• Ingeborg Klingen
  • Solveig Haukeland
Part of the Progress in Biological Control book series (PIBC, volume 2)


The soil is the home of innumerable forms of plants, animals and microbes, and life in the soil is highly diverse, ranging from microscopic single-celled organisms to large burrowing animals. As in above ground environments, there are well-defined food chains and competition for survival in the soil environment (Foth & Turk, 1990). Biotic and abiotic interactions in soil ecosystems may enhance or reduce populations of pest arthropods (defined here as insects and mites). Ninety percent of arthropod pest species spend at least part of their life cycle in soil (Gaugler, 1988; Villani & Wright, 1990; Kaya & Gaugler, 1993). Soil dwelling pest arthropods have natural enemies among soil organisms, but also pests that occasionally come into contact with soil might be consumed by predators or become infected with pathogenic propagules (Sunderland 1975; Purvis & Curry, 1984, Tanada & Kaya 1993; Hajek, 1997; Eilenberg & Meadow, 2002).


Natural Enemy Pest Insect Entomopathogenic Fungus Entomopathogenic Nematode CABI Publishing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, B.J. & Nguyen, K.B. (2000). Taxonomy and Systematics. In R. Gaugler (ed.). Entomopathogenic Nematology, CAB International, London, 1–56.Google Scholar
  2. Adjei, M.B., Frank, J.H., & Gardner, C.S. (2003). Survey of pest mole crickets (Orthoptera: Gryllotalpidae) activity on pasture in south-central Florida. Florida Entomologist, 86: 199–205.Google Scholar
  3. Agrios, G.N. (1997). Plant Pathology. Academic Press, London.Google Scholar
  4. Akhurst, R.J., Bedding , R.A., Bull, R.M., & Smith, D.R.J. (1991). An epizootic of Heterorhabditis spp. (Heterorhabditidae: Nematoda) in sugar cane scarabaeids (Coleoptera). Fundamental and Applied Nematology, 15: 71–73.Google Scholar
  5. Allen, J.A. (2004). Avian and mammalian predators of terrestrial gastropods. In: Barker, G.M. (ed.). Natural Enemies of Terrestrial Mollusks. Landcare Research, Hamilton, New Zealand. CABI Publishing, Wallingford, UK, 1–36.Google Scholar
  6. Alexander, M. (1977). Introduction to Soil Microbiology. John Wiley & Sons, New York.Google Scholar
  7. Andalo, V., Moino, A., Santa-Cecilia, L.V.C., & Souza, G.C. (2004). Compatibility of Beauveria bassiana with chemical pesticides for the control of the coffee root mealybug Dysmicoccus texensis Tinsley (Hemiptera: Pseudococcidae). Neotropical Entomology, 33: 463–467.Google Scholar
  8. Andersen, A. (1997). Densities of overwintering carabids and staphylinids (Col, Carabidae and Staphylinidae) in cereal and grass fields and their boundaries. Journal of Applied Entomology, 121: 77–80.Google Scholar
  9. Andersen, A. (1999). Plant protection in spring cereal production with reduced tillage. II. Pests and beneficial insects. Crop Protection, 18: 651–657.Google Scholar
  10. Andersen, A., & Eltun, R. (2000). Long-term developments in the carabid and staphylinid (Col., Carabidae and Staphylinidae) fauna during conversion from conventional to biological farming. Journal of Applied Entomology, 124: 51–56.Google Scholar
  11. Andersen, A., Sjursen, H., & Rafoss, T. (2004). Biodiversity of Agromyzidae (Diptera) in biologically and conventionally grown spring barley and grass field. Biological Agriculture and Horticulture, 22: 143–155.Google Scholar
  12. Anderson, T.E., Hajek, A.E., Roberts, D.W., Preisler, H.K., & Robertson, J.L. (1989). Colorado potato beetle (Coleoptera: Chrysomelidae) effects of combinations of Beauveria bassiana with insecticides. Journal of Economic Entomology, 82: 83–89.Google Scholar
  13. Anderson, T.E., & Roberts, D.W. (1983). Compatibility of Beauveria bassiana isolates with insecticide formulations used in Colorado potato beetle (Coleoptera: Chrysomelidae) control. Journal of Economic Entomology, 76: 1437–1441.Google Scholar
  14. Anderson, J., & Skorping, A. (1991). Parasites of carabid beetles: prevalence depends on habitat selection of the host. Canadian Journal of Zoology, 69: 1216–1220.Google Scholar
