General Features of Rhythms: Terminology and Characteristics


In order to best understand the characteristics of biological rhythms, like the prerequisites for most disciplines in biology, one must be familiar with the use of certain terms that are used. In the case of biological rhythms, the discipline is known as chronobiology, a term introduced in the mid-1960s to unify the study of temporal characteristics of biological phenomena (Halberg, 1969; Cambrosio & Keating, 1983). Some of the more common terms used in chronobiology to describe rhythms are presented in a glossary in Table 2.1.


Circadian Rhythm Circadian Clock Biological Rhythm Biological Clock Courtship Song 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson LE, Morris JE, Sasser LB, Stevens RG. (2000) Effect of constant light on DMBA mammary tumorigenesis in rats. Cancer Lett 148(2): 121–126.PubMedCrossRefGoogle Scholar
  2. Andrews RV, Folk GE. (1964) Circadian metabolic patterns in cultured hamster adrenals. Comp Biochem Physiol 11: 393–409.PubMedCrossRefGoogle Scholar
  3. Arendt J, Minors DS, Waterhouse JM, eds. (1989) Biological Rhythms in Clinical Practice. London: Wright, 299 pp.Google Scholar
  4. Armitage R, Hoffmann RF, Rush AJ. (1999) Biological rhythm disturbance in depression: temporal coherence of ultradian sleep EEG rhythms. Psychol Med 29(6): 1435–1448.PubMedCrossRefGoogle Scholar
  5. Aschoff J. (1953) Aktivitätsperiodik bei Gimpeln unter naturlichen und kunstlichen belichtungsverhaltnissen. Z Vergl Physiol 35: 159–166.CrossRefGoogle Scholar
  6. Aschoff J. (1955) Exogene und endogene Komponente der 24-Stunden-Periodik bei Tier und Mensch. Naturwiss 42: 569–575.CrossRefGoogle Scholar
  7. Aschoff J. (1960) Exogenous and endogenous components in circadian rhythms. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: the Biological Laboratory, pp. 11–28.Google Scholar
  8. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U. (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289(5488): 2344–2347.PubMedCrossRefGoogle Scholar
  9. Balsalobre A. (2002) Clock genes in mammalian peripheral tissues. Cell Tissue Res 309(1):193–199 (Review).PubMedCrossRefGoogle Scholar
  10. Barnett JE. (1998) Time’s Pendulum: The Quest to Capture Time from Sundials to Atomic Clocks. New York: Plenum, 340 pp.Google Scholar
  11. Berson DM, Dunn FA, Takao M. (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295(5557): 1070–1073.PubMedCrossRefGoogle Scholar
  12. Berson DM. (2003) Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci 26(6): 314–320.PubMedCrossRefGoogle Scholar
  13. Blake G. (1959) Control of diapause by an “internal clock” in Anthrenus verbasci (L.) (Col., Dermestidae). Nature (London) 183: 126–127.CrossRefGoogle Scholar
  14. Boulos Z, Macchi M, Terman M. (1996) Twilight transitions promote circadian entrainment to lengthening light-dark cycles. Amer J Physiol 271(3 Pt 2): R813–818.PubMedGoogle Scholar
  15. Boulos Z, Macchi MM, Terman M. (2002) Twilights widen the range of photic entrainment in hamsters. J Biol Rhythms 17(4): 353–363.PubMedCrossRefGoogle Scholar
  16. Brown RL, Robinson PR. (2004) Melanopsin—shedding light on the elusive circadian photopigment. Chronobiol Intl 21(2): 189–204.CrossRefGoogle Scholar
  17. Bruce VG, Pittendrigh CS. (1956) Temperature independence in a unicellular “clock.” Proc Natl Acad Sci USA 42: 676–682PubMedCrossRefGoogle Scholar
  18. Bruce VG. (1960) Environmental entrainment of circadian rhythms. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: the Biological Laboratory, pp. 29–48.Google Scholar
  19. Bruce VG. (1974) Recombinants between clock mutants of Chlamydomonas reinhardi. Genetics 77: 221–230.PubMedGoogle Scholar
  20. Bünning E. (1932) Über die Erblichkeit der tagesperiodizität bei den Phaseolus-Blättern. Jahrbücher Wiss Bot 77: 283–320.Google Scholar
