pedersen D. (2003) Circadian and light-induced expression of luciferase in Neurospora crassa. Fungal Genet Biol 38(3): 327–332.

    PubMed  CAS  Google Scholar 

  • Morré DJ, Chueh PJ, Pletcher J, Tang X, Wu LY, Morré DM. (2002) Biochemical basis for the biological clock. Biochemistry 41(40): 11941–11945.

    PubMed  Google Scholar 

  • Myers MP, Wager-Smith K, Wesley CS, Young MW, Sehgal A. (1995) Positional cloning and sequence analysis of the Drosophila clock gene, timeless. Science 270(5237): 805–808.

    PubMed  CAS  Google Scholar 

  • Nakamichi N, Kita M, Ito S, Sato E, Yamashino T, Mizuno T. (2005) The Arabidopsis Pseudo-Response Regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function. Plant Cell Physiol 46(4): 609–619).

    PubMed  CAS  Google Scholar 

  • Naidoo N, Song W, Hunter-Ensor M, Sehgal A. (1999) A role for the proteasome in the light response of the timeless clock protein. Science 285(5434): 1737–1741.

    PubMed  CAS  Google Scholar 

  • Nishiyama M, Matsubara N, Yamamoto K, Iijima S, Uozumi T, Beppu T. (1986) Nucleotide sequence of the malate dehydrogenase gene of Thermus flavus and its mutation directing an increase in enzyme activity. J Biol Chem 261(30): 14178–14183.

    PubMed  CAS  Google Scholar 

  • Njus D, Sulzman FM, Hastings JW. (1974) Membrane model for the circadian clock. Nature 248(444): 116–120.

    PubMed  CAS  Google Scholar 

  • North C, Feuers RJ, Scheving LE, Pauly JE, Tsai TH, Casciano DA. (1981) Circadian organization of thirteen liver and six brain enzymes of the mouse. Amer J Anat 162(3): 183–199.

    PubMed  CAS  Google Scholar 

  • Okamura H. (2004) Clock genes in cell clocks: roles, actions, and mysteries. J Biol Rhythms 19(5): 388–399 (Review).

    PubMed  CAS  Google Scholar 

  • Okayama H. (2004) Clock genes in cell clocks: roles, actions, and mysteries. J Biol Rhythms 19(5): 388–399.

    Google Scholar 

  • Okuyama H. (1969) Phospholipid metabolism in Escherichia coli after a shift in temperature. Biochim Biophys Acta 176(1): 125–134.

    PubMed  CAS  Google Scholar 

  • Pavlidis T, Kauzmann W. (1969) Toward a quantitative biochemical model for circadian oscillators. Arch Biochem Biophys 132: 338–348.

    PubMed  CAS  Google Scholar 

  • Peterson EL. (1980) A limit cycle interpretation of a mosquito circadian oscillator. J Theor Biol 84(2): 281–310.

    PubMed  CAS  Google Scholar 

  • Peterson EL, Saunders DS. (1980) The circadian eclosion rhythm in Sarcophaga argyrotoma: a limit cycle representation of the pacemaker. J Theor Biol 86: 265–277.

    Google Scholar 

  • Pine ES. (1983) How to Enjoy Calculus. New Jersey: Steinlitz-Hammacher Co., 155 pp.

    Google Scholar 

  • Pittendrigh CS, Bruce VG, Rosenzweig NS, Rubin ML. (1959) A biological clock in Neurospora. Nature 184(4681): 169–170.

    Google Scholar 

  • Pittendrigh CS. (1967) Circadian systems I. The driving oscillation and its assay in Drosophila pseudoobscura. Proc Natl Acad Sci USA 58(4): 1762–1767.

    PubMed  CAS  Google Scholar 

  • Pittendrigh CS. (1981) Circadian organization and the photoperiodic phenomena. In: Biological Clocks and Reproductive Cycles. Follett BK, ed. Bristol: John Wright, pp. 1–35.

    Google Scholar 

  • Pittendrigh CS. (1972) Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proc Natl Acad Sci USA 69(9): 2734–2737.

    PubMed  CAS  Google Scholar 

  • Plesofsky-Vig N, Brambl R. (1985) Heat shock response of Neurospora crassa: protein synthesis and induced thermotolerance. J Bacteriol 162(3): 1083–1091.

    PubMed  CAS  Google Scholar 

  • Poincaré H. (1881) Mémoire sur les coubes définies par une équation différentielle. J de Math Pur Appl, 3d ser, 7: 375–422.

    Google Scholar 

  • Pregueiro AM, Price-Lloyd N, Bell-Pedersen D, Heintzen C, Loros JJ, Dunlap JC. (2005) Assignment of an essential role for the Neurospora frequency gene in circadian entrainment to temperature cycles. Proc Natl Acad Sci USA 102(6): 2210–2215.