  15. Ansari, M.A., Long, P.K., & Moens, M. (2003). Heterorhabditis bacteriophora (Heterorhabditidae: Rhabditida), parasitic in natural populations of white grubs (Coleoptera: Scarabaeidae) in Belgium. Russian Journal of Nematology, 11: 57–59.Google Scholar
  16. Bardgett, R.D., & Cook, R. (1998). Functional aspects of soil animal diversity in agricultural grasslands. Applied Soil Ecology, 10: 263–276.Google Scholar
  17. Barker, G.M. (2002). Mollusks as Crop Pests. Landcare Research, Hamilton, New Zealand. CABI Publishing, Wallingford, UK.Google Scholar
  18. Barker, G.M. (2004). Natural Enemies of Terrestrial Molluscs. Landcare Research, Hamilton, New Zealand. CABI Publishing, Wallingford, UK.Google Scholar
  19. Barker, G.M., Knutson, L., Vala, J-C. , Coupland, J.B., & Barnes, J.K. (2004). Overview of the biology of marsh flies (Diptera: Sciomyzidae), with special reference to predators and parasitoids of terrestrial gastropods. In: G.M. Barker (ed.). Natural Enemies of Terrestrial Mollusks. Landcare Research, Hamilton, New Zealand. CABI Publishing, 159–226, Wallingford, UK, 159–226.Google Scholar
  20. Bathon, H. (1996). Impact of entomopathogenic nematodes on non-target hosts. Biocontrol Science and Technology 6: 421–434.Google Scholar
  21. Barbercheck, M.E. (1992). Effect of soil physical factors on biological control agents of soil insect pests. Florida Entomologist, 75: 539–548.Google Scholar
  22. Barbercheck, M.E., & Duncan, L. (2004). Abiotic factors. In R. Gaugler & A.L. Bilgrami (eds.). Nematode behaviour, CABI Publishing, Wallingford, UK, 309–344.Google Scholar
  23. Barbercheck, M.E., & Kaya, H.K. (1991). Effect of host condition and soil texture on host finding by the entomogenous nematodes Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) and Steinernema carpocapsae (Rhabditida: Steinernematidae). Environmental Entomology, 20: 582–589.Google Scholar
  24. Baur, M.E., & Kaya, H.K. (2001). Persistence of entomopathogenic nematodes. In M.E. Baur & J. Fuxa (eds.). Environmental Persistence of Entomopathogens and Nematodes. Southern Cooperative Series Bulletin 398. Oklahoma Agricultural Experiment Station, Stillwater, Oklahoma, USA.Google Scholar
  25. Bedding, R., Akhurst, R., & Kaya, H.K. (1993). Nematodes and the Biological Control of Insect Pests. CSIRO Publications, Victoria, Australia.Google Scholar
  26. Bednarek, A., & Gaugler, R. (1997). Compatibility of soil amendments with entomopathogenic nematodes. Journal of Nematology, 29: 220–227.Google Scholar
  27. Bidochka, M.J., Kamp, A.M., Lavender, T.M., Dekoning, J., & De Croos, J.N.A. (2001). Habitat association in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae: Uncovering cryptic species. Applied and Environmental Microbiology, 67: 1335–1342.PubMedGoogle Scholar
  28. Bing, L.A., & Lewis, L.C. (1993). Occurrence of the entomopathogen Beauveria bassiana (Balsamo) Vuillemin in different tillage regimes and in Zea mays L. and virulence towards Ostrinia nubilalis (H ü bner). Agriculture, Ecosystems and Environment, 45: 147–156.Google Scholar
  29. Boag, B., & Yeates, G.W. (2004). Population dynamics. Nematode behaviour. R. Gaugler & A.L. Bilgrami (eds.). CABI Publishing, Wallingford, UK. 345–370.Google Scholar
  30. Boff, M.I.C., van Tol, R.H.W.M., & Smits, P.H. (2002). Behavourial response of Heterorhabditis megidis towards plant roots and insect larvae. BioControl, 47: 67–83.Google Scholar
  31. Bongers, T. (1990). The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83: 14–19.Google Scholar
  32. Bonkowski, M., Griffiths, B.S., & Ritz, K. (2000). Food preferences of earthworms for soil fungi. Pedobiologia, 44: 666–676.Google Scholar
  33. Bovien, P. (1937). Some types of associations between nematodes and insects. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening, 101: 1–114.Google Scholar
  34. Brown, I.M., & Gaugler, R. (1996). Cold tolerance of steinernematid and heterorhabditid nematodes. Journal of Thermal Biology, 21: 115–121.Google Scholar
  35. Brown, I.M., & Gaugler, R. (1998). Survival of steinernematid nematodes exposed to freezing. Journal of Thermal Biology, 23: 75–80.Google Scholar
