Skip to main content

Physical and Biological Time

  • Chapter
Introducing Biological Rhythms
  • 1265 Accesses

Abstract

The recording of time has been a hallmark of civilization and culture, deeply rooted in the activities of individuals and society. We often take for granted the units of time and their quantification, but to more fully appreciate their structure and how they were acquired, we must turn to astronomy and to the fascinating history that led to the discovery and development of clocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adriani A. (1963) Hellenistic Art. Encyclopedia of World Art, Vol. VII. New York: McGraw-Hill, pp. 283–392.

    Google Scholar 

  • Ahmad M, Cashmore AR. (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366(6451): 162–166.

    Article  PubMed  CAS  Google Scholar 

  • Barnett JE. (1998) Time’s Pendulum: The Quest to Capture Time from Sundials to Atomic Clocks. New York: Plenum, 340 pp.

    Google Scholar 

  • Beling I. (1929) Über das Zeitgedächtnis der Bienen. Z Vergl Physiol 9: 259–338.

    Article  Google Scholar 

  • Bennett J, Donahue M, Schneider N, Voit M. (1999) The Cosmic Perspective. Menlo Park, CA: Addison-Wesley Longman, Inc., 698 pp.

    Google Scholar 

  • Blunt W. (1971) The Compleat Naturalist. A Life of Linnaeus. New York: The Viking Press, Inc., 256 pp.

    Google Scholar 

  • Boden BP, Kampa EM. (1967) The influence of natural light on the vertical migrations of an animal community at sea. Symp Zool Soc Lond 19: 15–26.

    Google Scholar 

  • Boeing WJ, Leech DM, Williamson CE, Cooke S, Torres L. (2004) Damaging UV radiation and invertebrate predation: conflicting selective pressures for zooplankton vertical distribution in the water column of low DOC lakes. Oecologia 138(4): 603–612.

    Article  PubMed  Google Scholar 

  • Boorstin DJ. (1985) The Discoverers. New York: Random House, 745 pp.

    Google Scholar 

  • Breasted JH. (1936) The beginnings of time-measurement and the origins of our calendar. In: Time and Its Mysteries Series I. New York: New York University Press, pp. 59–94.

    Google Scholar 

  • Brown FA. (1954) Biological clocks and the fiddler crab. Scientific Amer 190(4): 34–37.

    Article  Google Scholar 

  • Cashmore AR. (2003) Cryptochromes: enabling plants and animals to determine circadian time. Cell 114(5): 537–543 (Review).

    Article  PubMed  CAS  Google Scholar 

  • Colson FH. (1926) The Week. An Essay on the Origin & Development of the Seven-Day Cycle. Cambridge: Cambridge University Press, 126 pp.

    Google Scholar 

  • Cornélissen G, Halberg F, Wendt HW, Bingham C, Sothern RB, Haus E, Kleitman E, Kleitman N, Revilla MA, Revilla M Jr, Breus TK, Pimenov K, Grigoriev AE, Mitish MD, Yatsyk GV, Syutkina EV. (1996) Resonance of about-weekly rhythm in human heart rate with solar activity change. Biologia (Bratisl) 51(6): 749–756.

    Google Scholar 

  • Cutler WB. (1980) Lunar and menstrual phase locking. Amer J Obstet Gynecol 137(7): 834–839.

    CAS  Google Scholar 

  • Cutler WB, Petri G, Krieger A, Huggins GR, Garcia CR, Lawley HJ. (1986) Human axillary secretions influence women’s menstrual cycles: the role of donor extract from men. Horm Behav 20(4): 463–473.

    Article  PubMed  CAS  Google Scholar 

  • De Candolle AP. (1832) Physiologie Végétale, Vol. 2. Paris: Bechet Jeune.

    Google Scholar 

  • De Mairan J. (1729) Observation Botanique. Histoire de l’Academie Royale des Sciences, pp. 35–36.

    Google Scholar 

  • De Solla Price DJ. (1964) Mechanical water clocks of the 14th century in Fez, Morocco. Proc Tenth Intl Cong Hist of Science. Paris: Hermann, pp. 599–602.

    Google Scholar 

  • Diddams SA, Bergquist JC, Jefferts SR, Oates CW. (2004) Standards of time and frequency at the outset of the 21st century. Science 306(5700): 1318–1324.

    Article  PubMed  CAS  Google Scholar 

  • Duhamel Du Monceau HL. (1759) La Physique Des Arbres. Seconde Partie. Paris: HL Guerin and LF Delatour.

    Google Scholar 

  • Dvornyk V, Vinogradova O, Nevo E. (2003) Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci USA 100(5): 2495–2500.

    Article  PubMed  CAS  Google Scholar 

  • Emery P, So WV, Kaneko M, Hall JC, Rosbash M. (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95(5): 669–679.