    PubMed  CAS  Google Scholar 

  • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. (2002) The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110(2): 251–260.

    PubMed  CAS  Google Scholar 

  • Prendergast BJ, Renstrom RA, Nelson RJ. (2004) Genetic analyses of a seasonal interval timer. J Biol Rhythms 19(4): 298–311.

    PubMed  Google Scholar 

  • Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW. (1998) Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94(1): 83–95.

    PubMed  CAS  Google Scholar 

  • Prolo LM, Takahashi JS, Herzog ED. (2005) Circadian rhythm generation and entrainment in astrocytes. J Neurosci 25(2): 404–408.

    PubMed  CAS  Google Scholar 

  • Pye EK. (1971) Periodicities in intermediary metabolism. In: Biochronometry. Menaker M, ed. Washington, DC: National Academy of Sciences, pp. 623–636.

    Google Scholar 

  • Ralph MR, Menaker M. (1988) A mutation of the circadian system in golden hamsters. Science 241(4870): 1225–1227.

    PubMed  CAS  Google Scholar 

  • Rao KP. (1967) Biochemical correlates of temperature acclimation. In: Molecular Mechanisms of Temperature Adaptation. Prosser CL, nted. Washington, DC: American Association for the Advancement of Science, pp. 227–244.

    Google Scholar 

  • Reddy P, Zehring WA, Wheeler DA, Pirrotta V, Hadfield C, Hall JC, Rosbash M. (1984) Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38(3): 701–710.

    PubMed  CAS  Google Scholar 

  • Rensing L, Mohsenzadeh S, Ruoff P, Meyer U. (1997) Temperature compensation of the circadian period length—a special case among general homeostatic mechanisms of gene expression? Chronobiol Intl 14(5): 481–498.

    CAS  Google Scholar 

  • Rensing L, Meyer-Grahle U, Ruoff P. (2001) Biological timing and the clock metaphor: oscillatory and hourglass mechanisms. Chronobiol Intl 18(3): 329–369 (Review).

    CAS  Google Scholar 

  • Rinaldi S, Scheffer M. (2000) Geometric analysis of ecological models with slow and fast processes. Ecosystems 3: 507–521.

    Google Scholar 

  • Robertson RN. (1983) The Lively Membranes. Cambridge: Cambridge University Press, 206 pp.

    Google Scholar 

  • Roenneberg T, Daan S, Merrow M. (2003) The art of entrainment. J Biol Rhythms 18(3): 183–194 (Review).

    PubMed  Google Scholar 

  • Ruoff P, Vinsjevik M, Monnerjahn S, Rensing L. (1999) The Goodwin oscillator: on the importance of degradation reaction in the circadian clock. J Biol Rhythms 14(6): 469–479 (Review).

    PubMed  CAS  Google Scholar 

  • Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC. (1998) CYCLE is a second Bhlhpas clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93(5): 805–814.

    PubMed  CAS  Google Scholar 

  • Salisbury FB, Ross CW. (1992) Plant Physiology, 4th edn. Belmont: Wadsworth, 682 pp.

    Google Scholar 

  • Salomé PA, McClung CR. (2004) The Arabidopsis thaliana clock. J Biol Rhythms 19(5): 425–435.

    PubMed  Google Scholar 

  • Salomé PA, McClung CR. (2005) PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17(3): 791–803.

    PubMed  Google Scholar 

  • Sargent ML, Briggs WR, Woodward DO. (1966) Circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol 41(8): 1343–1349.

    PubMed  CAS  Google Scholar 

  • Sargent ML, Briggs WR. (1967) The effects of light on circadian rhythm of conidiation in Neurospora. Plant Physiol 42: 1504–1510.

    PubMed  Google Scholar 

  • Satter RL, Galston AW. (1971) Potassium flux: a common feature of Albizzia leaflet movement controlled by phytochrome or endogenous rhythm. Science 174: 518–520.

    CAS  Google Scholar 

  • Satter RL, Galston AW. (1981) Mechanisms of control of leaf movements. Ann Rev Plant Physiol 32: 83–110.

    CAS  Google Scholar 

  • Schäffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, Coupland G. (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93(7): 1219–1229.

    PubMed  Google Scholar 

  • Scheffer M. (1989) Alternative stable states in eutrophic shallow freshwater systems: a minimal model. Hydrobiol Bull 23: 73–83.

    Google Scholar 

  • Scheffer M, Rinaldi S, Kuznetsov YA. (2000) Effects of fish on plankton dynamics: a theoretical analysis. Can J Fish Aquat Sci 57: 1208–1219.