  36. Brown, I.M., Lovett, B.J., Grewal, P.S., & Gaugler, R. (2002). Latent infection: a low temperature survival strategy in steinernematid nematodes. Journal of Thermal Biology, 27: 531–539.Google Scholar
  37. Broza, M., Pereira, R.M., & Stimac, J.L. (2001). The nonsusceptibility of soil Collembola to insect pathogens and their potential as scavengers of microbial pesticides. Pedobiologia, 45: 523–534.Google Scholar
  38. Buckley, D.H., & Schmidt, T.M. (2002). Exploring the biodiversity of soil -a microbial rain forest. In J.T. Staley & A.- L. Reysenbach (eds.). Biodiversity of Microbial Life. John Wiley & Sons Inc., New York, 183–208.Google Scholar
  39. Cannon, P.F. (1996). Filamentous fungi. In G.S. Hall (ed.). Methods for the examination of organismal diversity in soils and sediments. CAB International, Wallingford, UK, 125–143.Google Scholar
  40. Cannon, P.F., & Kinsey, G.C. (1996). Isolation and identification of fungi associated with soil and leaf litter. In. P.F. Cannon (ed.). Isolation and Identification of Fungi from Natural Habitats. Course held at International Mycological Institute. 18–22 November 1996. CAB International Surrey, UK.Google Scholar
  41. Capinera, J.L., Blue, S.L., & Wheeler, G.S. (1982). Survival of earthworms exposed to Neoaplectana carpocapsae nematodes. Journal of Invertebrate Pathology, 39: 419–421.Google Scholar
  42. Carruthers, R.I. (1981). The Biology and Eology of Entomophthora muscae (Cohn) in the Onion Agroecosystem. Michigan State University, USA (PhD thesis).Google Scholar
  43. Carruthers, R.I., Haynes, D.L., & MacLeod, D.M. (1985). Entomophthora muscae (Entomophthorales: Entomophthoraceae) mycosis in the onion fly Delia antiqua (Diptera: Anthomyiidae). Journal of Invertebrate Pathology, 45: 81–93.Google Scholar
  44. Carruthers, R.I., & Soper, R.S. (1987). Fungal diseases. In J.R. Fuxa & Y. Tanada (eds.). Epizootiology of insect diseases. John Wiley & Sons, Inc., New York, 357–416.Google Scholar
  45. Chandler, D., Hay, D., & Reid, A.P. (1997). Sampling and occurrence of entomopathogenic fungi and nematodes in UK soils. Applied Soil Ecology, 5: 133–141.Google Scholar
  46. Chen, S., Li, J., Han, X., & Moens, M. (2003). Effect of temperature on the pathogenicity of entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) to Delia radicum. BioControl, 48: 713–724.Google Scholar
  47. Coaker, T.H., & Finch, S. (1971). The cabbage root fly, Erioischia brassicae (Bouché). National Vegetable Research Station Twenty-first Annual Report 1970, Wellsbourne, Warwick, 23–42.Google Scholar
  48. Coleman, D.C. (1986). The role of microfloral and faunal interactions in affecting soil processes. In: M.J., Mitchell & J.P. Nakas (eds.). Microfloral and Faunal Interactions in Natural and Agro-ecosystems. Martinus Nijhoff/ Dr W. Junk Publishers, 317–398.Google Scholar
  49. Coleman, D.C., Crossley, D.A.Jr., & Hendrix, P.F. (2004). Fundamentals of Soil Ecology. Elsevier Academic Press, London.Google Scholar
  50. Cutler, G.C., & Webster, J.M. (2003). Host-finding ability of three entomopathogenic nematode isolates in the presence of plant roots. Nematology, 5: 601–608.Google Scholar
  51. Dallinger, R., Berger, B., Triebskorn-Köhler, R., & K ö hler, H. (2001). Soil Biology and ecotoxicology. In: Barker, G.M. (ed.). The Biology of Terrestrial Molluscs. CABI Publishing, Wallingford, UK. 489–525Google Scholar
  52. De Croos, J.N.A., & Bidochka, M.J. (1999). Effects of low temperature on growth parameters in the entomopathogenic fungus Metarhizium anisopliae. Canadian Journal of Microbiology, 45: 1055–1061.Google Scholar
  53. De Ley, P. (2000). Lost in worm space: Phylogeny and morphology as road maps to nematode diversity. Nematology 2: 9–16.Google Scholar
  54. De Ley, P., & Blaxter, M. (2002). Systematic position and phylogeny. In D.L. Lee (ed.). The Biology of Nematodes. Taylor & Francis, London. 1–30.Google Scholar
  55. De Nardo, E.A.B., Sindermann, A.B., Grewal, S.K., & Grewal, P.S. (2004). Non-susceptibility of earthworm Eisenia fetida to the rhabditid nematode Phasmarhabditis hermaphrodita, a biocontrol agent of slugs. Biocontrol Science and Technology, 14: 93–98.Google Scholar
