Skip to main content

General Features of Rhythms: Terminology and Characteristics

  • Chapter
Introducing Biological Rhythms
  • 1327 Accesses

Abstract

In order to best understand the characteristics of biological rhythms, like the prerequisites for most disciplines in biology, one must be familiar with the use of certain terms that are used. In the case of biological rhythms, the discipline is known as chronobiology, a term introduced in the mid-1960s to unify the study of temporal characteristics of biological phenomena (Halberg, 1969; Cambrosio & Keating, 1983). Some of the more common terms used in chronobiology to describe rhythms are presented in a glossary in Table 2.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson LE, Morris JE, Sasser LB, Stevens RG. (2000) Effect of constant light on DMBA mammary tumorigenesis in rats. Cancer Lett 148(2): 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Andrews RV, Folk GE. (1964) Circadian metabolic patterns in cultured hamster adrenals. Comp Biochem Physiol 11: 393–409.

    Article  PubMed  CAS  Google Scholar 

  • Arendt J, Minors DS, Waterhouse JM, eds. (1989) Biological Rhythms in Clinical Practice. London: Wright, 299 pp.

    Google Scholar 

  • Armitage R, Hoffmann RF, Rush AJ. (1999) Biological rhythm disturbance in depression: temporal coherence of ultradian sleep EEG rhythms. Psychol Med 29(6): 1435–1448.

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J. (1953) Aktivitätsperiodik bei Gimpeln unter naturlichen und kunstlichen belichtungsverhaltnissen. Z Vergl Physiol 35: 159–166.

    Article  Google Scholar 

  • Aschoff J. (1955) Exogene und endogene Komponente der 24-Stunden-Periodik bei Tier und Mensch. Naturwiss 42: 569–575.

    Article  Google Scholar 

  • Aschoff J. (1960) Exogenous and endogenous components in circadian rhythms. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: the Biological Laboratory, pp. 11–28.

    Google Scholar 

  • Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U. (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289(5488): 2344–2347.

    Article  PubMed  CAS  Google Scholar 

  • Balsalobre A. (2002) Clock genes in mammalian peripheral tissues. Cell Tissue Res 309(1):193–199 (Review).

    Article  PubMed  CAS  Google Scholar 

  • Barnett JE. (1998) Time’s Pendulum: The Quest to Capture Time from Sundials to Atomic Clocks. New York: Plenum, 340 pp.

    Google Scholar 

  • Berson DM, Dunn FA, Takao M. (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295(5557): 1070–1073.

    Article  PubMed  CAS  Google Scholar 

  • Berson DM. (2003) Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci 26(6): 314–320.

    Article  PubMed  CAS  Google Scholar 

  • Blake G. (1959) Control of diapause by an “internal clock” in Anthrenus verbasci (L.) (Col., Dermestidae). Nature (London) 183: 126–127.

    Article  Google Scholar 

  • Boulos Z, Macchi M, Terman M. (1996) Twilight transitions promote circadian entrainment to lengthening light-dark cycles. Amer J Physiol 271(3 Pt 2): R813–818.

    PubMed  CAS  Google Scholar 

  • Boulos Z, Macchi MM, Terman M. (2002) Twilights widen the range of photic entrainment in hamsters. J Biol Rhythms 17(4): 353–363.

    Article  PubMed  Google Scholar 

  • Brown RL, Robinson PR. (2004) Melanopsin—shedding light on the elusive circadian photopigment. Chronobiol Intl 21(2): 189–204.

    Article  CAS  Google Scholar 

  • Bruce VG, Pittendrigh CS. (1956) Temperature independence in a unicellular “clock.” Proc Natl Acad Sci USA 42: 676–682

    Article  PubMed  CAS  Google Scholar 

  • Bruce VG. (1960) Environmental entrainment of circadian rhythms. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: the Biological Laboratory, pp. 29–48.

    Google Scholar 

  • Bruce VG. (1974) Recombinants between clock mutants of Chlamydomonas reinhardi. Genetics 77: 221–230.

    PubMed  CAS  Google Scholar 

  • Bünning E. (1932) Über die Erblichkeit der tagesperiodizität bei den Phaseolus-Blättern. Jahrbücher Wiss Bot 77: 283–320.

    Google Scholar 

  • Bünning E. (1935) Zur Kenntnis der erblichen Tagesperiodizität bei den Primärblattern von Phaseolus multiforus. Jahrbücher Wiss Bot 81: 411–418.

