Skip to main content

Chronobiometry: Analyzing for Rhythms

  • Chapter
Introducing Biological Rhythms
  • 1262 Accesses

Abstract

Studies that focus on biological rhythms, like those in other areas of biology, include the formulation and testing of hypotheses, as well as the statistical analysis of data representing results obtained from experiments and observations. Procedures by which results from studies of biological rhythms are analyzed range from the visual estimation of period, phase and amplitude, to the use of complex computer-assisted statistical programs based upon mathematical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberola C, Revilla M, Mazariegos R. (1999) Web-base chronobiological analysis. Biol Rhythm Res 30(5): 477–496.

    Article  Google Scholar 

  • Arendt J. (1989) Melatonin and the pineal gland. In: Biological Rhythms in Clinical Practice. Arendt J, Minors DS, Waterhouse JM, eds. London: Wright, pp. 184–206.

    Google Scholar 

  • Bingham C. (1978) Time series. In: International Encyclopedia of Statistics,Vol 2. Kruskal WH, Tanur JM, eds. New York: the Free Press, pp. 1167–1189.

    Google Scholar 

  • Bingham C, Arbogast B, Cornélissen-Guillaume G, Lee JK, Halberg F. (1982) Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia 9: 397–439.

    PubMed  CAS  Google Scholar 

  • Bourdon L, Buguet A, Cucherat M, Radomski MW. (1995) Use of a spreadsheet program for circadian analysis of biological/physiological data. Aviat Space Environ Med 66(8): 787–791.

    PubMed  CAS  Google Scholar 

  • Cornélissen G, Bakken E, Delmore P, Orth-Gomér, Åkerstedt T, Carandente O, Carandente F, Halberg F. (1990) From various kinds of heart rate variability to chronocardiology. Amer J Cardiol 66: 863–867.

    Article  PubMed  Google Scholar 

  • DePrins J, Cornélissen G, Malbecq W. (1986) Statistical procedures in chronobiology and chronopharmacology. In: Annual Review of Chronopharmacology. Vol 2. Reinberg A, Smolensky M, Labrecque G, eds. New York: Pergamon Press, pp. 27–141.

    Google Scholar 

  • DePrins J, Hecquet B. (1994) Data processing in chronobiological series. In: Biologic Rhythms in Clinical and Laboratory Medicine, Touitou Y, Haus E, eds. Berlin: Springer-Verlag, pp. 90–113.

    Google Scholar 

  • Dörrscheidt GJ, Beck L. (1975) Advanced methods for evaluating characteristics parameters (τ, α, φ) of circadian rhythms. J Math Biol 2: 107–121.

    Google Scholar 

  • Domoslawksi J, Zajac W, Lewandowski MH, Hess G. (1991) Chronos-experimental data processing package for chronobiology. J Interdiscipl Cycle Res 22(2): 108–109.

    Google Scholar 

  • Enright JTE. (1981) Data analysis. In: Biological Rhythms. Handbook of Behavioral Neurobiology, Vol 4. Aschoff J, ed. New York: Plenum Press, pp. 21–39.

    Google Scholar 

  • Enright JT. (1989) The parallactic view, statistical testing and circular reasoning. J Biol Rhythms 4(2): 295–304.

    Article  PubMed  CAS  Google Scholar 

  • Faure A, Nemoz C, Claustrat B. (1990) A graphical and statistical technique for investigation of time series in chronobiology according to cosinor procedure. Comput Biol Med 20: 319–329.

    Article  PubMed  CAS  Google Scholar 

  • Fernández JR, Hermida RC. (1998) Inferential statistical method for analysis of nonsinusoidal hybrid time series with unequidistant observations. Chronobiol Intl 15(2): 191–204.

    Article  Google Scholar 

  • Fernández JR, Mojón A, Hermida RC. (2004) Comparison of parameters from rhythmometric models with multiple components on hybrid data. Chronobiol Intl 21(3): 469–484.

    Article  Google Scholar 

  • Fueuntes-Arderiu X, Rivera-Coll A. (1993) Impact of circadian rhythms on the interpretation of stat measurements. Clin Chim Acta 214: 113–118.