  56. De Oliveira, R.C., & Neves, P.M.O.J. (2004). Compatibility of Beauveria bassiana with Acaricides. Neotropical Entomology, 33: 353–358.Google Scholar
  57. Dighton, J., Jones, H.E., Robinson, C.H., & Beckett, J. (1997). The role of abiotic factors, cultivation practices and soil fauna in the dispersal of genetically modified microorganisms in soils. Applied Soil Ecology, 5: 109–131.Google Scholar
  58. Dillon, A. (2003). Biological Control of the Large Pine Weevil, Hylobius abietis L., (Coleoptera: Curculionidae) using Entomopathogenic Nematodes. PhD thesis, National University of Maynooth, Ireland.Google Scholar
  59. Dritschilo, W., & Wanner, D. (1980). Ground beetles abundance in organic and conventional corn fields. Environmental Entomology, 9: 629–631.Google Scholar
  60. Dromph, K.M. (2001). Dispersal of entomopathogenic fungi by collembolans. Soil Biology & Biochemistry, 33: 2047–2051.Google Scholar
  61. Dromph, K.M. (2003). Collembolans as vectors of entomopathogenic fungi. Pedobiologia, 47: 245–256.Google Scholar
  62. Duddington, C.L. (1965). Biological control - predaceous fungi. In J.N. Sasser & W.R. Jenkins (eds.) Nematology, Fundamentals and Recent Advances with Emphasis on Plant Parasitic and Soil Forms. The University of North Carolina Press, Chapel Hill, USA, 461–465.Google Scholar
  63. Dugaw, C.J., Hastings, A., Preisser, E.L., & Strong, D.R. (2004). Seasonally limited host supply generates microparasite population cycles. Bulletin of Mathematical Biology, 66: 583–594.PubMedGoogle Scholar
  64. Duncan, L.W., & McCoy, C.W. (2001). Hydrolic lift increases herbivory by Diaprepes abbreviatus larvae and persistence of Steinernema riobrave in dry soil. Journal of Nematology, 33: 142–146.Google Scholar
  65. Duncan, L.W., Dunn, D.C., Bague, G., & Nguyen, K. (2003). Competition between entomopathogenic and free-living bactivorous nematodes in larvae of the weevil Diaprepes abbreviatus. Journal of Nematology, 35: 187–193.Google Scholar
  66. Dutky, S.R. (1959). Insect microbiology. Advances in Applied Microbiology, 1: 175–200.PubMedGoogle Scholar
  67. Ehlers, R.-U. (1996). Current and future use of nematodes in biocontrol: practice and commercial aspects with regard to regulatory policy issues. Biocontrol Science and Technology, 6: 303–316.Google Scholar
  68. Ehlers, R.-U., Deseö, K.V., & Stackebrandt, E. (1991). Identification of Steinernema spp. (Nematoda) and their symbiotic bacteria Xenorhabdus spp. from Italian and German soils. Nematologica, 37: 360–366.Google Scholar
  69. Ekesi, S., Maniania, N.K., & Lux, S.A. (2003). Effect of soil temperature and moisture on survival and infectivity of Metarhizium anisopliae to four tephritid fruit fly puparia. Journal of Invertebrate Pathology, 83: 157–167.PubMedGoogle Scholar
  70. Eilenberg, J., Hajek, A.E., & Lomer, C. (2001). Suggestions for unifying the terminology in biological control. BioControl, 46: 387–400.Google Scholar
  71. Eilenberg, J., & Meadow, R. (2002). Fungi for biological control of brassica root flies Delia radicum and Delia floralis. In R.K. Upadhyay (ed.). Advances in Microbial Control of Insect Pests. Kluwer Academic/ Plenum Publishers, New York, 181–191.Google Scholar
  72. Enkerli, J., Widmer, F., & Keller, S. (2004). Long-term field persistence of Beauveria brongniartii strains applied as biocontrol agents against European cockchafer larvae in Switzerland. Biological Control, 29: 115–123.Google Scholar
  73. Enright, M.R., McInerney, J.O., & Griffin, C.T. (2003). Characterization of endospore-forming bacteria associated with entomopathogenic nematodes, Heterorhabditid spp., and description of Paenibacillus nematophilus sp. nov. International Journal of Systematic and Evolutionary Microbiology, 53: 435–441.PubMedGoogle Scholar
  74. Evans, H.F. (2000). Viruses. Field Manual of Techniques in Invertebrate Pathology. In L.A. Lacey & H.K. Kaya, (eds.). Kluwer Academic Publishers, London, 179–208.Google Scholar
  75. Fadl, A., Purvis, G., & Towey, K. (1996). The effect of time of soil cultivation on the incidence of Pterostichus melanarius (Illig) (Coleoptera: Carabidae) in arable land in Ireland. Annales Zoologici Fennici, 33: 207–214.Google Scholar
