Physiognomic and chemical characters in wood as palaeoclimate proxies

  • Imogen Poole
  • Pim F. van Bergen
Part of the Tasks for vegetation science book series (TAVS, volume 41)


Fossil wood is both abundant and ubiquitous through geological time and space. During growth the parent plant was directly influenced by the biotic and abiotic (including climatic-) factors in the surrounding environment. The climate affects wood production in a number of ways and it is the resulting physiognomic and chemical characters that can help retrodict palaeoclimate. Physiognomic characters include those morphological and anatomical characters that in turn have enabled the use of wood characters, tree ring characters and statistical parameters (Mean Sensitivity) to determine seasonality, length and favourability of growing season, growth rates and forest productivity. Potential chemical characters discussed include (i) the preservation of wood-derived compounds (e.g. guaiacyl, syringyl p-hydroxyphenyl and resins); (ii) degree of lignin degradation to determine climate induced environmental changes; and (iii) stable isotopes (δD, δ 13C and δ 18O) to help determine aspects of past climates as derived from environmental changes. The feasibility and methodology of these characters, in both angiosperm and conifer wood, are reviewed in order to establish certain safe guards, or prerequisites, such that interpretations of palaeoclimate can be as unbiased, and thus as reliable, as possible.

Key words

Fossil wood Lignin Stable Isotopes Tree rings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aloni R. 2001. Foliar and axial aspects of vascular differentiation: hypothesis and evidence. J. Plant Growth Regul. 20: 22–34.CrossRefGoogle Scholar
  2. Ammons R., Fritz W.J., Ammons R.B. and Ammons A. 1987. Cross-identification of ring signatures in Eocene trees (Sequoia magnifica) from the Speciman Ridge locality of the Yellowstone fossil forests. Palaeogeogr. Palaeoclimatol. Palaeoecol. 60: 97–108.CrossRefGoogle Scholar
  3. Anderson W.T., Bernasconi S.M., McKenzie J.A. and Saurer M. 1998. Oxygen and carbon isotopic record of climatic variability in tree-ring cellulose (Picea abies): an example from central Switzerland (1913–1195). J. Geophys. Res. 103: 635–636.Google Scholar
  4. Ash S.R. and Creber G.T. 1992. Paleaoclimatic interpretation of the wood structures of the trees in the Chinle Formation (Upper Triassic), Petrified Forest National Park, Arizona, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 96: 299–317.CrossRefGoogle Scholar
  5. Baas P. 1973. The wood anatomical range in Ilex (Aquifoliaceae) and its ecological significance. Blumea 21: 193–258.Google Scholar
  6. Baas P. 1976. Some functional and adaptive aspects of vessel member morphology. In: Baas P., Bolton A.J. and Catling D.M. (eds), Leiden Botanical Series 3, Wood Structure in Biological and Technological Research Wood Structure, Leiden University Press, The Hague, pp. 157–181.Google Scholar
  7. Baas P. 1986. Ecological patterns of xylem evolution. In: Givnish J. (ed.), On the Economy of Plant Form and Function, Cambridge University Press, Cambridge, pp. 327–352.Google Scholar
  8. Baas P. and Schweingruber F.H. 1987. Ecological trends in the wood anatomy of trees, shrubs and climbers from Europe. IAWA Bull. n.s. 8: 245–274.Google Scholar
  9. Baas P., Ewers F.W., Savis S.D. and Wheeler E.A. 2004. Evolution of xylem physiology. In: Hemsley A.R. and Poole I. (eds), Linnean Society Symposium Series 21, Evolution of Plant Physiology, Elsevier, Amsterdam, pp. 273–295.Google Scholar
  10. Bates A.L. and Spiker E.C. 1992. Chemical changes and carbon isotope variations in a cross-section of a large Miocene gymnospermous log. Chem. Geol. 101: 247–254.Google Scholar
  11. Benner R., Fogel M.L., Sprague E.K. and Hodson R.E. 1987. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329: 708–710.CrossRefGoogle Scholar
  12. Boon J.J., Stout S.A., Genuit W. and Spackman W. 1989. Molecular paleobotany of Nyssa endocarps. Acta Bot. Neerl. 38: 391–404.Google Scholar