  21. Bünning E. (1935) Zur Kenntnis der erblichen Tagesperiodizität bei den Primärblattern von Phaseolus multiforus. Jahrbücher Wiss Bot 81: 411–418.Google Scholar
  22. Bünning E. (1973) The Physiological Clock, 3rd edn. (revised). Berlin: Springer-Verlag, 258 pp.Google Scholar
  23. Bünning E, Moser I. (1973) Light-induced phase shifts of circadian leaf movements of Phaseolus. Proc Natl Acad Sci USA 69: 2732–2733.CrossRefGoogle Scholar
  24. Cambrosio A, Keating P. (1983) The disciplinary stake: the case of chronobiology. Soc Stud Sci 13(3): 323–353.PubMedCrossRefGoogle Scholar
  25. Chen J-P, Eichelmann C, Engelmann W. (1997) Substances interfering with phosphatidyl inositol signaling pathway affect ultradian rhythm of Desmodium motorium. J Biosci 22: 1–12.Google Scholar
  26. Cumming BG. (1969) Chenopodium rubrum L. and related species. In: The Induction of Flowering. Some Case Histories. Evans LT, ed. New York: Cornell University Press, pp. 156–185.Google Scholar
  27. Cutkomp LK, Halberg F, Cornelissen G. (1984) Temperature effect on infradian oviposition rhythms in the Springtail Folsomia candida (Willem). In: Chronobiology 1982–1983. Haus E, Kabat H, eds. Basel: S. Karger. pp. 1–9.Google Scholar
  28. Darwin C. (1859) The Origin of Species. London: John Murray, 488 pp.Google Scholar
  29. Darwin C, Darwin F. (1897) The Power of Movement in Plants. New York: D. Appleton & Co., 592 pp.Google Scholar
  30. Dauchy RT, Sauer LA, Blask DE, Vaughan GM. (1997) Light contamination during the dark phase in “photoperiodically-controlled” animal rooms: effect on tumor growth and metabolism in rats. Lab Anim Sci 47(5): 511–518PubMedGoogle Scholar
  31. Ebling FJ. (1996) The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog Neurobiol 50(2–3): 109–132 (Review).PubMedCrossRefGoogle Scholar
  32. Ehret CF, Potter VR, Dobra KW. (1975) Chronotypic action of theophylline and of pentobarbital as circadian zeitgebers in the rat. Science 188: 1212–1215.PubMedCrossRefGoogle Scholar
  33. Ehret CF. (1980) On circadian cybernetics, and the innate and genetic nature of circadian rhythms. In: Chronobiology: Principles and Applications to Shifts in Schedules. Scheving LE & Halberg F, eds. Alphen aan den Rijn: Sijthoff & Noordhoff, pp. 109–125.Google Scholar
  34. Engelmann W, Schrempf M. (1980) Membrane models for circadian rhythms. In: Photochemical and Photobiological Reviews, Vol. 5. Smith KC, ed. New York: Plenum, pp. 49–85.Google Scholar
  35. Enright JT. (1971) The internal clock of drunken isopods. Z Vergl Physiol 75: 332–346.CrossRefGoogle Scholar
  36. Feldman JF, Hoyle MN. (1973) Isolation of circadian clock mutants of Neurospora crassa. Genetics 75: 605–613.PubMedGoogle Scholar
  37. Foster RG, Provencio I, Hudson D, Fiske S, DeGrip W, Menaker M. (1991) Circadian photoreception in the retinally degenerate mouse (Rd/Rd). J Comp Physiol 169(1): 39–50.CrossRefGoogle Scholar
  38. Freedman MS, Lucas RJ, Soni B, von Schantz M, Muñoz M, David-Gray, Z, Foster R. (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284(5413): 502–504.PubMedCrossRefGoogle Scholar
  39. Gallepp G. (1976) Temperature as a cue for the periodicity in feeding of Brachycentrus occidentalis (Insecta: Trichoptera). Animal Behav 24(1): 7–10.CrossRefGoogle Scholar
  40. Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB. (2001) Melanopsin in cells of origin of the retinohypothalamic tract. Nature Neurosci 4(12): 1165.PubMedCrossRefGoogle Scholar
  41. Gooley JJ, Lu J, Fischer D, Saper CB. (2003) A broad role for melanopsin in nonvisual photoreception. J Neurosci 23(18): 7093–7106.PubMedGoogle Scholar
  42. Gordon WR, Koukkari WL. (1978) Circadian rhythmicity in the activities of phenylalanine ammonia-lyase from Lemna perpusilla and Spirodela polyrhiza. Plant Physiol 62: 612–615.PubMedGoogle Scholar