    Article  Google Scholar 

  • Halberg F, Tong YL, Johnson EA. (1967) Circadian system phase-an aspect of temporal morphology; procedures and illustrative examples. In: The Cellular Aspects of Biorhythms. von Mayersbach H, ed. Berlin: Springer-Verlag, pp. 20–48.

    Google Scholar 

  • Halberg F, Johnson EA, Nelson W, Runge W, Sothern RB. (1972) Autorhythmometry-procedures for physiologic self-measurement and their analysis. The Physiology Teacher 1: 1–11.

    Google Scholar 

  • Hassnaoui M, Pupier R, Attia J, Blanc M, Beauchaud M, Buisson B. (1998) Some tools to analyze changes of rhythms in biological time series. Biol Rhythm Res 29(4): 353–366.

    Article  Google Scholar 

  • Klemfuss H, Clopton PL. (1994) Seeking Tau: a comparison of six methods. J Interdiscipl Cycle Res 24(1): 1–16.

    Google Scholar 

  • Koukkari WL, Parks TW, Sothern RB. (1999) Individual circadian rhythms in filtering behavior of Trichoptera during synchronized and constant lighting conditions (abstract). NABS 16(1): 218.

    Google Scholar 

  • Lewy AJ, Sack RL. (1989) The dim light melatonin onset (DLMO) as a marker for circadian phase position. Chronobiol Intl 6: 93–102.

    CAS  Google Scholar 

  • Lewy AJ, Cutler NL, Sack RL. (1999) The endogenous melatonin profile as a marker for circadian phase position. J Biol Rhythms 14(3): 227–236.

    Article  PubMed  CAS  Google Scholar 

  • Mattes A, Witte K, Hohmann W, Lemmer B. (1991) Pharmfit-a nonlinear fitting program for pharmacology. Chronobiol Intl 8: 460–476.

    CAS  Google Scholar 

  • Mikulecky M. (1991) Enright’s criticism of cosinor analysis: the solution? J Interdiscipl Cycle Res 22(2): 157.

    Google Scholar 

  • Minors DS, Waterhouse JM. (1989) Analysis of biological times series. In: Biological Rhythms in Clinical Practice. Arendt J, Minors DS, Waterhouse JM, eds. London: Butterworth & Co., pp. 272–293.

    Google Scholar 

  • Mojón A, Fernández JR, Hermida R. (1992) Chronolab: an interactive software package for chronobiologic time series analysis written for the Macintosh computer. Chronobiol Intl 9: 403–412.

    Google Scholar 

  • Monk TH, Fort A. (1984) “Cosina”: a cosine curve fitting program suitable for small computers. Intl J Chronobiol 8: 193–224.

    Google Scholar 

  • Morgan E, Minors DS, eds. (1995) Special Issue: methods in biological time-series analysis. Biol Rhythm Res 26: 124–252.

    Google Scholar 

  • Nelson W, Tong YL, Lee JK, Halberg F. (1979) Methods for cosinor rhythmometry. Chronobiologia 6: 305–323.

    PubMed  CAS  Google Scholar 

  • Plautz JD, Straume M, Stanewsky R, Jamison CF, Brandes C, Dowse HB, Hall JC, Kay SA. (1997) Quantitative analysis of Drosophila period gene transcription in living animals. J Biol Rhythms 12(3): 204–217. (Erratum in: J Biol Rhythms 1999; 14(1): 77.)

    Article  PubMed  CAS  Google Scholar 

  • Refinetti R. (1993) Laboratory instrumentation and computing: comparison of six methods for the determination of the period of circadian rhythms. Physiol Behav 54(5): 869–875.

    Article  PubMed  CAS  Google Scholar 

  • Refinetti R. (2000) Circadian Physiology. Boca Raton: CRC Press, 184 pp. (Note: programs for analyses for time-effects are also available for PCs from this author at: http://www.circadian.org/softwar.html).

    Google Scholar 

  • Reinberg A, Smolensky MH. (1983) Investigative methodology for chronobiology. In: Biological Rhythms and Medicine. Cellular, Metabolic, Physiopathologic and Pharmacologic Aspects. Reinberg A, Smolensky MH, eds. New York: Springer-Verlag, pp. 23–46.