    Article  PubMed  CAS  Google Scholar 

  • Forel A. (1910) Das Sinnesleben der Insekten (Semon M., trans.). München: Ernst Reinhardt Verlag.

    Google Scholar 

  • Freifelder D. (1982) Physical Biochemistry, 2nd edn. New York: WH Freeman, 761 pp.

    Google Scholar 

  • Gehring W, Rosbash M. (2003) The coevolution of blue-light photoreception and circadian rhythms. J Mol Evol 57(Suppl 1): S286–289 (Review).

    Article  PubMed  CAS  Google Scholar 

  • Halberg F, Halberg E, Barnum CP, Bittner JJ. (1959) Physiologic 24-hour periodicity in human beings and mice, the lighting regimen and daily routine. In: Photoperiodism and Related Phenomena in Plants and Animals, Whitrow RB, ed. Publication No. 55 of the Amer Assoc Adv Sci, Washington, DC, pp. 803–878.

    Google Scholar 

  • Halberg F, Marques N, Cornélissen G, Bingham C, Sánchez de la Peña S, Halberg J, Marques M, Jinyi W, Halberg E. (1990) Circaseptan biologic time structure. Acta Entomol Bohemoslov 87: 1–29.

    Google Scholar 

  • Haus E, Touitou Y. (1994) Principles of clinical chronobiology. In: Biologic Rhythms in Clinical and Laboratory Medicine. Touitou Y, Haus E, eds. Berlin: Springer-Verlag, pp. 6–34.

    Google Scholar 

  • Hering DW. (1940) The time concept and time sense among cultured and uncultured peoples. In: Time and Its Mysteries, Series II. New York: New York University Press, pp. 3–39.

    Google Scholar 

  • Hill DR. (1976) On the Construction of Water-Clocks. London: Turner & Devereux, 46 pp.

    Google Scholar 

  • Iwasaki K, Thomas JH. (1997) Genetics in rhythm. Trends in Genetics 13(3): 111–115.

    Article  PubMed  CAS  Google Scholar 

  • Johnson CH, Knight M, Trewavas A, Kondo T. (1998) A clockwork green: circadian programs in photosynthetic organisms. In: Biological Rhythms and Photoperiodism in Plants. Lumsden PJ, Millar AJ, eds. Oxford: BIOS Scientific, pp. 1–34.

    Google Scholar 

  • Kanai S, Kikuno R, Toh H, Ryo H, Todo T. (1997) Molecular evolution of the photolyaseblue-light photoreceptor family. J Mol Evol 45(5): 535–548.

    Article  PubMed  CAS  Google Scholar 

  • Kerner von Marilaun A. (1895) The Natural History of Plants, their Forms, Growth, Reproduction, and Distribution. New York: H. Holt, pp. 216–217.

    Google Scholar 

  • Lathe R. (2004) Fast tidal cycling and the origin of life. Icarus 168: 18–22.

    Article  CAS  Google Scholar 

  • Lee K, Loros JJ, Dunlap JC. (2000) Interconnected feedback loops in the Neurospora circadian system. Science 289(5476): 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Leech DM, Williamson CE. (2001) In situ exposure to ultraviolet radiation alters the depth distribution of Daphnia. Limnol Oceanogr (Suppl): 416–420.

    Article  Google Scholar 

  • Major RH. (1954) A History of Medicine, Vol 1. Springfield, IL: Charles C. Thomas, p. 486.

    Google Scholar 

  • Miller SL. (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046): 528–529.

    Article  PubMed  CAS  Google Scholar 

  • Miller SL, Urey HC. (1959) Organic compound synthesis on the primitive earth. Science 130(3370): 245–251.

    Article  PubMed  CAS  Google Scholar 

  • Moore-Ede MC, Sulzman FM, Fuller CA. (1982) The Clocks That Time Us. Physiology of the Circadian Timing System. Cambridge, MA: Harvard University Press, 448 pp.

    Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Quant Biol 51: 263–273.

    CAS  Google Scholar 

  • Neugebauer O. (1957) The Exact Sciences In Antiquity, 2nd edn. Providence, RI: Brown University Press, 240 pp.

    Google Scholar 

  • Nikaido SS, Johnson CH. (2000) Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem Photobiol 71(6): 758–765.

    Article  PubMed  CAS  Google Scholar 

  • North JD. (1975) Monasticism and the first mechanical clocks. In: Study of time II: Proc 2nd Conf Intl Soc for the Study of Time. Lake Yamanaka, Japan. Berlin: Springer-Verlag, pp. 381–398.

    Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH. (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95(15): 8660–8664.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS. (1954) On temperature independence in the clock system controlling emergence time in Drosophila. Proc Natl Acad Sci USA 40: 1018–1029.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS, Bruce VG. (1957) V. An oscillator model for biological clocks. In: Rhythmic and Synthetic Processes in Growth. Rudnick D, ed. Princeton: Princeton University Press, pp. 75–109.

    Google Scholar 

  • Pittendrigh CS. (1960) Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp Quant Biol 25: 159–182.

    PubMed  CAS  Google Scholar 

  • Pittendrigh CS. (1981) Circadian Systems: General Perspective. In: Handbook of Behavioral Biology. Vol 4: Biological Rhythms. Aschoff J, ed. New York: Plenum Press, pp. 57–80.

    Google Scholar 

  • Quill H. (1966) John Harrison. The Man Who Found Longitude. London: John Baker Publication Ltd.

    Google Scholar 

  • Reinberg A, Smolensky M. (1983) Biological Rhythms and Medicine. Cellular, Metabolic, Physiopathologic, and Pharmacologic Aspects. New York: Springer-Verlag, 305 pp.

    Google Scholar 

  • Renner M. (1955) Ein transozeanversuch zum zeitsinn der honigbiene. Naturwissenschaften 42: 540–541.

    Article  Google Scholar 

  • Schopf JW. (1993) Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260: 640–646.

    Article  PubMed  CAS  Google Scholar 

  • Schweiger HG, Berger S, Kretschmer H, Morler H, Halberg E, Sothern RB, Halberg F. (1986) Evidence for a circaseptan and a circasemiseptan growth response to light/dark cycle shifts in nucleated and enucleated cells of Acetabularia, respectively. Proc Natl Acad Sci USA 83: 8619–8623.

    Article  PubMed  CAS  Google Scholar 

  • Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM. (2000) Interacting molecular loops in the mammalian circadian clock. Science 288(5468): 1013–1019.

    Article  PubMed  CAS  Google Scholar 

  • Sothern RB. (1995) Time of day versus internal circadian timing references. J Infus Chemother 5(1): 24–30.

    PubMed  CAS  Google Scholar 

  • Spruyt E, Verbelen J-P, De Greef JA. (1987) Expression of circaseptan and circannual rhythmicity in the imbibition of dry stored bean seeds. Plant Physiol 84: 707–710.

    Article  PubMed  CAS  Google Scholar 

  • Storz UC, Paul RJ. (1998) Phototaxis in water fleas (Daphnia magna) is differently influenced by visible and UV light. J Comp Physiol A 183: 709–717.

    Article  Google Scholar 

  • Talbott JH. (1970) “Santorio Santorio (1561–1636),” A Biographical History of Medicine: Excerpts and Essays on the Men and Their Work. New York: Grune & Stratton, pp. 87–89.

    Google Scholar 

  • Tauber E, Last KS, Olive PJ, Kyriacou CP. (2004) Clock gene evolution and functional divergence. J Biol Rhythms 19(5): 445–458.

    Article  PubMed  CAS  Google Scholar 

  • Thorndike L. (1941) Invention of the mechanical clock about 1271 A.D. Speculum 16: 242–243.

    Article  Google Scholar 

  • Tomita J, Nakajima M, Kondo T, Iwasaki H. (2005) No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307(5707): 251–254.

    Article  PubMed  CAS  Google Scholar 

  • Tøndering C. (2000) Frequently asked questions about calendars. http://www.tondering.dk/claus/calendar.html, 53 pp.

    Google Scholar 

  • Van Helden A. (1999) Cathedrals as astronomical instruments. Science 286: 2279–2280.

    Article  Google Scholar 

  • Ward FAB. (1961) How timekeeping mechanisms became accurate. The Chartered Mechanical Engineer, pp. 604–609 (also p. 615).

    Google Scholar 

  • Whitrow GJ. (1988) Time in History: The Evolution of Our General Awareness of Time and Temporal Perspective. Oxford: Oxford University Press, 217 pp.

    Google Scholar 

  • Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14(16): 1481–1486.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Mori T, Johnson CH. (2003) Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC. EMBO J 22(9): 2117–2126.

    Article  PubMed  CAS  Google Scholar 

  • Young MW, Kay SA. (2001) Time zones: a comparative genetics of circadian clocks. Rev Genet 2(9): 702–715 (Review).

    Article  CAS  Google Scholar 

  • Zerubavel E. (1985) The Seven Day Circle: The History and Meaning of the Week. New York: Free Press, 206 pp.

    Google Scholar 

  • Zinn JG. (1759) [On the sleep of plants.] [German]. Hamburgisches Magazin 22: 40–50.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2006). Physical and Biological Time. In: Introducing Biological Rhythms. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4701-5_3

Download citation

Publish with us

Policies and ethics