  43. Guillaume FM, Koukkari WL. (1985) Two types of high frequency oscillations in Glycine max (L.) Merr. In: Advances in Chronobiology, Part A. Prog in Clin & Biol Res, Vol 227A. Pauly JE, Scheving LE, eds. New York: Alan R. Liss, Inc., pp. 47–57.Google Scholar
  44. Haim A, Shanas U, Zubidad Ael S, Scantelbury M. (2005) Seasonality and seasons out of time—the thermoregulatory effects of light interference. Chronobiol Intl 22(1): 59–66.CrossRefGoogle Scholar
  45. Halaban R. (1968) The circadian rhythm of leaf movement of Coleus blumei x C. frederici, a short day plant. I. Under constant light conditions. Plant Physiol 43: 1883–188.PubMedGoogle Scholar
  46. Halaban R. (1969) Effects of light quality on the circadian rhythm of leaf movement of a short-day plant. Plant Physiol 44: 973–977.PubMedGoogle Scholar
  47. Halberg F. (1959) Physiologic 24-hour periodicity; general and procedural considerations with reference to the adrenal cycle. Z für Vitamin, Hormon u Fermentforsch 10(3/4): 225–296.Google Scholar
  48. Halberg F. (1969) Chronobiology. Annu Rev Physiol 31: 675–725 (Review).PubMedCrossRefGoogle Scholar
  49. Halberg F, Carandente F, Cornelissen G, Katinas GS. (1977) Glossary of Chronobiology. Chronobiologia 4(Suppl 1): 1–189.PubMedGoogle Scholar
  50. Halberg F, Cornélissen G. (2001) Chronobiology: rhythms, clocks, chaos, aging, and other trends. In: Encyclopedia of Aging, 3rd edn. Maddox GL, ed. New York: Springer, pp. 196–201.Google Scholar
  51. Halberg F, Cornélissen G, Otsuka K, Schwartzkopff O, Halberg J, Bakken EE. (2001) Chronomics. Biomed Pharmacother 55: 153–190.CrossRefGoogle Scholar
  52. Handler AM, Konopka RJ. (1979) Transplantation of a circadian pacemaker in Drosophila. Nature 279(5710): 236–238.PubMedCrossRefGoogle Scholar
  53. Hannibal J, Hindersson P, Knudsen SM, Georg B, Fahrenkrug J. (2002) The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptidecontaining retinal ganglion cells of the retinohypothalamic tract. J Neuroscience 22(RC191): 1–7.Google Scholar
  54. Hannibal J, Fahrenkrug J. (2004) Target areas innervated by PACAP-immunoreactive retinal ganglion cells. Cell Tissue Res 316(1): 99–113.PubMedCrossRefGoogle Scholar
  55. Hartmann WK, Miller R. (1991) The History of Earth. An Illustrated Chronicle of an Evolving Planet. New York: Workman, 260 pp.Google Scholar
  56. Hassnaoui M, Pupier R, Attia J, Blanc M, Beauchaud M, Buisson B. (1998) Some tools to analyze changes of rhythms in biological time series. Biol Rhythm Res 29(4): 353–366.CrossRefGoogle Scholar
  57. Hastings JW, Aschoff JWL, Bünning E, Edmunds LN, Hoffmann K, Pittendrigh CS, Winfree AT. (1976) Basic feature group report. In: The Molecular Basis of Circadian Rhythms. Hastings JW, Schweiger H-G, eds. Berlin: Abakon, pp. 49–62.Google Scholar
  58. Hastings MH, Reddy AB, Maywood ES. (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4(8): 649–661.PubMedCrossRefGoogle Scholar
  59. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557): 1065–1070.PubMedCrossRefGoogle Scholar
  60. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Hofmann F, Foster RG, Yau K-W. (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424(6944): 76–81.PubMedCrossRefGoogle Scholar
  61. Hendrickson AE, Wagoner N, Cowan WM. (1972) An autoradiographic and electron microscopic study of retino-hypothalamic connections. Z Zellforsch Mikrosk Anat 135(1): 1–26.PubMedCrossRefGoogle Scholar
  62. Hillman WS. (1956) Injury of tomato plants by continuous light and unfavorable photoperiodic cycles. Planta 114: 119–129.Google Scholar
  63. Hoffmann K. (1976) The adaptive significance of biological rhythms corresponding to geophysical cycles. In: The Molecular Basis of Circadian Rhythms. Hastings JW, Schweiger H-G, eds. Berlin: Abakon, pp. 63–75.Google Scholar