    Google Scholar 

  • Bünning E. (1973) The Physiological Clock, 3rd edn. (revised). Berlin: Springer-Verlag, 258 pp.

    Google Scholar 

  • Bünning E, Moser I. (1973) Light-induced phase shifts of circadian leaf movements of Phaseolus. Proc Natl Acad Sci USA 69: 2732–2733.

    Article  Google Scholar 

  • Cambrosio A, Keating P. (1983) The disciplinary stake: the case of chronobiology. Soc Stud Sci 13(3): 323–353.

    Article  PubMed  CAS  Google Scholar 

  • Chen J-P, Eichelmann C, Engelmann W. (1997) Substances interfering with phosphatidyl inositol signaling pathway affect ultradian rhythm of Desmodium motorium. J Biosci 22: 1–12.

    CAS  Google Scholar 

  • Cumming BG. (1969) Chenopodium rubrum L. and related species. In: The Induction of Flowering. Some Case Histories. Evans LT, ed. New York: Cornell University Press, pp. 156–185.

    Google Scholar 

  • Cutkomp LK, Halberg F, Cornelissen G. (1984) Temperature effect on infradian oviposition rhythms in the Springtail Folsomia candida (Willem). In: Chronobiology 1982–1983. Haus E, Kabat H, eds. Basel: S. Karger. pp. 1–9.

    Google Scholar 

  • Darwin C. (1859) The Origin of Species. London: John Murray, 488 pp.

    Google Scholar 

  • Darwin C, Darwin F. (1897) The Power of Movement in Plants. New York: D. Appleton & Co., 592 pp.

    Google Scholar 

  • Dauchy RT, Sauer LA, Blask DE, Vaughan GM. (1997) Light contamination during the dark phase in “photoperiodically-controlled” animal rooms: effect on tumor growth and metabolism in rats. Lab Anim Sci 47(5): 511–518

    PubMed  CAS  Google Scholar 

  • Ebling FJ. (1996) The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog Neurobiol 50(2–3): 109–132 (Review).

    Article  PubMed  CAS  Google Scholar 

  • Ehret CF, Potter VR, Dobra KW. (1975) Chronotypic action of theophylline and of pentobarbital as circadian zeitgebers in the rat. Science 188: 1212–1215.

    Article  PubMed  CAS  Google Scholar 

  • Ehret CF. (1980) On circadian cybernetics, and the innate and genetic nature of circadian rhythms. In: Chronobiology: Principles and Applications to Shifts in Schedules. Scheving LE & Halberg F, eds. Alphen aan den Rijn: Sijthoff & Noordhoff, pp. 109–125.

    Google Scholar 

  • Engelmann W, Schrempf M. (1980) Membrane models for circadian rhythms. In: Photochemical and Photobiological Reviews, Vol. 5. Smith KC, ed. New York: Plenum, pp. 49–85.

    Google Scholar 

  • Enright JT. (1971) The internal clock of drunken isopods. Z Vergl Physiol 75: 332–346.

    Article  Google Scholar 

  • Feldman JF, Hoyle MN. (1973) Isolation of circadian clock mutants of Neurospora crassa. Genetics 75: 605–613.

    PubMed  CAS  Google Scholar 

  • Foster RG, Provencio I, Hudson D, Fiske S, DeGrip W, Menaker M. (1991) Circadian photoreception in the retinally degenerate mouse (Rd/Rd). J Comp Physiol 169(1): 39–50.

    Article  CAS  Google Scholar 

  • Freedman MS, Lucas RJ, Soni B, von Schantz M, Muñoz M, David-Gray, Z, Foster R. (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284(5413): 502–504.

    Article  PubMed  CAS  Google Scholar 

  • Gallepp G. (1976) Temperature as a cue for the periodicity in feeding of Brachycentrus occidentalis (Insecta: Trichoptera). Animal Behav 24(1): 7–10.

    Article  Google Scholar 

  • Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB. (2001) Melanopsin in cells of origin of the retinohypothalamic tract. Nature Neurosci 4(12): 1165.

    Article  PubMed  CAS  Google Scholar 

  • Gooley JJ, Lu J, Fischer D, Saper CB. (2003) A broad role for melanopsin in nonvisual photoreception. J Neurosci 23(18): 7093–7106.

    PubMed  CAS  Google Scholar 

  • Gordon WR, Koukkari WL. (1978) Circadian rhythmicity in the activities of phenylalanine ammonia-lyase from Lemna perpusilla and Spirodela polyrhiza. Plant Physiol 62: 612–615.