  13. Borchert R. 1999. Climatic periodicity, phenology and cambium activity in tropical dry forest trees. Int. Assoc. Wood Anat. J. 20: 239–247.Google Scholar
  14. Briffa K.R., Schweingruber F.H., Jones P.D., Osborn T.J., Harris I.C., Shiyatov S.G., Vaganov E.A. and Grudd H. 1998. Trees tell of past climates: but are they speaking less clearly today?. Phil. Trans. Roy. Soc. London B 353: 65–73.CrossRefGoogle Scholar
  15. Brison A-L., Philippe M. and Thevenard F. 2001. Are Mesozoic wood growth rings climate-induced? Paleobiology 27: 531–538.CrossRefGoogle Scholar
  16. Carlquist S. 1975. Ecological Strategies in Xylem Evolution. University of California Press, Berkeley.Google Scholar
  17. Carlquist S. 1977. Ecological factors in wood evolution: a floristic approach. Am. J. Bot. 64: 887–896.CrossRefGoogle Scholar
  18. Carlquist S. 1988. Comparative Wood Anatomy Systematic Ecological and Evolutionary aspect of Dicotyledon Wood. 1st ed. Springer Verlag, Berlin.Google Scholar
  19. Carlquist S. 2001. Comparative Wood Anatomy Systematic Ecological and Evolutionary aspect of Dicotyledon Wood 2nd ed. Springer Verlag, Berlin.Google Scholar
  20. Chaloner W.G. and Creber G.T. 1973. Growth rings in fossil woods as evidence of past climates. In: Tarling D.H. and Runcorn S.K. (eds), Implications of Continental Drift to Earth Sciences, Academic Press, New York, pp. 425–437.Google Scholar
  21. Chapman J.L. 1994. Distinguishing internal developmental characteristics from external palaeoenvironmental effects in fossil wood. Rev. Palaeobot. Palynol. 81: 19–32.CrossRefGoogle Scholar
  22. Collinson M.E. 1986. Use of modern generic names for plant fossils. In: Spicer R.A. and Thomas B.A. (eds), Systematic and Taxonomic Approaches in Palaeobotany, Clarendon Press, Systematics Association Special Volume 31, Oxford pp. 91–104.Google Scholar
  23. Creber G.T. 1977. Tree rings: a natural data storage system. Biol. Rev. 52: 349–383.Google Scholar
  24. Creber G.T. and Chaloner W.G. 1984. Influence of environmental factors on the wood structure of living and fossil trees. Bot. Rev. 50: 357–448.Google Scholar
  25. Creber G.T. and Chaloner W.G. 1990. Environmental influences on cambial activity. In: Iqbal M. (ed.), The Vascular Cambium, John Wiley and Sons Inc., New York, pp. 159–199.Google Scholar
  26. Creber G.T. and Francis J.E. 1999. Fossil tree-ring analysis: palaeodendrology. In: Jones T.P. and Rowe N.P. (eds), Fossil Plants and Spores Modern Techniques, Geological Society London, London, pp. 245–250.Google Scholar
  27. Chowdhury K.A. 1964. Growth rings in tropical trees and taxonomy. J. Indian Bot. Soc. 43: 334–343.Google Scholar
  28. Demko T.M., Dubiel R.F. and Parrish J.T. 1998. Plant taphonomy in incised valleys: implications for interpreting paleoclimate from fossil plants. Geology 26: 1119–1122.CrossRefGoogle Scholar
  29. den Outer R.W. and van Veenendaal W.L.H. 1976. Variation in wood anatomy of species with a distribution covering both rainforest and savannah areas of the Ivory Coast, West-Africa. Leiden Bot. Series 3: 182–195.Google Scholar
  30. Douglass A.E. 1928. Climate cycles and tree growth: a study of the annual rings of trees in relation to climate and solar activity. Vol II. Carnegie Institute, Washington Publ. 289.Google Scholar
  31. Falcon-Lang H.J. 1999a. The Early Carboniferous (Courceyan-Arunian) monsoonal climate of the British Isles: evidence from growth rings in fossil woods. Geol. Magazine 136: 177–187.CrossRefGoogle Scholar
  32. Falcon-Lang H.J. 1999b. The early Carboniferous (Asbian-Brigantian) seasonal tropical climate of northern Britain. Palaios 14: 116–126.Google Scholar
  33. Falcon-Lang H.J. 2000a. The relationship between leaf longevity and growth ring markedness in modern conifer woods and its implications for palaeoclimatic studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 160: 317–328.CrossRefGoogle Scholar
  34. Falcon-Lang H.J. 2000b. A method to distinguish between woods produced by evergreen and deciduous coniferopsids on the basis of growth ring anatomy: a new palaeoecological tool. Palaeontology 43: 785–793.CrossRefGoogle Scholar