  64. Inouye ST, Takahashi JS, Wollnik F, Turek FW. (1988) Inhibitor of protein synthesis phase shifts a circadian pacemaker in mammalian SCN. Amer J Physiol 255(6 Pt 2): R1055–1058.PubMedGoogle Scholar
  65. Iwasaki K, Liu DW, Thomas JH. (1995) Genes that control a temperature-compensated ultradian clock in Caenorhabditis elegans. Proc Natl Acad Sci USA 92(22): 10317–10321.PubMedCrossRefGoogle Scholar
  66. Janzen DH. (1976) Why bamboos wait so long to flower. Annu Rev Ecol Syst 7: 347–391.CrossRefGoogle Scholar
  67. Johnson CH, Knight M, Trewavas A, Kondo T. (1998) A clockwork green: circadian programs in photosynthetic organisms. In: Biological Rhythms and Photoperiodism in Plants. Lumsden PJ, Millar AJ, eds. Oxford: BIOS, pp. 1–34.Google Scholar
  68. Johnson CK. (1999) Forty years of PRCs—What have we learned? Chronobiol Intl 16(6): 711–743.Google Scholar
  69. Johnsson A. (1973) Oscillatory transpiration and water uptake of Avena plants. I. Preliminary observations. Physiol Plant 28: 40–50.CrossRefGoogle Scholar
  70. King RW. (1975) Multiple circadian rhythms regulate photoperiodic flowering responses in Chenopodium rubrum. Can J Bot 53: 2631–2638.Google Scholar
  71. Kippert F. (1997) The ultradian clocks of eukaryotic microbes: timekeeping devices displaying a homeostasis of the period. Chronobiol Int 14(5): 469–479 (Review).PubMedGoogle Scholar
  72. Kiyosawa K, Tanaka H. (1976) Change in potassium distribution in a Phaseolus pulvinus during circadian movement of the leaf. Plant Cell Physiol 17: 289–298.Google Scholar
  73. Kondo T, Tsinoremas NF, Golden SS, Johnson CH, Kutsuna S, Ishiura M. (1994) Circadian clock mutants of cyanobacteria. Science 266(5188): 1233–1236.PubMedCrossRefGoogle Scholar
  74. Konopka RJ, Benzer S. (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68: 2112–2116.PubMedCrossRefGoogle Scholar
  75. Koukkari WL, Johnson MA (1979) Oscillations of leaves of Abutilon theophrasti (velvetleaf) and their sensitivity to bentazon in relation to low and high humidity. Physiol Plant 47: 158–162.CrossRefGoogle Scholar
  76. Koukkari WL. (1994) Movement of a bean shoot: an introduction to chronobiology. Chronobiol Intl 11(2): 85–93.Google Scholar
  77. Koukkari WL, Parks TW, Sothern RB. (1999) Individual circadian rhythms in filtering behavior of Trichoptera during synchronized and constant lighting conditions (abstract 435). NABS 16(1): 218.Google Scholar
  78. Kyriacou CP, Hall JC. (1980) Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuation in the male’s courtship song. Proc Natl Acad Sci USA 77: 6729–6733.PubMedCrossRefGoogle Scholar
  79. Lanzinger I, Kobilanski C, Philippu A. (1989) Pattern of catecholamine release in the nucleus tractus solitarii of the cat. Naunyn Schmiedebergs Arch Pharmacol 339(3): 298–301.PubMedCrossRefGoogle Scholar
  80. Larkin JE, Franken P, Heller HC. (2002) Loss of circadian organization of sleep and wakefulness during hibernation. Amer J Physiol Regul Integr Comp Physiol 282(4): R1086–1095.Google Scholar
  81. Lindsley G, Dowse HB, Burgoon PW, Kolka MA, Stephenson LA. (1999) A persistent circhoral ultradian rhythm is identified in human core temperature. Chronobiol Intl 16(1): 69–78.CrossRefGoogle Scholar
  82. Liu DW, Thomas JH. (1994) Regulation of a periodic motor program in C. elegans. J Neurosci 14(4): 1953–1962.PubMedGoogle Scholar
  83. Lloyd D, Edwards SW, Fry JC. (1982) Temperature-compensated oscillations in respiration and cellular protein content in synchronous cultures of Acanthamoeba castellanaii. Proc Natl Acad Sci USA 79: 3785–3788.PubMedCrossRefGoogle Scholar