  76. Fain, A. (2004). Mites (Acari) parasitic and predaceous on terrestrial gastropods. In G.M. Barker (ed.). Natural Enemies of Terrestrial Molluscs. CABI Publishing Wallingford, UK, 505–524.Google Scholar
  77. Fenton, A., Fairbairn, J., Norman, J., & Hudson, P. (2001). Evaluating the optimum use of entomopathogenic nematodes as biological control agents: A populations dynamics approach. In C.T. Griffin, A.M. Burnell, M.J. Downes & Mulder, R. (eds.). Developments in Entomopathogenic Nematode/bacterial Research. European Commission, Luxembourg, 132–139.Google Scholar
  78. Fenton, A., & Sands, S.A. (2004). Optimal parasite infection strategies: a state-dependent approach. International Journal for Parasitology, 34: 813–821.PubMedGoogle Scholar
  79. Feltham, D.L., Chaplain, M.A.J., Young, I.M., & Crawford, J.W. (2002). A mathematical analysis of a minimal model of nematode migration in soil. Journal of Biological Systems, 10: 15–32.Google Scholar
  80. Ferris, H. (1993). New frontiers in nematode ecology. Journal of Nematology, 25: 374–382.Google Scholar
  81. Ferris, H., Bongers, T., & de Goede, R.G.M. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18: 13–29.Google Scholar
  82. Filipjev, I.N., & Schuurmans-Stekhoven J.H. Jr. (1941). A Manual of Agricultural Helminthology. E.J. Brill, Leiden, Netherlands.Google Scholar
  83. Foth, H.D. (1984). Fundamentals of Soil Science. John Wiley & Sons, Inc., London.Google Scholar
  84. Foth, H.D., & Turk, L.M. (1990). Fundamentals of Soil Science. John Wiley & Sons, Inc., London.Google Scholar
  85. Frank, J.H., Parkman, J.P., & Bennett, F.D. (1995). Larra bicolor (Hymenoptera: Sphecidae), a biological control agent of scapteriscus mole crickets (Orthoptera: Gryllotalpidae), established in northern Florida. Florida Entomologist, 78: 619–623.Google Scholar
  86. Freckman, D.W., & Baldwin, J.G. (1990), Nematoda. In D.L. Dindal (ed.). Soil Biology Guide. John Wiley & Sons, New York, 155–200.Google Scholar
  87. Friedman, M.J. (1990). Commercial production and development. In R. Gaugler & H.K. Kaya (eds.). Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, Florida USA, 153–172.Google Scholar
  88. Fuxa, J.R. (1998). Environmental manipulation for microbial control of insects. In P. Barbosa (ed.). Conservation Biological Control. Academic Press, London, 255–268.Google Scholar
  89. Fuxa, J.R., & Tanada, Y. (1987). Epizootiology of Insect Diseases. John Wiley & Sons, New York.Google Scholar
  90. Gaugler, R., (1988). Ecological considerations in the biological control of soil-inhabiting insects with entomopathogenic nematodes. Agriculture, Ecosystems and Environment, 24: 351–361.Google Scholar
  91. Gaugler, R. (2002). Entomopathogenic Nematology. CABI Publishing, Wallingford, UK.Google Scholar
  92. Gaugler, R., & Han, R. (2002). Production technology. In R. Gaugler (ed.). Entomopathogenic Nematology CABI Publishing, Wallingford, UK. 289–310.Google Scholar
  93. Gaugler, R., & Kaya H.K. (1990). Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, Florida, USA.Google Scholar
  94. Gaugler, R., LeBeck, L., Nagaki, B., & Boush, G.M. (1980). Orientation of the entomogenous nematode Neoaplectana carpocapsae to carbon dioxide. Environmental Entomology, 9: 649–652.Google Scholar
  95. Georgis, R, Kaya, H.K., & Gaugler, R. (1991). Effect of steinernematid and heterorhabditid nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) of nontarget arthropods. Environmental Entomology, 20: 815–822.Google Scholar
  96. Glaser, I. (2002). Survival biology. In R. Gaugler (ed.). Entomopathogenic Nematology. CABI publishing, Wallingford, UK 169–187.Google Scholar
  97. Goettel, M.S., Hajek, A.E., Siegel, J.P., & Evans, H.C. (2001). Safety of fungal biocontrol agents. In T.M., Butt C. Jackson & N. Magan. Fungi as Biocontrol Agents. Progress, Problems and Potential. CABI Publishing, Wallingford, UK, 347–375.Google Scholar
  98. Goodey (1951). Soil and Freshwater Nematodes. Methuen & Co, London.Google Scholar
  99. Gouge, D.H., Smith, K.A., Lee, L.L., & Henneberry, T.J. (2000). Effect of soil depth and moisture on the vertical distribution of Steinernema riobrave (Nematoda: Steinernematidae). Journal of Nematology, 32: 223–228.Google Scholar