  35. Falcon-Lang H.J. 2003. Do tree rings in fossil woods give a palaeoclimatic signal? (Conference abstract). IAWA J. 24: 316.Google Scholar
  36. Falcon-Lang H.J. 2005a. Intra-tree variability in wood anatomy, and its implications for fossil wood systematics and palaeoclimatic studies. Palaeontology 48: 171–183.CrossRefGoogle Scholar
  37. Falcon-Lang H.J. 2005b. Global climate analysis of growth rings in woods and its implications for deep time paleoclimate studies. Paleobiology 31: 434–444.CrossRefGoogle Scholar
  38. Falcon-Lang H.J. and Cantrill D.J. 2000. Cretaceous (Late Albian) coniferales of Alexander Island, Antarctica. I. Wood taxonomy, a quantitative approach. Rev. Palaeobot. Palynol. 111: 1–17.PubMedCrossRefGoogle Scholar
  39. Falcon-Lang H.J., Cantrill D.J. and Nichols G.J. 2001. Biodiversity and terrestrial ecology of a mid Creaceous, high latitude floodplain, Alexander Island, Antarctica. J. Geol. Soc. London 158: 709–724.CrossRefGoogle Scholar
  40. February E. 1993. Sensitivity of xylem vessel size and frequency to rainfall and temperature implications for palaeontology. Palaeontol. Afr 30: 91–95.Google Scholar
  41. Fielding C.R. and Alexander J. 2001. Fossil tees in ancient fluvial channel deposits: evidence of seasonal and longer-term climatic variability. Palaeogeogr. Palaeoclimatol. Palaeoecol. 170: 59–80.CrossRefGoogle Scholar
  42. Fielding C.R., Alexander J. and Newman-Sutherland E. 1997. Preservation of in situ, arborescent vegetation and fluvial bar construction in the Burdekin river of north Queensland, Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 135: 123–144.CrossRefGoogle Scholar
  43. Figueiral I. and Mosbrugger V. 2000. A review of charcoal analysis as a tool for assessing Quaternary and Tertiary environments achievements and limits. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164: 397–407.CrossRefGoogle Scholar
  44. Francis J.E. 1984. The seasonal environment of the Purbeck (Upper Jurassic) fossil forests. Palaeogeogr. Palaeoclimatol. Palaeoecol. 48: 285–307.CrossRefGoogle Scholar
  45. Francis J.E. 1986. Growth rings in Cretaceous and Tertiary wood from Antarctica and their palaeoclimatic implications. Palaeontology 29: 665–684.Google Scholar
  46. Francis J.E. 1988. A 50-million year old fossil forest from Strathcona Fiord, Ellesmere Island, Arctic Canada: evidence for a warm polar climate. Arctic 41: 314–318.Google Scholar
  47. Francis J.E. and Poole I. 2002. Cretaceous and Tertiary climates of Antarctica: evidence from fossil wood. Palaeogeogr. Palaeoclimatol. Palaeoecol. 182: 47–64.CrossRefGoogle Scholar
  48. Francis J.E. Woolfe K.J. Arnott M.J. and Barrett P.J. 1994. Permian climates of the southern margins of Pangea: evidence from fossil wood in Antarctica. Soc. Petrol. Mem. 17: 275–282.Google Scholar
  49. Fritts H.C. 1976. Trees Rings and Climate. Academic Press, New York London.Google Scholar
  50. Fritts H.C. 1991. Reconstructing Large-Scale Climate Patterns from Tree-ring Data. A Diagnostic Analysis. University of Arizona Press, Tuscon.Google Scholar
  51. Gartner B.L. 1995. Patterns of xylem variation within a tree and their hydraulic and mechanical consequences. In: Gartner B.L. (ed.), Plant Stems: Physiology and Functional Morphology, Academic Press, London, pp. 125–149.Google Scholar
  52. Galimov E.M. 1985. The Biological Fractionation of Isotopes. Academic Press, Orlando.Google Scholar
  53. Goñi M.A. 1997. Record of terrestrial organic matter composition in amazon fan sediments. In: Flood R.D., Piper D.J.W., Klaus A. and Peterson L.C. (eds), Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 155, pp. 519–530.Google Scholar
  54. Gregory-Wodzicki K.M. 2001. Paleoclimatic implications of tree-ring growth characteristics of 34.1 Ma Sequoiaoxylon pearsallii from Florissant Colorado. Proceedings of the Denver Museum of Nature and Science 4(1), pp. 163–186.Google Scholar
  55. Greguss P. 1972. Xylotomy of Living Conifers. Akademia Kiado, Budapest.Google Scholar