    Google Scholar 

  • Scheffer M, Szabo S, Gragnani A, Van Nes EH, Rinaldi S, Kautsky N, Norberg J, Roijackers RM, Franken RJ. (2003) Floating plant dominance as a stable state. Proc Natl Acad Sci USA 100(7): 4040–4045.

    PubMed  CAS  Google Scholar 

  • Schibler U, Ripperger J, Brown SA. (2003) Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms 18(3): 250–260.

    PubMed  Google Scholar 

  • Schmitz O, Katayama M, Williams SB, Kondo T, Golden SS. (2000) CikA, a bacterio-phytochrome that resets the cyanobacterial circadian clock. Science 289(5480): 765–768.

    PubMed  CAS  Google Scholar 

  • Schweiger H-G, Schweiger M. (1977) Circadian rhythms in unicellular organisms: an endeavour to explain the molecular mechanism. Intl Rev Cytol 51: 315–342 (Review).

    CAS  Google Scholar 

  • Science Magazine Editors. (1997) Breakthrough of the year. The runners-up (#3: Keeping time). Science 278(5346): 2039–2042.

    Google Scholar 

  • Science Magazine Editors. (1998) Breakthrough of the year. The runners-up (#1: A remarkable year for clocks). Science 282(5397): 2157–2161.

    Google Scholar 

  • Sehgal A, Rothenfluh-Hilfiker A, Hunter-Ensor M, Chen Y, Myers MP, Young MW. (1995) Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science 270(5237): 808–810.

    PubMed  CAS  Google Scholar 

  • Shaw MK, Ingraham JL. (1965) Fatty acid composition of Escherichia coli as a possible controlling factor of the minimal growth temperature. J Bacteriol 90(1): 141–146.

    PubMed  CAS  Google Scholar 

  • Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF Jr, Reppert SM. (1997) Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19(6): 1261–1269.

    PubMed  CAS  Google Scholar 

  • Sidote D, Majercak J, Parikh V, Edery I. (1998) Differential effects of light and heat on the Drosophila circadian clock proteins PER and TIM. Mol Cell Biol 18(4): 204–213.

    Google Scholar 

  • Singer SJ, Nicolson GL. (1972) The fluid mosaic model of the structure of cell membranes. Science 175(23): 720–730.

    PubMed  CAS  Google Scholar 

  • Somero GN. (1995) Proteins and temperature. Ann Rev Physiol 57: 43–68 (Review).

    CAS  Google Scholar 

  • Somers DE, Schultz TF, Milnamow M, Kay SA. (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101(3): 319–329.

    PubMed  CAS  Google Scholar 

  • Stanewsky R. (2002) Clock mechanisms in Drosophila. Cell Tissue Res 309(1): 11–26 (Review).

    PubMed  CAS  Google Scholar 

  • Steeves TDL, King DP, Zhao Y, Sangoram AM, Du F, Bowcock AM, Moore RY, Takahashi JS. (1999) Molecular cloning and characterization of the human CLOCK gene: expression in the suprachiasmatic nuclei. Genomics 57(2): 189–200.

    PubMed  CAS  Google Scholar 

  • Stetson MH, Elliott JA, Menaker M. (1975) Photoperiodic regulation of hamster testis: circadian sensitivity to the effects of light. Biol Reprod 13(3): 329–339.

    PubMed  CAS  Google Scholar 

  • Stewart I. (2000) The Lorenz attractor exists. Nature 406(6799): 948–949.

    PubMed  CAS  Google Scholar 

  • Strubbe JH, Spiteri NJ, Alingh Prins AJ. (1986) Effect of skeleton photoperiod and food availability on the circadian pattern of feeding and drinking in rats. Physiol Behav 36(4): 647–651.

    PubMed  CAS  Google Scholar 

  • Sun ZS, Albrecht U, Zuchenko O, Bailey J, Eichele G, Lee CC. (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90(6): 1003–1011.

    PubMed  CAS  Google Scholar 

  • Sweeny BM, Hastings JW. (1960) Effects of temperature upon diurnal rhythms. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: The Biological Laboratory, pp. 87–104.

    Google Scholar 

  • Sweeney BM. (1974a) The temporal regulation of morphogenesis in plants, hourglass and oscillator. Brookhaven Symp Biol 25: 95–110.

    Google Scholar 

  • Sweeney BM. (1974b) A physiological model for circadian rhythms derived from the Acetabularia rhythm paradoxes. Intl J Chronobiol 2(1): 25–33.

    CAS  Google Scholar 

  • Sweeney B, Borgese MB. (1989) A circadian rhythm in cell division in a prokaryote the cyanobacterium Synechococcus. J Phycol 25(1): 183–186.