  100. Gradinarov, D. (2003). New natural hosts of entomopathogenic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae) from Bulgaria. Acta Zoologica Bulgarica, 55: 59–64.Google Scholar
  101. Gradinarov, D., Shishiniova, M., & Budurova, L. (2000). Entomopathogenic nematodes of the family Steinernematidae in Bulgaria -distribution in natural ecosystems and hosts. Acta Entomologica Bulgarica, 6: 34–39.Google Scholar
  102. Grant, J.A., & Villani, M.G. (2003a). Soil moisture effects on entomopathogenic nematodes. Environmental Entomology, 32: 80–87.Google Scholar
  103. Grant, J.A., & Villani, M.G. (2003b). Effects of soil rehydration on the virulence of entomopathogenic nematodes. Environmental Entomology 32: 983–991.Google Scholar
  104. Grewal, P.S. (2002). Formulation and application technology. In R. Gaugler (ed.). Entomopathogenic Nematology. CABI Publishing, Wallingford, UK, 265–287.Google Scholar
  105. Grewal, P.S., & Grewal, S.K. (2003). Survival of earthworms exposed to the slug-parastic nematode Phasmarhabditis hermaphrodita. Journal of Invertebrate Pathology, 82: 72–74.PubMedGoogle Scholar
  106. Grewal, P.S., Selvan, S., & Gaugler, R. (1994). Thermal adaption of entomopathogenic nematodes: niche breadth for infection, establishment, and reproduction. Journal of Thermal Biology, 19: 245–253.Google Scholar
  107. Grewal, P.S., Grewal, S., Tan, L., & Adams, B.J. (2003). Parasitism of molluscs by nematodes: Types of associations and evolutionary trends. Journal of Nematology, 35: 146–156.Google Scholar
  108. Griffin, C.T. (1993). Temperature responses of entomopathogenic nematodes: Implications for the success of biological control programs. In R. Bedding, R. Akhurst & H.K. Kaya (eds.). Nematodes and the Biological Control of Insect Pests. CSIRO, Australia, 115–126.Google Scholar
  109. Gurr, G., Wratten, S.D., & Barbosa, P. (2000). Success in conservation biological control of Arthropods. In G. Gurr & S. Wratten (eds.). Biological Control: Measures of Success. Kluwer Academic Publishers, London, 105–132.Google Scholar
  110. Gökce, A., & Er, M.K. (2003). First description of disease by Conidiobolus osmodes on Tipula paludosa larvae with the report of a natural epizootic. Journal of Invertebrate Pathology, 84: 83–89.PubMedGoogle Scholar
  111. Hajek, A.E. (1997). Ecology of terrestrial fungal entomopathogens. In: Jones (ed.) Advances in Microbial Ecology. Plenum Press, New York, 193–249.Google Scholar
  112. Hajek, A.E., Delalibera Jr, I., & Butler, L. (2003). Entomopathogenic fungi as classical biological control agents. In H.M.T. Hokkanen & A.E. Hajek (eds.). Environmental Impacts of Microbial Insecticides. Need and Methods for Risk Assessment. Kluwer Academic Publishers, London, 15–34.Google Scholar
  113. Hajek, A.E., Delalibera Jr, I., & McManus, M.L. (2000). Introduction of exotic pathogens and documentation of their establishment and impact. In L.A. Lacey & H.K. Kaya (eds.). Field Manual of Techniques in Invertebrate Pathology. Kluwer Academic Publishers, London, 339–369.Google Scholar
  114. Hajek, A.E., & Humber, R.A. (1997). Formation and germination of Entomophaga maimaiga azygospores. Canadian Journal of Botany, 75: 1739–1747.Google Scholar
  115. Hajek, A.E., & Leger, R.J.St. (1994). Interactions between fungal pathogens and insect hosts. Annual Review of Entomology, 39: 293–322.Google Scholar
  116. Hajek, A.E., Wheeler, M., & Siegert, N.W. (2004). Using bioassays to estimate abundance of Entomophaga maimaiga resting spores in soil. Journal of Invertebrate Pathology: 86, 61–64.PubMedGoogle Scholar
  117. Hazir, S., Stock, S.P., Kaya, H.K., Koppenhofer, A.M., & Keskin, N. (2001). Developmental temperature effects on five geographic isolates of the entomopathogenic nematode Steinernema feltiae (Nematoda: Steinernematidae). Journal of Invertebrate Pathology, 77: 243–250.PubMedGoogle Scholar
  118. Haukeland, S. (1993). Entomopathogenic nematodes found in Norway. Norwegian Journal of Agricultural Sciences, 7: 13–17.Google Scholar
  119. Hawksworth, D.L. (1991). The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycological Research, 95: 641–655.Google Scholar