  84. Lloyd D, Salgado LE, Turner MP, Suller MT, Murray D. (2002) Cycles of mitochondrial energization driven by the ultradian clock in a continuous culture of Saccharomyces cerevisiae. Microbiol 148 (Pt 11): 3715–3724.Google Scholar
  85. Lörcher L. (1958) Die Wirkung verschiedener Lichtqualitäten auf die endogene Tagesrhythmik von Phaseolus. Z Bot 46: 209–241.Google Scholar
  86. Lowrey PL, Takahashi JS. (2004) Mammalian circadian biology: elucidating genomewide levels of temporal organization. Annu Rev Genomics Hum Genet 5: 407–741.PubMedCrossRefGoogle Scholar
  87. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. (2003) Diminished papillary light reflex at high irradiances in melanopsin-knockout mice. Science 299(5604): 245–247.PubMedCrossRefGoogle Scholar
  88. Lupi D, Cooper HM, Froehlich A, Standford L, McCall MA, Foster RG. (1999) Transgenic ablation of rod photoreceptors alters the circadian phenotype of mice. Neuroscience 89(2): 363–74.PubMedCrossRefGoogle Scholar
  89. Marques M, Hoenen MM. (1999) Altered circadian patterns in a cave insect: signs of temporal adaptation? (Abstract 78). In: Proc Intl Cong Chronobiol, Aug. 29–Sep. 1, 1999, Washington, DC, p. 75.Google Scholar
  90. Mayer W, Gruner R, Strubel H. (1975) Period-lengthening and phase-shifting of the circadian rhythm of Phaseolus coccineus L. by theophylline. Planta 125: 141–148.Google Scholar
  91. Mayer W, Scherer I. (1975) Phase shifting effect of caffeine in the circadian rhythm of Phaseolus coccineus L. Z Naturforsch 30: 855–856.Google Scholar
  92. Meijer JH, Schwartz WJ. (2003) In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J Biol Rhythms 18(3): 235–249 (Review).PubMedCrossRefGoogle Scholar
  93. Menaker M, Eskin A. (1966) Entrainment of circadian rhythms by sound in Passer domesticus. Science 154: 1579–1581.PubMedCrossRefGoogle Scholar
  94. Menaker M, Roberts R, Elliott J, Underwood H. (1970) Extraretinal light perception in the sparrow, III: The eyes do not participate in photoperiodic photoreception. Proc Natl Acad Sci USA 67(1): 320–325.PubMedCrossRefGoogle Scholar
  95. Millet B, Melin D, Bonnet B, Assad C, Mercier J. (1984) Rhythmic circumnutation movement of the shoots in Phaseolus vulgaris L. Chronobiol Intl 1: 11–19.Google Scholar
  96. Millet, B, Melin D, Badot P-M. (1988) Circumnutation in Phaseolus vulgaris. I. Growth, osmotic potential and cell ultrastructure in the free-moving part of the shoot. Physiol Plantarum 72: 133–138.CrossRefGoogle Scholar
  97. Millet B, Badot PM. (1996) The revolving movement mechanism in Phaseolus: new approaches to old questions. In: Vistas on Biorhythmicity. Greppin H, Degli Agosti R, Bonzon M, eds. Geneva: University of Geneva, pp. 77–98.Google Scholar
  98. Minors DS, Waterhouse JM, eds. (1989) Masking and biological rhythms (special issue). Chronobiol Intl 6(1): 1–102.Google Scholar
  99. Moore RY, Eichler VB. (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42(1): 201–206.PubMedCrossRefGoogle Scholar
  100. Moore RY, Lenn NJ. (1972) A retinohypothalamic projection in the rat. J Comp Neurol 146(1): 1–14.PubMedCrossRefGoogle Scholar
  101. Moore-Ede MC. (1973) Circadian rhythms of drug effectiveness and toxicity. Clin Pharm Therapeut 14(6): 925–935.Google Scholar
  102. Moore-Ede MC, Sulzman FM, Fuller CA. (1982) The Clocks That Time Us. Physiology of the Circadian Timing System. Cambridge: Harvard University Press, 448 pp.Google Scholar
  103. Murakami N, Nishi R, Katayama T, Nasu T. (1995) Inhibitor of protein synthesis phaseshifts the circadian oscillator and inhibits the light induced-phase shift of the melatonin rhythm in pigeon pineal cells. Brain Res 693(1–2): 1–7.PubMedCrossRefGoogle Scholar
  104. Nelson W, Scheving L, Halberg F. (1975) Circadian rhythms in mice fed a single daily meal at different stages of lighting regimen. J Nutr 105(2): 171–184.PubMedGoogle Scholar