  56. Grice K., van Aarssen B.G.K., Jiang D., Alexander R. and Kagi R.I. 2001. Stable carbon isotpic compositions and distributions of higher plant biomarkers reflecting palaeoclimate changes during the Jurassic. 20th International meeting on organic geochemistry, Abstracts Volume 1. Université Henri Poincaré, Vandoeuvre. p. 175.Google Scholar
  57. Gröcke D.R. 1998. Carbon-isotope analyses of fossil plants as a chemostratigraphic and palaeoenvironmental tool. Lethaia 31: 1–13.CrossRefGoogle Scholar
  58. Gröcke D.R. 2002. The carbon isotope composition of ancient CO2 based on higher-plant organic matter. Phil. Trans. Roy. Soc. London A 360: 633–658.CrossRefGoogle Scholar
  59. Gröcke D.R., Hesselbo S.P. and Jenkyns H.C. 1999. Carbonisotope composition of Lower Cretaceous fossil wood, oceanatmosphere chemistry and relation to sea-level change. Geology 27: 155–158.CrossRefGoogle Scholar
  60. Hedges J.I., Lowie G.L., Ertel J.R., Barbour R.J. and Hatcher P.G. 1985. Degradation of carbohydrates and lignins in buried woods. Geochim. Cosmochim. Acta 49: 701–711.CrossRefGoogle Scholar
  61. Hedges J.I., Ertel J.R. and Leopold E.B. 1982. Lignin geochemistry of a Late Quaternary core from Lake Washington. Geochim. Cosmochim. Acta 46: 1869–1877.CrossRefGoogle Scholar
  62. Henry H.A.L. and Aarssen L.W. 1999. The interpretations of stem diameter-height allometry in trees: biomechanical constraints, neighbour effects or biased regressions?. Ecol. Lett. 2: 89–97.CrossRefGoogle Scholar
  63. Herendeen P.S. 1991. Lauraceous wood from the mid-Cretaceous Potomac group of eastern North America: Paraphyllanthoxylon marylandense sp. nov. Rev. Palaeobot. Palynol. 69: 277–290.CrossRefGoogle Scholar
  64. Hesselbo S.P., Gröcke D.R., Jenkyns H.C., Bjerrum C.J., Farrimond P., Morgans Bell H.S. and Green O.R. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406: 392–395.PubMedCrossRefGoogle Scholar
  65. Hook D.D. 1984. Adaptations to flooding with fresh water. In: Kozlowski T.T. (ed.), Flooding and Plant Growth, Academic Press, London, pp. 265–293.Google Scholar
  66. Hunt R.J. and Poole I. 2003. Revising Palaeogene West Antarctic climate and vegetation history in light of new data from King George Island. In: Wing S.L., Gingerich P.D., Schmitz B. and Thomas E. (eds), Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America Special Paper 369, pp. 395–412.Google Scholar
  67. Jacoby G.C. 1989. Overview of tree ring analysis in tropical regions. IAWA J. 10: 99–108.Google Scholar
  68. Jane F.W. 1962. The Structure of Wood. A&C Black, London.Google Scholar
  69. Jefferson T.J. 1982. The early Cretaceous forests of Alexander Island, Antarctica. Palaeontology 25: 681–708.Google Scholar
  70. Jefferson T.J. and Taylor T.N. 1983. Permian and Triassic woods from the Transantarctic Mountains: paleoenvironmental indicators. Antarct. J. US 1983: 55–57.Google Scholar
  71. Jones T.P. 1994. 13C enriched Lower Carboniferous fossilplants from Donegal, Ireland: carbon isotope constraints on taphonomy, diagenesis and palaeoenvironment. Rev. Palaeobot. Palynol. 81: 53–64.CrossRefGoogle Scholar
  72. Keller A.M. and Hendrix M.S. 1997. Palaeoclimatological analysis of a Late Jurassic petrified forest, Southeastern Mongolia. Palaios 12: 282–291.Google Scholar
  73. Kershaw A.P. and Nix H.A. 1988. Quantitative palaeoclimatic estimates from pollen data using bioclimatic profiles of extant taxa. J. Biogeogr. 15: 589–602.CrossRefGoogle Scholar
  74. Koizumi A., Takata K., Yamashita K. and Nakada R. 2003. Anatomical characteristics and mechanical properties of Larix sibirica grown south-central Siberia. IAWA J. 24: 355–370.Google Scholar
  75. Kuder T. and Kruge M.A. 1998. Preservation of biomolecules in sub-fossil plants from raised peat bogs — a potential paleoenvironmental proxy. Org. Geochem. 29: 1355–1368.CrossRefGoogle Scholar
  76. Kumagai H., Sweda T., Hayashi K., Satoru K., Basinger J.F., Shibuya M. and Fukaoa Y. 1995. Growth-ring analysis of Early Tertiary conifer woods from the Canadian High Arctic and its palaeoclimatic implications. Palaeogeogr. Palaoeclimatol. Palaeoecol. 116: 247–262.CrossRefGoogle Scholar