    PubMed  CAS  Google Scholar 

  • Guillaume FM, Koukkari WL. (1985) Two types of high frequency oscillations in Glycine max (L.) Merr. In: Advances in Chronobiology, Part A. Prog in Clin & Biol Res, Vol 227A. Pauly JE, Scheving LE, eds. New York: Alan R. Liss, Inc., pp. 47–57.

    Google Scholar 

  • Haim A, Shanas U, Zubidad Ael S, Scantelbury M. (2005) Seasonality and seasons out of time—the thermoregulatory effects of light interference. Chronobiol Intl 22(1): 59–66.

    Article  Google Scholar 

  • Halaban R. (1968) The circadian rhythm of leaf movement of Coleus blumei x C. frederici, a short day plant. I. Under constant light conditions. Plant Physiol 43: 1883–188.

    PubMed  Google Scholar 

  • Halaban R. (1969) Effects of light quality on the circadian rhythm of leaf movement of a short-day plant. Plant Physiol 44: 973–977.

    PubMed  Google Scholar 

  • Halberg F. (1959) Physiologic 24-hour periodicity; general and procedural considerations with reference to the adrenal cycle. Z für Vitamin, Hormon u Fermentforsch 10(3/4): 225–296.

    CAS  Google Scholar 

  • Halberg F. (1969) Chronobiology. Annu Rev Physiol 31: 675–725 (Review).

    Article  PubMed  CAS  Google Scholar 

  • Halberg F, Carandente F, Cornelissen G, Katinas GS. (1977) Glossary of Chronobiology. Chronobiologia 4(Suppl 1): 1–189.

    PubMed  Google Scholar 

  • Halberg F, Cornélissen G. (2001) Chronobiology: rhythms, clocks, chaos, aging, and other trends. In: Encyclopedia of Aging, 3rd edn. Maddox GL, ed. New York: Springer, pp. 196–201.

    Google Scholar 

  • Halberg F, Cornélissen G, Otsuka K, Schwartzkopff O, Halberg J, Bakken EE. (2001) Chronomics. Biomed Pharmacother 55: 153–190.

    Article  Google Scholar 

  • Handler AM, Konopka RJ. (1979) Transplantation of a circadian pacemaker in Drosophila. Nature 279(5710): 236–238.

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J, Hindersson P, Knudsen SM, Georg B, Fahrenkrug J. (2002) The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptidecontaining retinal ganglion cells of the retinohypothalamic tract. J Neuroscience 22(RC191): 1–7.

    Google Scholar 

  • Hannibal J, Fahrenkrug J. (2004) Target areas innervated by PACAP-immunoreactive retinal ganglion cells. Cell Tissue Res 316(1): 99–113.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann WK, Miller R. (1991) The History of Earth. An Illustrated Chronicle of an Evolving Planet. New York: Workman, 260 pp.

    Google Scholar 

  • Hassnaoui M, Pupier R, Attia J, Blanc M, Beauchaud M, Buisson B. (1998) Some tools to analyze changes of rhythms in biological time series. Biol Rhythm Res 29(4): 353–366.

    Article  Google Scholar 

  • Hastings JW, Aschoff JWL, Bünning E, Edmunds LN, Hoffmann K, Pittendrigh CS, Winfree AT. (1976) Basic feature group report. In: The Molecular Basis of Circadian Rhythms. Hastings JW, Schweiger H-G, eds. Berlin: Abakon, pp. 49–62.

    Google Scholar 

  • Hastings MH, Reddy AB, Maywood ES. (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4(8): 649–661.

    Article  PubMed  CAS  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW. (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557): 1065–1070.

    Article  PubMed  CAS  Google Scholar 

  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Hofmann F, Foster RG, Yau K-W. (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424(6944): 76–81.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson AE, Wagoner N, Cowan WM. (1972) An autoradiographic and electron microscopic study of retino-hypothalamic connections. Z Zellforsch Mikrosk Anat 135(1): 1–26.

    Article  PubMed  CAS  Google Scholar 

  • Hillman WS. (1956) Injury of tomato plants by continuous light and unfavorable photoperiodic cycles. Planta 114: 119–129.

    Google Scholar 

  • Hoffmann K. (1976) The adaptive significance of biological rhythms corresponding to geophysical cycles. In: The Molecular Basis of Circadian Rhythms. Hastings JW, Schweiger H-G, eds. Berlin: Abakon, pp. 63–75.