  105. Nelson DE, Takahashi JS. (1991) Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). J Physiol 439: 115–145.PubMedGoogle Scholar
  106. Nelson DE, Takahashi JS. (1999) Integration and saturation within the circadian photic entrainment pathway of hamsters. Amer J Physiol 277(5 Pt 2): R1351–R1361.PubMedGoogle Scholar
  107. Nisimura T, Numata H. (2001) Endogenous timing mechanism controlling the circannual pupation rhythm of the varied carpet beetle Anthrenus verbasci. J Comp Physiol 187(6): 433–440.CrossRefGoogle Scholar
  108. Pavlidis T. (1973) Phase shifts and phase response curves. In: Biological Oscillators: Their Mathematical Analysis. New York: Academic Press, pp. 49–70.Google Scholar
  109. Pittendrigh CS, Bruce VG. (1957) An oscillator model for biological clocks. In: Rhythmic and Synthetic Processes of Growth. Rudnick D, ed. Princeton, NJ: Princeton University Press, pp. 75–109.Google Scholar
  110. Pittendrigh CS. (1967) Circadian systems. I. The driving oscillation and its assay in Drosophila psuedoobscura. Proc Natl Acad Sci USA 58: 1762–1767.PubMedCrossRefGoogle Scholar
  111. Pittendrigh CS. (1981) Circadian systems: general perspective. In: Handbook of Bahvioral Neurobiology, Vol. 4: Biological Rhythms. Aschoff J, ed. New York: Plenum, pp. 57–80.Google Scholar
  112. Pregueiro AM, Price-Lloyd N, Bell-Pedersen D, Heintzen C, Loros JJ, Dunlap JC. (2005) Assignment of an essential role for the Neurospora frequency gene in circadian entrainment to temperature cycles. Proc Natl Acad Sci USA 102(6): 2210–2215.PubMedCrossRefGoogle Scholar
  113. Presser HB. (1974) Temporal data relating to the human menstrual cycle. In: Biorhythms and Human Reproduction. Ferin M, Halberg F, Richert RM, Vande Wiele R, eds. New York: John Wiley and Sons, Inc, pp. 145–160.Google Scholar
  114. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. (1998) Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA 95(1): 340–345.PubMedCrossRefGoogle Scholar
  115. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. (2000) A novel human opsin in the inner retina. J Neurosci 20(2): 600–605.PubMedGoogle Scholar
  116. Pye EK. (1969) Biochemical mechanisms underlying the metabolic oscillations in yeast. Can J Botany 47: 271–285.Google Scholar
  117. Pye EK. (1971) Periodicities in intermediary metabolism. In: Biochronometry. Menaker M, ed. Washington, DC: National Academy of Sciences, pp. 623–636.Google Scholar
  118. Ralph MR, Foster RG, Davis FC, Menaker M. (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247(4945): 975–978.PubMedCrossRefGoogle Scholar
  119. Ralph MR. Menaker M. (1988) A mutation of the circadian system in golden hamsters. Science 241(4870): 1225–1227.PubMedCrossRefGoogle Scholar
  120. Ratajczak HV, Sothern RB, Hrushesky W. (1986) Single cosinor analysis of vaginal smear cell types quantifies mouse estrous cycle and its alteration by mammary adenocarcinoma. In: Ann Rev Chronopharm, Vol 3. Reinberg A, Smolensky M, Labrecque G, eds. New York: Pergamon Press, pp. 223–226.Google Scholar
  121. Ratajczak HV, Sothern RB, Hrushesky WJM. (1988) Estrous influence on surgical cure of a mouse breast cancer. J Exp Med 168: 73–83.PubMedCrossRefGoogle Scholar
  122. Refinetti R, Menaker M. (1992) The circadian rhythm of body temperature. Physiol & Behav 51(3): 613–637.CrossRefGoogle Scholar
  123. Richter CP. (1965) Biological Clocks in Medicine and Psychiatry. Springfield, IL: CC Thomas, 108 pp.Google Scholar
  124. Richter CP. (1967) Sleep and activity: their relation to the 24-hour clock. Res Publ Assoc Res Nerv Ment Dis 45: 8–29.PubMedGoogle Scholar
  125. Rietveld WJ. (1992) The suprachiasmatic nucleus and other pacemakers. In: Biological Clocks. Mechanisms and Applications. Touitou Y, ed. Amsterdam: Elsevier, pp. 55–64.Google Scholar