  77. La Marche V.C. 1982. Sampling strategies. In: Hughes M.K., Kelly P.M., Pilcher J.R. and La Marche V.C. (ed), Climate from Tree Rings, Cambridge University Press, Cambridge, p. 4.Google Scholar
  78. Langenheim J.H. 2003. Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany. Timber Press, Cambridge.Google Scholar
  79. Larsen R.R. 1967. Silvicultural control on the characteristics of woods used for furnish. In: ANON (ed), Proceedings of the 4th TAPPI Forest Biology Conference. Pulp and Paper Research Institute of Canada, Quebec, pp. 143–150.Google Scholar
  80. Larson P.R. 1956. Discontinuous growth rings in suppressed slash pine. Trop. Woods 104: 80–99.Google Scholar
  81. Liang M-M., Bruch A., Collinson M.E., Mosbrugger V., Li C.-S., Sun Q.-G. and Hilton J. 2003. Testing the climatic estimates from different palaeobotanical methods: an example from the Middle Miocene Shanwang flora of China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198: 279–301.CrossRefGoogle Scholar
  82. Lindorf H. 1994. Eco-anatomical wood features of species from a very dry tropical forest. IAWA J. 15: 361–384.Google Scholar
  83. Lipp J., Trimborn P., Graf W., Edwards T. and Becker B. 1996. Climate signals in a 2H and 13C chronology (1882–1989) from tree rings of spruce (Picea abies L.), Schussbach forest, Germany. In: Dean J.S., Meko D.M. and Swetnam T.W. (eds), Tree Rings, Environment, and Humanity. Radiocarbon. Department of Geosciences, The University of Arizona, Tucson, pp. 603–610.Google Scholar
  84. Loader N.J., Robertson I., Barker A.C., Switsur V.R. and Waterhouse J.S. 1997. An improved technique for the batch processing of small whole wood samples to α-cellulose. Chem. Geol. 136: 313–317.CrossRefGoogle Scholar
  85. Loader N.J., Robertson I. and McCarroll D. 2003. Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings. Palaeogeogr. Palaeoclimatol. Palaeoecol. 196: 395–407.CrossRefGoogle Scholar
  86. Lücke A., Helle G., Schleser G.H., Figueiral I., Mosbrugger V., Jones T.P. and Rowe N.P. 1999. Environmental history of the German Lower Rhine Embayment during the Middle Miocene as reflected by carbon isotopes of brown coal. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154: 339–352.CrossRefGoogle Scholar
  87. Mayr C., Frenzel B., Friedrich M., Spurk M., Stichler W. and Trimborn P. 2003. Stable carbon-and hydrogen-isotope ratios of subfossil oaks of southern Germany: methodology and application to a composite record for the Holocene. Holocene 13: 393–402.CrossRefGoogle Scholar
  88. Monserud R.A. 1986. Time-series analysis of tree ring chronologies. Forest Sci. 32: 349–372.Google Scholar
  89. Morgans H.S. 1999. Lower and Middle Jurassic woods of the Cleveland Basin (North Yorkshire), England. Palaeontology 42: 303–328.CrossRefGoogle Scholar
  90. Morgans H.S., Hesselbo S.P. and Spicer R.A. 1999. The seasonal climates in the Early-Middle Jurassic, Cleveland Basin, England. Palaios 14: 261–272.Google Scholar
  91. Mosbrugger V. 1999. The nearest living relative method. In: Jones T.P. and Rowe N.P. (eds), Fossil Plants and Spores Modern Techniques, The Geological Society, London, pp. 261–265.Google Scholar
  92. Mosbrugger V. and Utescher T. 1997. The coexistence approach — method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 134: 61–86.CrossRefGoogle Scholar
  93. Otto A. and Wilde V. 2001. Sesqui-, di-and triterpenoids as chemosystematic markers in extant conifers — a review. Bot. Rev. 67: 141–238.Google Scholar
  94. Otto A., Walther H. and Püttmann W. 1994. Molecular composition of a leaf-and root-bearing Oligocene oxbow lake clay in the Weisselster Basin, Germany. Org. Geochem. 22: 275–286.CrossRefGoogle Scholar
  95. Poole I. 2000. Variation — nature’s spanner or an unrecognized tool? Palaios Online 15: 1–2.Google Scholar
  96. Poole I. and van Bergen P.F. 2002. Carbon isotope ratio analysis of organic moieties from fossil mummified wood: Establishing optimum conditions for off-line pyrolysis extraction using GC/MS. Rapid Commun. Mass Spectrom. 16: 1–6.CrossRefGoogle Scholar