    Google Scholar 

  • Inouye ST, Takahashi JS, Wollnik F, Turek FW. (1988) Inhibitor of protein synthesis phase shifts a circadian pacemaker in mammalian SCN. Amer J Physiol 255(6 Pt 2): R1055–1058.

    PubMed  CAS  Google Scholar 

  • Iwasaki K, Liu DW, Thomas JH. (1995) Genes that control a temperature-compensated ultradian clock in Caenorhabditis elegans. Proc Natl Acad Sci USA 92(22): 10317–10321.

    Article  PubMed  CAS  Google Scholar 

  • Janzen DH. (1976) Why bamboos wait so long to flower. Annu Rev Ecol Syst 7: 347–391.

    Article  Google Scholar 

  • Johnson CH, Knight M, Trewavas A, Kondo T. (1998) A clockwork green: circadian programs in photosynthetic organisms. In: Biological Rhythms and Photoperiodism in Plants. Lumsden PJ, Millar AJ, eds. Oxford: BIOS, pp. 1–34.

    Google Scholar 

  • Johnson CK. (1999) Forty years of PRCs—What have we learned? Chronobiol Intl 16(6): 711–743.

    CAS  Google Scholar 

  • Johnsson A. (1973) Oscillatory transpiration and water uptake of Avena plants. I. Preliminary observations. Physiol Plant 28: 40–50.

    Article  Google Scholar 

  • King RW. (1975) Multiple circadian rhythms regulate photoperiodic flowering responses in Chenopodium rubrum. Can J Bot 53: 2631–2638.

    Google Scholar 

  • Kippert F. (1997) The ultradian clocks of eukaryotic microbes: timekeeping devices displaying a homeostasis of the period. Chronobiol Int 14(5): 469–479 (Review).

    PubMed  CAS  Google Scholar 

  • Kiyosawa K, Tanaka H. (1976) Change in potassium distribution in a Phaseolus pulvinus during circadian movement of the leaf. Plant Cell Physiol 17: 289–298.

    CAS  Google Scholar 

  • Kondo T, Tsinoremas NF, Golden SS, Johnson CH, Kutsuna S, Ishiura M. (1994) Circadian clock mutants of cyanobacteria. Science 266(5188): 1233–1236.

    Article  PubMed  CAS  Google Scholar 

  • Konopka RJ, Benzer S. (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68: 2112–2116.

    Article  PubMed  CAS  Google Scholar 

  • Koukkari WL, Johnson MA (1979) Oscillations of leaves of Abutilon theophrasti (velvetleaf) and their sensitivity to bentazon in relation to low and high humidity. Physiol Plant 47: 158–162.

    Article  CAS  Google Scholar 

  • Koukkari WL. (1994) Movement of a bean shoot: an introduction to chronobiology. Chronobiol Intl 11(2): 85–93.

    CAS  Google Scholar 

  • Koukkari WL, Parks TW, Sothern RB. (1999) Individual circadian rhythms in filtering behavior of Trichoptera during synchronized and constant lighting conditions (abstract 435). NABS 16(1): 218.

    Google Scholar 

  • Kyriacou CP, Hall JC. (1980) Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuation in the male’s courtship song. Proc Natl Acad Sci USA 77: 6729–6733.

    Article  PubMed  CAS  Google Scholar 

  • Lanzinger I, Kobilanski C, Philippu A. (1989) Pattern of catecholamine release in the nucleus tractus solitarii of the cat. Naunyn Schmiedebergs Arch Pharmacol 339(3): 298–301.

    Article  PubMed  CAS  Google Scholar 

  • Larkin JE, Franken P, Heller HC. (2002) Loss of circadian organization of sleep and wakefulness during hibernation. Amer J Physiol Regul Integr Comp Physiol 282(4): R1086–1095.

    CAS  Google Scholar 

  • Lindsley G, Dowse HB, Burgoon PW, Kolka MA, Stephenson LA. (1999) A persistent circhoral ultradian rhythm is identified in human core temperature. Chronobiol Intl 16(1): 69–78.

    Article  CAS  Google Scholar 

  • Liu DW, Thomas JH. (1994) Regulation of a periodic motor program in C. elegans. J Neurosci 14(4): 1953–1962.