  126. Rollag MD, Berson DM, Provencio I. (2003) Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythms 18(3): 227–234.PubMedCrossRefGoogle Scholar
  127. Sanchez de la Peña S. (1993) The feedsideward of cephalo-adrenal immune interactions. Chronobiologia 20(1–2): 1–52.PubMedGoogle Scholar
  128. Schmidle A. (1951) Die Tagesperiodizität der asexuellen Reproduktion von Pilobolus sphaerosporus. Arch Mikrobiol 16: 80–100.CrossRefGoogle Scholar
  129. Schmitz O, Brock B, Hollingdal M, Juhl CB, Porksen N. (2002) High-frequency insulin pulsatility and type 2 diabetes: from physiology and pathophysiology to clinical pharmacology. Diabetes Metab 28(6 Suppl): 4S14–20 (Review).PubMedGoogle Scholar
  130. Schuster J, Engelmann W. (1997) Circumnutations of Arabidopsis thaliana seedlings. Biol Rhythm Res 28(4): 422–440.CrossRefGoogle Scholar
  131. Schwartz MD, Nunez AA, Smale L. (2004) Differences in the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Neuroscience 127(1): 13–23.PubMedCrossRefGoogle Scholar
  132. ShinO’Hara K, Oka T. (1994) Protein synthesis inhibitor phase shifts vasopressin rhythms in long-term suprachiasmatic cultures. Neuroreport 5(16): 2201–2204.Google Scholar
  133. Smale L, Lee T, Nunez AA. (2003) Mammalian diurnality: some facts and gaps. J Biol Rhythms 18(5): 356–366 (Review).PubMedCrossRefGoogle Scholar
  134. Smolensky M, Lamberg L. (2000) The Body Clock Guide to Better Health. New York: Henry Holt & Co., 428 pp.Google Scholar
  135. Somers DE, Kay SA. (1998) Genetic approaches to the analysis of circadian rhythms in plants. In: Biological Rhythms and Photoperiodism in Plants. Lumsden PJ, Millar AJ, eds. Oxford: BIOS, pp. 81–98.Google Scholar
  136. Sothern RB, Hermida RC, Nelson R, Mojón A, Koukkari WL. (1998) Reanalysis of filterfeeding behavior of Caddisfly (Brachycentrus) larvae reveals masking and circadian rhythmicity. Chronobiol Intl 15(6): 595–606.Google Scholar
  137. Spieler RE, Meier AH, Noeske TA. (1978) Temperature-induced phase shift of daily rhythm of serum prolactin in gulf killifish. Nature 271(5644): 469–470.PubMedCrossRefGoogle Scholar
  138. Spruyt E, Verbelen J-P, DeGreef JA. (1987) Expression of circaseptan and circannual rhythmicity in the imbibition of dry stored bean seeds. Plant Physiol 84: 707–710.PubMedGoogle Scholar
  139. Stephan FK, Zucker I. (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69(6): 1583–1586.PubMedCrossRefGoogle Scholar
  140. Stevens RG, Davis S, Thomas DB, Anderson LE, Wilson BW. (1992) Electric power, pineal function, and the risk of breast cancer. FASEB J 6(3): 853–860.PubMedGoogle Scholar
  141. Stevens RG, Davis S. (1996) The melatonin hypothesis: electric power and breast cancer. Environ Health Perspect 104(Suppl. 1): 135–140.PubMedCrossRefGoogle Scholar
  142. Sujino M, Masumoto K, Yamaguchi S, van der Horst GT, Okamura H, Inouye SI. (2003) Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr Biol 13(8): 664–668.PubMedCrossRefGoogle Scholar
  143. Sweeney BM, Hastings JW. (1960) Effects of temperature upon diurnal rhythms. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: the Biological Laboratory, pp. 87–104.Google Scholar
  144. Sweeney BM. (1974) The potassium content of Gonyaulax polyhedra and phase changes in the circadian rhythm of stimulated bioluminescence by short exposure to ethanol and valinomycin. Plant Physiol 53: 337–342.PubMedCrossRefGoogle Scholar
  145. Sweeney BM. (1976) Circadian rhythms, definition and general characterization. In: The Molecular Basis of Circadian Rhythms. Hastings JW, Schweiger H-G, eds. Berlin: Abakon, pp. 77–83.Google Scholar
  146. Takahashi JS, Turek FW. (1987) Anisomycin, an inhibitor of protein synthesis, perturbs the phase of a mammalian circadian pacemaker. Brain Res 405(1): 199–203.PubMedCrossRefGoogle Scholar