  97. Poole I. and Francis J.E. 1999. Reconstruction of Antarctic palaeoclimates using angiosperm wood anatomy. Acta Palaeobot. Suppl. 2: 173–179.Google Scholar
  98. Poole I., Hunt R.J. and Cantrill D.J. 2001. A fossil wood flora from King George Island: ecological implications for an Antarctic Eocene vegetation. Ann. Bot. 88: 33–54.CrossRefGoogle Scholar
  99. Poole I., Mennega A.M.W. and Cantrill D.J. 2003. Valdivian ecosystems in the late Cretaceous and early Tertiary of Antarctica as evidenced from fossil wood. Rev. Palaeobot. Palynol. 124: 9–27.CrossRefGoogle Scholar
  100. Poole I., Richter H. and Francis J.E. 2000. Gondwanan origins for Sassafras (Lauraceae)? evidence from Late Cretaceous fossil wood of Antarctica. IAWA J. 21: 463–475.Google Scholar
  101. Poole I., Cantrill D.J. and Utescher T. 2005. Reconstructing Antarctic palaeoclimate from wood floras — a comparison using multivariate anatomical analysis and the Coexistence Approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222: 95–121.CrossRefGoogle Scholar
  102. Poole I., Dolezych M., Kool J., van der Burgh J. and van Bergen P.F. Do stable carbon isotopes of brown coal woods record changes in Miocene palaeoecology? Palaeogeogr. Palaeoclimatol. Palaeoecol. (submitted).Google Scholar
  103. Poole I., van Bergen P.F., Kool J., Schouten S.S. and Cantrill D. 2004. Molecular isotopic heterogeneity of fossil organic matter: implications for δ 13Cbiomass and δ 13Cpalaeoatmosphere proxies. Org. Geochem. 35: 1261–1274.CrossRefGoogle Scholar
  104. Reid E.M. and Chandler M.E.J. 1933. The Flora of the London Clay. British Museum (Natural History), London.Google Scholar
  105. Saurer M., Aellen K. and Siegwolf R. 1997. Correlating δ 13C and δ 18O in cellulose of trees. Plant Cell Environ. 20: 1543–1550.CrossRefGoogle Scholar
  106. Saurer M., Cherubini P. and Siegwolf R. 2000. Oxygen isotopes in tree rings of Abies alba: the climatic significance of inter-decadal variations. J. Geophys. Res. Atmos. 105: 12461–12470.CrossRefGoogle Scholar
  107. Savidge R.A. 1996. Xylogenesis, genetic and environmental regulation — a review. IAWA Bull. 10: 170–174.Google Scholar
  108. Savva Y.V., Schweingruber F.H., Vaganov E.A. and Milyutin L.I. 2003. Influence of climate change on tree-ring characteristics of Scots pine provenances in southern Siberia (forests-teppe). IAWA J. 24: 371–383.Google Scholar
  109. Schleser G.H., Frielingsdorf J. and Blair A. 1999. Carbon isotope behaviour in wood and cellulose during artificial aging. Chem. Geol. 158: 121–130.CrossRefGoogle Scholar
  110. Schulman E. 1938. Classification of false annual rings in Monterey pine. Tree-ring Bull. 4: 4–7.Google Scholar
  111. Schweingruber F.H. 1993. Morphological, Anatomical and Tree-ring Analytical Characteristics of Trees Frequently used in Dendrochronology (Springer Series in Wood science). Springer Verlag, GmbH & Co, Berlin, Heidelberg.Google Scholar
  112. Sheng Hu F., Hedges J.I., Gordon E.S. and Brubaker L.B. 1999. Lignin biomarkers and pollen in postglacial sediments of an Alaskan lake. Geochim. Cosmochim. Acta 63: 1421–1430.CrossRefGoogle Scholar
  113. Simoneit B.R.T. 1998. Biomarker PAHs in the environment. In: Hutzinger, O. (ed.), The Handbook of Environmental Chemistry. PAHs and Related Compounds. 3, Part I, A.H. Neilson (ed.), Springer Verlag, Berlin, pp. 175–221.Google Scholar
  114. Spiker E.C. and Hatcher P.G. 1987. The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood. Geochim. Cosmochim. Acta 51: 1385–1391.CrossRefGoogle Scholar
  115. Stankiewicz B.A., Mastalerz M., Kruge M.A., van Bergen P.F. and Sadowska A. 1997. A comparative study of modern and fossil cone scales and seeds of conifers: a geochemical approach. New Phytol. 135: 375–393.CrossRefGoogle Scholar
  116. Stone E.C. and Vasey R.B. 1968. Preservation of coast redwood on alluvial flats. Science 159: 157–161.CrossRefPubMedGoogle Scholar
  117. Stout S.A., Boon J.J. and Spackmans W. 1988. Molecular aspects of the peatification and early coalification of angiosperm and gymnosperm woods. Geochem. Cosmochem. Acta 52: 405–414.CrossRefGoogle Scholar