    PubMed  CAS  Google Scholar 

  • Lloyd D, Edwards SW, Fry JC. (1982) Temperature-compensated oscillations in respiration and cellular protein content in synchronous cultures of Acanthamoeba castellanaii. Proc Natl Acad Sci USA 79: 3785–3788.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd D, Salgado LE, Turner MP, Suller MT, Murray D. (2002) Cycles of mitochondrial energization driven by the ultradian clock in a continuous culture of Saccharomyces cerevisiae. Microbiol 148 (Pt 11): 3715–3724.

    CAS  Google Scholar 

  • Lörcher L. (1958) Die Wirkung verschiedener Lichtqualitäten auf die endogene Tagesrhythmik von Phaseolus. Z Bot 46: 209–241.

    Google Scholar 

  • Lowrey PL, Takahashi JS. (2004) Mammalian circadian biology: elucidating genomewide levels of temporal organization. Annu Rev Genomics Hum Genet 5: 407–741.

    Article  PubMed  CAS  Google Scholar 

  • Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. (2003) Diminished papillary light reflex at high irradiances in melanopsin-knockout mice. Science 299(5604): 245–247.

    Article  PubMed  CAS  Google Scholar 

  • Lupi D, Cooper HM, Froehlich A, Standford L, McCall MA, Foster RG. (1999) Transgenic ablation of rod photoreceptors alters the circadian phenotype of mice. Neuroscience 89(2): 363–74.

    Article  PubMed  CAS  Google Scholar 

  • Marques M, Hoenen MM. (1999) Altered circadian patterns in a cave insect: signs of temporal adaptation? (Abstract 78). In: Proc Intl Cong Chronobiol, Aug. 29–Sep. 1, 1999, Washington, DC, p. 75.

    Google Scholar 

  • Mayer W, Gruner R, Strubel H. (1975) Period-lengthening and phase-shifting of the circadian rhythm of Phaseolus coccineus L. by theophylline. Planta 125: 141–148.

    CAS  Google Scholar 

  • Mayer W, Scherer I. (1975) Phase shifting effect of caffeine in the circadian rhythm of Phaseolus coccineus L. Z Naturforsch 30: 855–856.

    Google Scholar 

  • Meijer JH, Schwartz WJ. (2003) In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J Biol Rhythms 18(3): 235–249 (Review).

    Article  PubMed  Google Scholar 

  • Menaker M, Eskin A. (1966) Entrainment of circadian rhythms by sound in Passer domesticus. Science 154: 1579–1581.

    Article  PubMed  CAS  Google Scholar 

  • Menaker M, Roberts R, Elliott J, Underwood H. (1970) Extraretinal light perception in the sparrow, III: The eyes do not participate in photoperiodic photoreception. Proc Natl Acad Sci USA 67(1): 320–325.

    Article  PubMed  CAS  Google Scholar 

  • Millet B, Melin D, Bonnet B, Assad C, Mercier J. (1984) Rhythmic circumnutation movement of the shoots in Phaseolus vulgaris L. Chronobiol Intl 1: 11–19.

    CAS  Google Scholar 

  • Millet, B, Melin D, Badot P-M. (1988) Circumnutation in Phaseolus vulgaris. I. Growth, osmotic potential and cell ultrastructure in the free-moving part of the shoot. Physiol Plantarum 72: 133–138.

    Article  Google Scholar 

  • Millet B, Badot PM. (1996) The revolving movement mechanism in Phaseolus: new approaches to old questions. In: Vistas on Biorhythmicity. Greppin H, Degli Agosti R, Bonzon M, eds. Geneva: University of Geneva, pp. 77–98.

    Google Scholar 

  • Minors DS, Waterhouse JM, eds. (1989) Masking and biological rhythms (special issue). Chronobiol Intl 6(1): 1–102.

    Google Scholar 

  • Moore RY, Eichler VB. (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42(1): 201–206.

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Lenn NJ. (1972) A retinohypothalamic projection in the rat. J Comp Neurol 146(1): 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Moore-Ede MC. (1973) Circadian rhythms of drug effectiveness and toxicity. Clin Pharm Therapeut 14(6): 925–935.

    CAS  Google Scholar 

  • Moore-Ede MC, Sulzman FM, Fuller CA. (1982) The Clocks That Time Us. Physiology of the Circadian Timing System. Cambridge: Harvard University Press, 448 pp.

    Google Scholar 

  • Murakami N, Nishi R, Katayama T, Nasu T. (1995) Inhibitor of protein synthesis phaseshifts the circadian oscillator and inhibits the light induced-phase shift of the melatonin rhythm in pigeon pineal cells. Brain Res 693(1–2): 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Nelson W, Scheving L, Halberg F. (1975) Circadian rhythms in mice fed a single daily meal at different stages of lighting regimen. J Nutr 105(2): 171–184.