    Google Scholar 

  • Takahashi JS, Pinto LH, Vitaterna MH. (1994) Forward and reverse genetic approaches to behavior in the mouse. Science 264(5166): 1724–1733 (Review).

    PubMed  CAS  Google Scholar 

  • Taylor BL, Zhulin IB. (1999) PAS domains: interval sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63(2): 479–506 (Review).

    PubMed  CAS  Google Scholar 

  • Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, Hirose M, Sakaki Y. (1997) Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389(6650): 512–516.

    PubMed  CAS  Google Scholar 

  • Tomita J, Nakajima M, Kondo T, Iwasaki H. (2005) No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307(5707): 251–254.

    PubMed  CAS  Google Scholar 

  • Tóth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognár L. (2001) Circadian clockregulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol 127(4): 1607–1616.

    PubMed  Google Scholar 

  • Tsinkalovsky O, Smaaland R, Rosenlund B, Sothern RB, Hirt A, Eiken HG, Steine S, Badiee A, Foss Abrahamsen J, Laerum OD. (2005) Circadian variations of clock gene expression in CD34+ progenitor cells in the human bone marrow. (in preparation).

    Google Scholar 

  • Tucker W. (1999) The Lorenz attractor exists. CR Acad Sci Paris 328(1): 1197–1202.

    Google Scholar 

  • Tyson JJ, Kauffman S. (1975) Control of mitosis by a continuous biochemical oscillation: synchronization, spatially inhomogeneous oscillations. J Math Biol 1: 289–310.

    Google Scholar 

  • Underwood H, Calaban M. (1987) Pineal melatonin rhythms in the lizard Anolis carolinensis: I. Response to light and temperature cycles. J Biol Rhythms 2(3): 179–193.

    PubMed  CAS  Google Scholar 

  • van der Pol B, van der Mark J. (1928) The heartbeat considered as a relaxation oscillation and an electrical model of the heart. Phil Mag Ser. 7, 6: 763–775.

    Google Scholar 

  • Vitaterna MH, King DP, Chang A-M, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS. (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264(5159): 719–725.

    PubMed  CAS  Google Scholar 

  • Wagner E, Frosch S, Deitzer GF. (1974) Metabolic control of photoperiodic time measurement. J Interdiscipl Cycle Res 5(3–4): 240–246.

    CAS  Google Scholar 

  • Wang ZY, Tobin EM. (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93(1): 1207–1217.

    PubMed  CAS  Google Scholar 

  • Went FW. (1960) Photo-and thermoperiodic effects in plant growth. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: Cold Spring Harbor, pp. 221–230.

    Google Scholar 

  • Went FW. (1974) Reflections and speculations. Ann Rev Plant Physiol 25: 1–26.

    CAS  Google Scholar 

  • Whitrow GJ. (1988) Time in History. Oxford: Oxford University Press, 217 pp.

    Google Scholar 

  • Williams JA, Sehgal A. (2001) Molecular components of the Drosophila circadian clock. Ann Rev Physiol 63: 729–755 (Review).

    CAS  Google Scholar 

  • Winfree AT. (1972) Spiral waves of chemical activity. Science 175: 634–636.

    CAS  Google Scholar 

  • Winfree AT. (1987) The Timing of Biological Clocks. New York: Scientific American Books, Inc., 199 pp.

    Google Scholar 

  • Winfree AT. (2001) The Geometry of Biological Time, 2nd edn. New York: Springer, 777 pp.

    Google Scholar 

  • Xu Y, Mori T, Johnson CH. (2000) Circadian clock-protein expression in cyanobacteria: rhythms and phase setting. EMBO J 19(13): 3349–3357.

    PubMed  CAS  Google Scholar 

  • Xu Y, Mori T, Johnson CH. (2003) Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC. EMBO J 22(9): 2117–2126.

    PubMed  CAS  Google Scholar 

  • Yin L, Lazar MA. (2005) The orphan nuclear receptor Rev-erbα recruits the N-CoR/Histone Deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol Endocrinol 19(6): 1454–1459.

    Google Scholar 

  • Young MW. (1998) The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Ann Rev Biochem 67: 135–152 (Review).

    PubMed  CAS  Google Scholar 

  • Yu Q, Jacquier AC, Citri Y, Hamblen M, Hall JC, Rosbash M. (1987) Molecular mapping of point mutations in the period gene that stop or speed up biological clocks in Drosophila melanogaster. Proc Natl Acad Sci USA 84(3): 784–788.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2006). Biological Oscillators and Timers: Models and Mechanisms. In: Introducing Biological Rhythms. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4701-5_5

Download citation

Publish with us

Policies and ethics