  147. Taylor WR, Dunlap JC, Hastings JW. (1982) Inhibitors of protein synthesis on 80S ribosomes phase shift the Gonyaulax clock. J Exp Biol 97: 121–136.PubMedGoogle Scholar
  148. Tester JR, Figala J. (1990) Effects of biological and environmental factors on activity rhythms of wild animals. In: Chronobiology: Its Role in Clinical Medicine, General Biology and Agriculture, Part B, Progress in Clinical and Biological Research, Vol. 341B. Hayes DK, Pauly JE, Reiter RJ, eds. New York: Wiley, pp. 809–819.Google Scholar
  149. Truman JW, Riddiford LM. (1970) Neuroendocrine control of ecdysis in silkmoths. Science 167: 1624–1626.CrossRefPubMedGoogle Scholar
  150. Truman JW. (1972) Physiology of insect rhythms II. The silkmoth brain as the location of the biological clock controlling eclosion. J Comp Physiol 81: 99–114.CrossRefGoogle Scholar
  151. Uebelmesser ER. (1954) Über den endonomen Rhythmus der Sporangientrager bildung von Pilobolus. [The endogenous daily rhythm of conidiospore formation of Pilobolus.] Arch Mikrobiol 20(1): 1–33.PubMedCrossRefGoogle Scholar
  152. Underwood H, Menaker M. (1970) Photoperiodically significant photoreception in sparrows: Is the retina involved? Science 167: 298–301.PubMedCrossRefGoogle Scholar
  153. Waalen J. (1993) Nighttime light studied as possible breast cancer risk. J Natl Cancer Inst 85(21): 1712–1713.PubMedCrossRefGoogle Scholar
  154. Waldrop RD, Saydjari R, Rubin NH, Rayford PL, Townsend CM Jr., Thompson JC. (1989) Photoperiod influences the growth of colon cancer in mice. Life Sci 45(8): 737–744.PubMedCrossRefGoogle Scholar
  155. Wasserman L. (1959) Die Auslösung endogen-tagesperiodischer Vorgänge bei Pflanzen durch einmalige Reize. Planta 53: 647–669.CrossRefGoogle Scholar
  156. Wehr TA, Aeschbach D, Duncan WC Jr. (2001) Evidence for a biological dawn and dusk in the human circadian timing system. J Physiol 535 (Pt 3): 937–951.PubMedCrossRefGoogle Scholar
  157. Went FW. (1960) Photo-and thermoperiodic effects in plant growth. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: the Biological Laboratory, pp. 221–230.Google Scholar
  158. Went FW. (1974) Reflections and observations. Annu Rev Plant Physiol 25: 1–26.CrossRefGoogle Scholar
  159. Wever RA. (1979) The Circadian System of Man. Results of Experiments Under Temporal Isolation. New York: Springer-Verlag, 276 pp.Google Scholar
  160. Wilkins MB. (1960) The effect of light upon plant rhythms. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: the Biological Laboratory, pp. 115–129.Google Scholar
  161. Wolfson A. (1959) The role of light and darkness in the regulation of spring migration and reproductive cycles in birds. In: Photoperiodism and Related Phenomena in Plants and Animals. Withrow RB, ed. Washington: American Association for the Advancement of Science Publication 55, pp. 679–716.Google Scholar
  162. Wollnik F, Schmidt B. (1995) Seasonal and daily rhythms of body temperature in the European hamster (Cricetus cricetus) under semi-natural conditions. J Comp Physiol 165(3): 171–182.Google Scholar
  163. Yamazaki S, Goto M, Menaker M. (1999) No evidence for extraocular photoreceptors in the circadian system of the Syrian hamster. J Biol Rhythms 14(3): 197–201.PubMedCrossRefGoogle Scholar
  164. Yin HC. (1941) Studies on the nyctinastic movement of the leaves of Carica papaya. Amer J Bot 28: 250–261.CrossRefGoogle Scholar
  165. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS. (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101(15): 5339–5346.PubMedCrossRefGoogle Scholar
  166. Zylka MJ, Shearman LP, Weaver DR, Reppert SM. (1998) Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20(6): 1103–1110.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Personalised recommendations