    PubMed  CAS  Google Scholar 

  • Nelson DE, Takahashi JS. (1991) Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). J Physiol 439: 115–145.

    PubMed  CAS  Google Scholar 

  • Nelson DE, Takahashi JS. (1999) Integration and saturation within the circadian photic entrainment pathway of hamsters. Amer J Physiol 277(5 Pt 2): R1351–R1361.

    PubMed  CAS  Google Scholar 

  • Nisimura T, Numata H. (2001) Endogenous timing mechanism controlling the circannual pupation rhythm of the varied carpet beetle Anthrenus verbasci. J Comp Physiol 187(6): 433–440.

    Article  CAS  Google Scholar 

  • Pavlidis T. (1973) Phase shifts and phase response curves. In: Biological Oscillators: Their Mathematical Analysis. New York: Academic Press, pp. 49–70.

    Google Scholar 

  • Pittendrigh CS, Bruce VG. (1957) An oscillator model for biological clocks. In: Rhythmic and Synthetic Processes of Growth. Rudnick D, ed. Princeton, NJ: Princeton University Press, pp. 75–109.

    Google Scholar 

  • Pittendrigh CS. (1967) Circadian systems. I. The driving oscillation and its assay in Drosophila psuedoobscura. Proc Natl Acad Sci USA 58: 1762–1767.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS. (1981) Circadian systems: general perspective. In: Handbook of Bahvioral Neurobiology, Vol. 4: Biological Rhythms. Aschoff J, ed. New York: Plenum, pp. 57–80.

    Google Scholar 

  • Pregueiro AM, Price-Lloyd N, Bell-Pedersen D, Heintzen C, Loros JJ, Dunlap JC. (2005) Assignment of an essential role for the Neurospora frequency gene in circadian entrainment to temperature cycles. Proc Natl Acad Sci USA 102(6): 2210–2215.

    Article  PubMed  CAS  Google Scholar 

  • Presser HB. (1974) Temporal data relating to the human menstrual cycle. In: Biorhythms and Human Reproduction. Ferin M, Halberg F, Richert RM, Vande Wiele R, eds. New York: John Wiley and Sons, Inc, pp. 145–160.

    Google Scholar 

  • Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. (1998) Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA 95(1): 340–345.

    Article  PubMed  CAS  Google Scholar 

  • Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. (2000) A novel human opsin in the inner retina. J Neurosci 20(2): 600–605.

    PubMed  CAS  Google Scholar 

  • Pye EK. (1969) Biochemical mechanisms underlying the metabolic oscillations in yeast. Can J Botany 47: 271–285.

    CAS  Google Scholar 

  • Pye EK. (1971) Periodicities in intermediary metabolism. In: Biochronometry. Menaker M, ed. Washington, DC: National Academy of Sciences, pp. 623–636.

    Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M. (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247(4945): 975–978.

    Article  PubMed  CAS  Google Scholar 

  • Ralph MR. Menaker M. (1988) A mutation of the circadian system in golden hamsters. Science 241(4870): 1225–1227.

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak HV, Sothern RB, Hrushesky W. (1986) Single cosinor analysis of vaginal smear cell types quantifies mouse estrous cycle and its alteration by mammary adenocarcinoma. In: Ann Rev Chronopharm, Vol 3. Reinberg A, Smolensky M, Labrecque G, eds. New York: Pergamon Press, pp. 223–226.

    Google Scholar 

  • Ratajczak HV, Sothern RB, Hrushesky WJM. (1988) Estrous influence on surgical cure of a mouse breast cancer. J Exp Med 168: 73–83.

    Article  PubMed  CAS  Google Scholar 

  • Refinetti R, Menaker M. (1992) The circadian rhythm of body temperature. Physiol & Behav 51(3): 613–637.

    Article  CAS  Google Scholar 

  • Richter CP. (1965) Biological Clocks in Medicine and Psychiatry. Springfield, IL: CC Thomas, 108 pp.

    Google Scholar 

  • Richter CP. (1967) Sleep and activity: their relation to the 24-hour clock. Res Publ Assoc Res Nerv Ment Dis 45: 8–29.

    PubMed  CAS  Google Scholar 

  • Rietveld WJ. (1992) The suprachiasmatic nucleus and other pacemakers. In: Biological Clocks. Mechanisms and Applications. Touitou Y, ed. Amsterdam: Elsevier, pp. 55–64.