  120. Hawksworth, D.L. (2001). The magnitude of fungal diversity: the 1.5 million species estimate revised. Mycological Research, 105: 1422–1432.Google Scholar
  121. Hokkanen, H.M.T., & Hajek, A.E. (2003). Environmental Impacts of Microbial Insecticides. Kluwer Academic Publishers, London.Google Scholar
  122. Hokkanen, H., & Holopainen, J.K. (1986). Carabid species and activity densities in biologically and conventional managed cabbage fields. Journal of Applied Entomology, 102: 353–363.Google Scholar
  123. Hominick, W.H. (2002). Biogeography. In R. Gaugler (ed.). Entomopathogenic Nematology. CABI publishing, Wallingford, UK, 115–143.Google Scholar
  124. Hominick, W.H., & Kerry, B. (2002). Biological control. In D. Lee (ed.). The Biology of Nematodes. Taylor & Francis, London, 483–509.Google Scholar
  125. Hominick, W.M., Reid, A.P., Bohan, D.A., & Briscoe, B.R. (1996). Entomopathogenic nematodes: Biodiversity, geographical distribution and the convention on biological diversity. Biocontrol Science and Technology, 6: 317–331.Google Scholar
  126. Hozzank, A., Keller, S., Daniel, O., & Schweizer, Ch. (2003a). Impact of Beauveria brongniartii and Metarhizium anisopliae (Hyphomycetes) on Lumbricus terrestris (Oligochaeta, Lumbricidae). Insect Pathogens and Insect Parasitic Nematodes, IOBC WPRS Bulletin, 26: 31–34.Google Scholar
  127. Hozzank, A., Wegensteiner, R., Waitzauber, W., Burnell, A., & Mrácek, Z. (2003b). Investigations on the occurrence of entomopathogenic fungi and entomoparasitic nematodes in soils from Lower Austria. Insect Pathogens and Insect Parasitic Nematodes, IOBC WPRS Bulletin, 26: 77–80.Google Scholar
  128. Howarth, F.G. (2000). Non-target effects of biological control agents. In G. Gurr & S. Wratten (eds.). Biological Control: Measures of Success. Kluwer Academic Publishers, London, 369–403.Google Scholar
  129. Hull, R. (2002). Plant virology. Academic Press, London.Google Scholar
  130. Humber, R.A., (1997). Fungi: Identification. In: L. Lacey (ed.). Manual of Techniques in Insect Pathology. Academic Press, London.Google Scholar
  131. Hummel, R.L., Walgenbach, J.F., Barbercheck, M.E., Kennedy, G.G., Hoyt, G.D., & Arellano, C. (2002). Effects of production practices on soil-borne entomopathogens in western North Carolina vegetable systems. Environmental Entomology, 31: 84–91.Google Scholar
  132. Hunt, W.H., Wall, D.H., Decrappeo N.M., & Brenner, J.S. (2001). A model for nematode locomotion in soil. Nematology, 3: 705–716.Google Scholar
  133. Hunter-Fujita, F.R., Entwistle, P.F., Evans, H.F., & Crook, N.E. (1998). Insect Viruses and Pest Management.. John Wiley & Sons, New York.Google Scholar
  134. Iglesias, J., Castillejo, J., & Castro, R. (2003). The effects of repeated applications of the molluscicide metaldehyde and the biocontrol nematode Phasmarhabditis hermaphrodita on molluscs, earthworms, nematodes, acarids and collembolans: a two-year study in north-west Spain. Pest Management Sciences, 59: 1217–1224.Google Scholar
  135. Ignoffo, C.M., Garcia, C., Hostetter, D.L., & Pinnell, R.E. (1977). Vertical movement of conidia of Nomuraea rileyi through sand and loam soils. Journal of Economic Entomology, 70: 163–164.Google Scholar
  136. Inglis, G.D., Goettel, M.S., Butt, T.M., & Strasser, H. (2001). Use of Hyphomycetous fungi for managing insect pests. In T.M. Butt, C. Jackson & N. Magan (eds.). Fungi as Biocontrol Agents. Progress, Problems and Potential. CABI Publishing, Wallingford, UK, 23–69.Google Scholar
  137. Ingold, C.T., & Hudson, H.J. (1993). The Biology of Fungi. Chapman & Hall, London.Google Scholar
  138. Inyang, E.N., Butt, T.M., Doughty, K.J., Todd, A.D., & Archer, S. (1999). The effect of isothiocyanates on the growth of the entomopathogenic fungus Metarhizium anisopliae and its infection of the mustard beetle. Mycological Research, 103: 974–980.Google Scholar
  139. Irigaray, F.J.S.D., Marco-Mancebon, V., & Perez-Moreno, I. (2003). The entomopathogenic fungus Beauveria bassiana and its compatibility with triflumuron: effects on the twospotted spider mite Tetranychus urticae. Biological Control, 26: 168–173.Google Scholar