  118. Stout S.A., Spackman W., Boon J.J., Kistemaker P.G. and Bensley D.F. 1989. Correlations between the microscopic and chemical changes in wood during peatification and early coalification: a canonical variant study. Int. J. Coal Geol. 13: 41–64.CrossRefGoogle Scholar
  119. Strackee J. and Jansma E. 1992. The statistical properties of ‘mean sensitivity’ a reappraisal. Dendrochronologia 10: 121–135.Google Scholar
  120. Stuiver M. and Braziunas T.F. 1987. Tree cellulose 13C/12C isotope ratios and climate change. Nature 328: 58–60.CrossRefGoogle Scholar
  121. Switsur R. and Waterhouse J. 1998. Stable isotopes in tree-ring cellulose. In: Griffiths H. (ed.), Stable Isotopes — Integration of Biological, Ecological and Geochemical Processes, Bios Scientific, Oxford, pp. 303–321.Google Scholar
  122. Switsur R., Waterhouse J.S., Field E.M. and Carter A.H.C. 1996. Climatic signals from stable isotopes in oak trees from East Anglia, Great Britain. In: Dean J.S., Meko D.M. and Swetnam T.W. (eds), Tree Rings, Environment, and Humanity Radiocarbon, Department of Geosciences, The University of Arizona, Tucson, pp. 637–645.Google Scholar
  123. Waterhouse J.S., Switsur V.R., Barker A.C., Carter A.H.C. and Robertson I. 2002. Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values? Earth Planet. Sci. Lett. 201: 421–430.CrossRefGoogle Scholar
  124. Tardif J., Camarero J.J., Ribas M. and Gutierrez E. 2003. Spatiotemporal variability in tree growth in the Central Pyrenees: Climatic and site influences. Ecol. Monogr. 73: 241–257.Google Scholar
  125. Taylor E.L., Taylor T.N. and Cúneo N.R. 1992. The present is not the key to the past: a polar forest from the Permian of Antarctica. Science 257: 1675–1677.CrossRefPubMedGoogle Scholar
  126. Terral J.-F. and Mengüal X. 1999. Reconstruction of Holocene climate in southern France and eastern Spain using quantitative anatomy of olive wood and archaeological charcoal. Palaeogeogr. Palaeoclimatol. Palaeoecol. 153: 71–92.CrossRefGoogle Scholar
  127. Tomlinson P.B. and Craighead F.C. 1972. Growth ring studies on the native trees of sub-tropical Florida. In: Ghouse A.K.M. and Yunus M. (eds), KA Chowdhury Commemoration Volume, Tata McGraw-Hill, New Delhi, pp. 39–51.Google Scholar
  128. van Aarssen B.G.K., Alexander R. and Kagi R.I. 2000. Higher plant biomarkers reflect palaeovegetation changes during Jurassic times. Geochim. Cosmochim. Acta 64: 1417–1424.CrossRefGoogle Scholar
  129. van Bergen P.F. 1994. Paleaobotany of Propagules: An Investigation combining Microscopy and Chemistry. University of London, UK, PhD thesis.Google Scholar
  130. van Bergen P.F. 1999. Pyrolysis and chemolysis of fossil plant remains: applications to palaeobotany. In: Jones T.P. and Rowe N.P. (eds), Fossil Plants and Spores: Modern Techniques, The Geological Society, London, pp. 143–148.Google Scholar
  131. van Bergen P.F. and Poole I. 2002. Stable carbon isotopes in wood: A clue to palaeoclimate?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 182: 31–45.CrossRefGoogle Scholar
  132. van Bergen P.F., Collinson M.E., Briggs D.E.G., de Leeuw J.W., Scott A.C., Evershed R.P. and Finch P. 1995. Resistant biomacromolecules in the fossil record. Acta Bot. Neerl. 44: 319–342.Google Scholar
  133. van Bergen P.F., Flannery M.B., Poulton P.R. and Evershed R.P. 1998. Organic Geochemical Studies of Soils From Rothamsted Experimental Station: III Nitrogen-Containing Macromolecular Moieties in Soil Organic Matter from Geescroft Wilderness. In: Stankiewicz B.A. and van Bergen P.F. (eds), ACS Symposium Series, 707, Nitrogen-Containing Macromolecules in the Bio-and Geosphere, Oxford University Press, New York, pp. 321–338.Google Scholar
  134. van Bergen P.F., Blokker P., Collinson M.E., Sinninghe Damsté J.S. and de Leeuw J.W. 2004. Structural biomacromolecules in plants: What can be learnt from the fossil record?. In: Hemsley A.R. and Poole I. (eds), Linnean Society Symposium Series, 21, Evolution of Plant Physiology, Elsevier, Amsterdam, pp. 133–154.Google Scholar