    Google Scholar 

  • Rollag MD, Berson DM, Provencio I. (2003) Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythms 18(3): 227–234.

    Article  PubMed  Google Scholar 

  • Sanchez de la Peña S. (1993) The feedsideward of cephalo-adrenal immune interactions. Chronobiologia 20(1–2): 1–52.

    PubMed  Google Scholar 

  • Schmidle A. (1951) Die Tagesperiodizität der asexuellen Reproduktion von Pilobolus sphaerosporus. Arch Mikrobiol 16: 80–100.

    Article  Google Scholar 

  • Schmitz O, Brock B, Hollingdal M, Juhl CB, Porksen N. (2002) High-frequency insulin pulsatility and type 2 diabetes: from physiology and pathophysiology to clinical pharmacology. Diabetes Metab 28(6 Suppl): 4S14–20 (Review).

    PubMed  CAS  Google Scholar 

  • Schuster J, Engelmann W. (1997) Circumnutations of Arabidopsis thaliana seedlings. Biol Rhythm Res 28(4): 422–440.

    Article  Google Scholar 

  • Schwartz MD, Nunez AA, Smale L. (2004) Differences in the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Neuroscience 127(1): 13–23.

    Article  PubMed  CAS  Google Scholar 

  • ShinO’Hara K, Oka T. (1994) Protein synthesis inhibitor phase shifts vasopressin rhythms in long-term suprachiasmatic cultures. Neuroreport 5(16): 2201–2204.

    CAS  Google Scholar 

  • Smale L, Lee T, Nunez AA. (2003) Mammalian diurnality: some facts and gaps. J Biol Rhythms 18(5): 356–366 (Review).

    Article  PubMed  Google Scholar 

  • Smolensky M, Lamberg L. (2000) The Body Clock Guide to Better Health. New York: Henry Holt & Co., 428 pp.

    Google Scholar 

  • Somers DE, Kay SA. (1998) Genetic approaches to the analysis of circadian rhythms in plants. In: Biological Rhythms and Photoperiodism in Plants. Lumsden PJ, Millar AJ, eds. Oxford: BIOS, pp. 81–98.

    Google Scholar 

  • Sothern RB, Hermida RC, Nelson R, Mojón A, Koukkari WL. (1998) Reanalysis of filterfeeding behavior of Caddisfly (Brachycentrus) larvae reveals masking and circadian rhythmicity. Chronobiol Intl 15(6): 595–606.

    CAS  Google Scholar 

  • Spieler RE, Meier AH, Noeske TA. (1978) Temperature-induced phase shift of daily rhythm of serum prolactin in gulf killifish. Nature 271(5644): 469–470.

    Article  PubMed  CAS  Google Scholar 

  • Spruyt E, Verbelen J-P, DeGreef JA. (1987) Expression of circaseptan and circannual rhythmicity in the imbibition of dry stored bean seeds. Plant Physiol 84: 707–710.

    PubMed  Google Scholar 

  • Stephan FK, Zucker I. (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69(6): 1583–1586.

    Article  PubMed  CAS  Google Scholar 

  • Stevens RG, Davis S, Thomas DB, Anderson LE, Wilson BW. (1992) Electric power, pineal function, and the risk of breast cancer. FASEB J 6(3): 853–860.

    PubMed  CAS  Google Scholar 

  • Stevens RG, Davis S. (1996) The melatonin hypothesis: electric power and breast cancer. Environ Health Perspect 104(Suppl. 1): 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Sujino M, Masumoto K, Yamaguchi S, van der Horst GT, Okamura H, Inouye SI. (2003) Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr Biol 13(8): 664–668.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney BM, Hastings JW. (1960) Effects of temperature upon diurnal rhythms. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: the Biological Laboratory, pp. 87–104.

    Google Scholar 

  • Sweeney BM. (1974) The potassium content of Gonyaulax polyhedra and phase changes in the circadian rhythm of stimulated bioluminescence by short exposure to ethanol and valinomycin. Plant Physiol 53: 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney BM. (1976) Circadian rhythms, definition and general characterization. In: The Molecular Basis of Circadian Rhythms. Hastings JW, Schweiger H-G, eds. Berlin: Abakon, pp. 77–83.