    Google Scholar 

  • Sokolove PG, Bushell WN. (1978) The chi-square periodogram: its utility for analysis of circadian rhythms. J Theor Biol 72: 131–160.

    Article  PubMed  CAS  Google Scholar 

  • Sothern RB, Nelson WL, Halberg F. (1977) A circadian rhythm in susceptibility of mice to the anti-tumor drug, adriamycin. In: Proc XII Intl Conf Intl. Soc Chronobiology, Washington, DC, Aug 10–13, 1975. Milano: Il Ponte, pp. 433–438.

    Google Scholar 

  • Sothern RB. (1992) Studies on Biologically Rhythmic Natural Modifiers of Cancer Treatment in Mice and Man—Chronotherapeutic Concepts and Applications (PhD thesis). Dept of Pathology, University of Bergen, Norway.

    Google Scholar 

  • Sothern RB, Tseng TS, Orcutt S, Olszewski N, Koukkari WL. (2002) GIGANTEA and SPINDLY genes linked to the clock pathway that controls circadian characteristics of transpiration in Arabidopsis. Chronobiol Intl 19(6): 1005–1022.

    Article  CAS  Google Scholar 

  • Straume M. (2004) DNA microarray time series analysis: automated statistical assessment of circadian rhythms in gene expression patterning. Methods Enzymol 383: 149–166 (Review).

    Article  PubMed  CAS  Google Scholar 

  • Tong YL, Nelson WL, Sothern RB, Halberg F. (1977) Estimation of the orthophase-timing of the high values on a non-sinusoidal rhythm — illustrated by the best timing for experimental cancer chronotherapy. In: Proc XII Intl Conf Intl Soc Chronobiol, Washington, DC, Aug 10–13, 1975. Milan: Il Ponte, pp. 765–769.

    Google Scholar 

  • Wang Y, Brown MB. (1996) A flexible model for human circadian rhythms. Biometrics 52: 588–596.

    Article  PubMed  CAS  Google Scholar 

  • Went FW. (1974) Reflections and speculations. Ann Rev Plant Physiol 25: 1–26.

    Article  CAS  Google Scholar 

  • Wever RA. (1979) The Circadian System of Man. Results on Experiments Under Temporal Isolation. New York: Springer-Verlag, 276 pp.

    Google Scholar 

Additional References of Interest

  • Bloomfield E. (1976) Fourier Analysis of Time Series: An Introduction. New York: John Wiley & Sons.

    Google Scholar 

  • Cugini P, DiPalma L. (1994) Cosint analysis: a procedure for estimating biological rhythms as integral function by measuring the area under their best-fitting waveform profile. Biol Rhythm Res 25: 15–36.

    Google Scholar 

  • Del Pozo F, Jimenez J, De Feudis F. (1979) Method for the acquisition and analysis of chronopharmacological data. In: Chronopharmacology. Reinberg A, Halberg F, eds. Oxford: Pergamon Press, pp. 185–192.

    Google Scholar 

  • Hickey DS, Kirkland JL, Lucas SB, Lye M. (1984) Analysis of circadian rhythms by fitting a least squares sine curve. Comp Biol Med 14: 217–233.

    Article  CAS  Google Scholar 

  • Martin W. (1981) Estimation of parameters of circadian rhythms, if measurements cannot be performed around the clock. The case of a band limited signal plus noise. In: Night and Shiftwork: Biological and Social Aspects. Reinberg A, Vieux N, Andlauer P, eds. Oxford: Pergamon Press, pp. 37–44.

    Google Scholar 

  • Sollberger A. (1970) Problems in the statistical analysis of short periodic time series. J Interdiscipl Cycle Res 1: 49–88.

    Google Scholar 

  • Wever RA. (1965) A mathematical model for circadian rhythms. In: Circadian Clocks. Aschoff J, ed. Amsterdam: North-Holland Publication, pp. 47–63.

    Google Scholar 

  • van Cauter E. (1974) Methods for the analysis of multifrequency biological time series. J Interdiscipl Cycle Res 5: 131–148.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2006). Chronobiometry: Analyzing for Rhythms. In: Introducing Biological Rhythms. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4701-5_13

Download citation

Publish with us

Policies and ethics