  135. van der Heijden E. and Boon J.J. 1994. A combined pyrolysis mass spectrometric and light microscopic study of peatified Calluna wood isolated from raised peat deposits. Org. Geochem. 22: 903–919.CrossRefGoogle Scholar
  136. van der Heijden E., Bouman F. and Boon J.J. 1994. Anatomy of recent and peatified Calluna vulgaris stems: implications for coal maceral formation. Int. J. Coal Geol. 25: 1–25.CrossRefGoogle Scholar
  137. Vetter R.E. and Botosso P.C. 1989. Remarks on age and growth rate determination of Amazonian trees. IAWA Bull. n.s. 10: 135–145.Google Scholar
  138. Wheeler E.A. and Baas P. 1991. A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Bull. 12: 275–332.Google Scholar
  139. Wheeler E.A. and Baas P. 1993. The potential and limitations of dicotyledonous wood anatomy for climatic reconstructions. Paleobiology 19: 487–498.Google Scholar
  140. Wheeler E.A. and Manchester S.R. 2002. Woods of the Eocene nut beds Flora Clarno formation, Oregon USA. IAWA J. Suppl. 3: 1–188.Google Scholar
  141. Wiemann M.C., Dilcher D.L. and Manchester S.R. 2001. Estimation of mean annual temperature from leaf and wood physiognomy. Forest Sci. 47: 141–149.Google Scholar
  142. Wiemann M.C., Wheeler E.A., Manchester S.R. and Portier K.M. 1998. Dicotyledonous wood anatomical characters as predictors of climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 139: 83–100.CrossRefGoogle Scholar
  143. Wiemann M.C., Manchester S.R. and Wheeler E.A. 1999. Paleotemperature estimation from dicotyledonous wood anatomical characters. Palaios 14: 459–474.Google Scholar
  144. Wiesberg L. 1974. Die 13C-Abnahme in Holz von Baumjahresringen, eine Untersuchung zur anthropogenen Beeinflussung des CO2-Haushaltes der Atmosphäre. Dissertation, RWTH Aachen.Google Scholar
  145. Wilson K. and White D.J.B. 1986. The Anatomy of Wood: Its Diversity and Variability. Stobart & Son Ltd, London.Google Scholar
  146. Woodcock D.W. 1994. Occurrence of woods with a gradation in vessel diameter across a ring. IAWA J. 15: 277–385.Google Scholar
  147. Woodcock D.W. and Ignas C.M. 1994. Prevalence of wood characters in eastern North America: what characters are most promising for interpreting climates from fossil wood? Am. J. Bot. 81: 1243–1251.CrossRefGoogle Scholar
  148. Worbes M. 1985. Structural and other adaptations to long-term flooding by trees in Central Amazonia. Amazonia 9: 459–484.Google Scholar
  149. Worbes M. 1989. Growth rings, increment and age of trees in inundation forests, savannahs and a mountain forest in the Neotropics. IAWA Bull. n.s. 10: 109–122.Google Scholar
  150. Worbes M. 1995. How to measure growth dynamics in tropical trees — a review. IAWA J. 16: 337–351.Google Scholar
  151. Worbes M. 1999. Annual growth rings, rainfall dependent growth and long term growth pattern in tropical trees from Caparo Forest Reserve in Venezuela. J. Ecol. 87: 391–403.CrossRefGoogle Scholar
  152. Xie S., Nott C.J., Avsejs L.A., Volders F., Maddy D., Chambers F.M., Gledhill A., Carter J.F. and Evershed R.P. 2000. Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat. Org. Geochem. 31: 1053–1057.CrossRefGoogle Scholar
  153. Yadav R.R. and Bhattacharyya 1996. Climatic significance of growth rings in Mesozoic woods from India. Palaeobotanist 45: 57–63.Google Scholar
  154. Yao Z.Q., Lui L.J. and Zhang S.A. 1994. Permian wood from western Henan, China: implications for palaeoclimatological interpretations. Rev. Palaeobot. Palynol. 80: 277–290.CrossRefGoogle Scholar
  155. Zobel B.J. and van Buijtenen J.P. 1989. Wood Variation: Its Causes and Controls. Springer-Verlag, Berlin.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Imogen Poole
    • 1
    • 2
    • 3
  • Pim F. van Bergen
    • 3
    • 4
  1. 1.Palaeontological MuseumOslo UniversityOsloNorway
  2. 2.National Herbarium of the Netherlands, University of Utrecht BranchUtrecht UniversityUtrechtThe Netherlands
  3. 3.Geochemistry, Earth SciencesUtrecht UniversityUtrechtThe Netherlands
  4. 4.Shell Global SolutionsFlow AssuranceAmsterdamThe Netherlands

Personalised recommendations