    Google Scholar 

  • Takahashi JS, Turek FW. (1987) Anisomycin, an inhibitor of protein synthesis, perturbs the phase of a mammalian circadian pacemaker. Brain Res 405(1): 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Taylor WR, Dunlap JC, Hastings JW. (1982) Inhibitors of protein synthesis on 80S ribosomes phase shift the Gonyaulax clock. J Exp Biol 97: 121–136.

    PubMed  CAS  Google Scholar 

  • Tester JR, Figala J. (1990) Effects of biological and environmental factors on activity rhythms of wild animals. In: Chronobiology: Its Role in Clinical Medicine, General Biology and Agriculture, Part B, Progress in Clinical and Biological Research, Vol. 341B. Hayes DK, Pauly JE, Reiter RJ, eds. New York: Wiley, pp. 809–819.

    Google Scholar 

  • Truman JW, Riddiford LM. (1970) Neuroendocrine control of ecdysis in silkmoths. Science 167: 1624–1626.

    Article  PubMed  Google Scholar 

  • Truman JW. (1972) Physiology of insect rhythms II. The silkmoth brain as the location of the biological clock controlling eclosion. J Comp Physiol 81: 99–114.

    Article  Google Scholar 

  • Uebelmesser ER. (1954) Über den endonomen Rhythmus der Sporangientrager bildung von Pilobolus. [The endogenous daily rhythm of conidiospore formation of Pilobolus.] Arch Mikrobiol 20(1): 1–33.

    Article  PubMed  CAS  Google Scholar 

  • Underwood H, Menaker M. (1970) Photoperiodically significant photoreception in sparrows: Is the retina involved? Science 167: 298–301.

    Article  PubMed  CAS  Google Scholar 

  • Waalen J. (1993) Nighttime light studied as possible breast cancer risk. J Natl Cancer Inst 85(21): 1712–1713.

    Article  PubMed  CAS  Google Scholar 

  • Waldrop RD, Saydjari R, Rubin NH, Rayford PL, Townsend CM Jr., Thompson JC. (1989) Photoperiod influences the growth of colon cancer in mice. Life Sci 45(8): 737–744.

    Article  PubMed  CAS  Google Scholar 

  • Wasserman L. (1959) Die Auslösung endogen-tagesperiodischer Vorgänge bei Pflanzen durch einmalige Reize. Planta 53: 647–669.

    Article  Google Scholar 

  • Wehr TA, Aeschbach D, Duncan WC Jr. (2001) Evidence for a biological dawn and dusk in the human circadian timing system. J Physiol 535 (Pt 3): 937–951.

    Article  PubMed  CAS  Google Scholar 

  • Went FW. (1960) Photo-and thermoperiodic effects in plant growth. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: the Biological Laboratory, pp. 221–230.

    Google Scholar 

  • Went FW. (1974) Reflections and observations. Annu Rev Plant Physiol 25: 1–26.

    Article  CAS  Google Scholar 

  • Wever RA. (1979) The Circadian System of Man. Results of Experiments Under Temporal Isolation. New York: Springer-Verlag, 276 pp.

    Google Scholar 

  • Wilkins MB. (1960) The effect of light upon plant rhythms. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: the Biological Laboratory, pp. 115–129.

    Google Scholar 

  • Wolfson A. (1959) The role of light and darkness in the regulation of spring migration and reproductive cycles in birds. In: Photoperiodism and Related Phenomena in Plants and Animals. Withrow RB, ed. Washington: American Association for the Advancement of Science Publication 55, pp. 679–716.

    Google Scholar 

  • Wollnik F, Schmidt B. (1995) Seasonal and daily rhythms of body temperature in the European hamster (Cricetus cricetus) under semi-natural conditions. J Comp Physiol 165(3): 171–182.

    CAS  Google Scholar 

  • Yamazaki S, Goto M, Menaker M. (1999) No evidence for extraocular photoreceptors in the circadian system of the Syrian hamster. J Biol Rhythms 14(3): 197–201.

    Article  PubMed  CAS  Google Scholar 

  • Yin HC. (1941) Studies on the nyctinastic movement of the leaves of Carica papaya. Amer J Bot 28: 250–261.

    Article  Google Scholar 

  • Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS. (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101(15): 5339–5346.

    Article  PubMed  CAS  Google Scholar 

  • Zylka MJ, Shearman LP, Weaver DR, Reppert SM. (1998) Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20(6): 1103–1110.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2006). General Features of Rhythms: Terminology and Characteristics. In: Introducing Biological Rhythms. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4701-5_2

Download citation

Publish with us

Policies and ethics