  140. Jackson, T.A., Alves, S.B., & Pereira, R.M. (2000). Success in biological control of soil-dwelling insects by pathogens and nematodes. In G. Gurr & S. Wratten (eds.). Biological Control: Measures of Success. Kluwer Academic Publishers, London, 271–296.Google Scholar
  141. Jonasson, T., Ahlström-Olsson, M., & Johansen, T.J. (1995). Aleochara suffusa and A. bilineata [Col: Staphylinidae] as parasitoids of Brassica root flies in northern Norway. Entomophaga, 40: 163–167.Google Scholar
  142. Jones, F.G.W. (1978). The soil-plant environment. In: J.F. Southey (ed.), Plant Nematology. Her Majesty’s Stationary Office, London, UK, 46–62.Google Scholar
  143. Kaiser, H. (1991). Terrestrial and semiterrestrial Mermithidae. In W.R. Nickle (ed.) Manual of Agricultural Nematology. Marcel Decker, Inc. New York, 899–966.Google Scholar
  144. Kaya, H.K. (1990). Soil Ecology. In R. Gaugler & H.K. Kaya (eds.), Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, Florida USA, 93–115.Google Scholar
  145. Kaya, H.K. (2002). Natural enemies and other antagonists. In R. Gaugler (ed.). Entomopathogenic Nematology. CABI publishing, Wallingford, UK, 189–203.Google Scholar
  146. Kaya, H.K., & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology, 38: 181–206.Google Scholar
  147. Keller, S. (1992). The Beauveria-Melolontha project: experiences with regard to locust and grasshopper control. In: C.J. Lomer & C. Prior. Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, UK, 279–286Google Scholar
  148. Keller, S., Kessler, P., & Schweizer, C. (2003). Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metarhizium anisopliae. BioControl, 48: 307–319.Google Scholar
  149. Keller, S., Parli, B., Lujan, M., & Schweizer, C. (1993). Influence of fungicides on the insect pathogenic fungus Beauveria bassiana (Sacc) Petch. Anzeiger für Schä dlingskunde Pflanzenschutz Umweltschutz, 66: 108–114.Google Scholar
  150. Keller, S., & Zimmermann, G. (1989). Mycopathogens of soil insects. In N. Wilding, N.M. Coillins, P.M. Hammond & J.F. Webber (eds.). Insect-fungus Interactions. Academic Press, London, 239–270.Google Scholar
  151. Kenis, M., Wegensteiner, R., & Griffin, C.T. (2004). Parasitoids, predators, nematodes and pathogens associated with bark weevil pests in Europe. In: F. Lieutier, K.R., Day, A., Battisti, J.C., Gregoire, & H.F. Evans (eds.). Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Kluwer Academic Publishers, Dordrecht, Netherlands, 395–414.Google Scholar
  152. Kessler, P., Enkerli, J., Schweizer, C. & Keller, S. (2004). Survival of Beauveria brongniartii in the soil after application as a biocontrol agent against the European cockchafer Melolontha melolontha. BioControl, 49: 563–581.Google Scholar
  153. Kessler, P., Matzke, H. & Keller, S. (2003). The effect of application time and soil factors on the occurrence of Beauveria brongniartii applied as a biological control agent in soil. Journal of Invertebrate Pathology, 84: 15–23.PubMedGoogle Scholar
  154. Kleespies, von R., Bathon, H., & Zimmermann, G. (1989). Investigation on the natural occurrence of entomopathogenic fungi and nematodes in different soils in the surroundings of Darmstadt. Gesunde Pflanzen, 41: 350–354. (In German, English summary).Google Scholar
  155. Klingen, I. (2000). Natural occurrence of insect pathogenic fungi and their pathogenicity on different host species with emphasis on Delia radicum and Delia floralis. Agricultural University of Norway (PhD thesis 2000:24).Google Scholar
  156. Klingen, I., Eilenberg, J., & Meadow, R. (2002a). Impact of farming system, field margins and bait insect on the occurrence of insect pathogenic fungi in soils. Agriculture, Ecosystems and Environment, 91: 191–198.Google Scholar
  157. Klingen, I., Hajek, A.E., Meadow, R., & J.A.A. Renwick (2002b) Effect of brassicaceous plants on the survival and infectivity of insect pathogenic fungi. BioControl, 47: 411–425.Google Scholar
  158. Klingen, I., Meadow, R., & Aandahl, T. (2002c). Mortality of Delia floralis, Galleria mellonella and Mamestra brassicae treated with insect pathogenic hyphomycetous fungi. Journal of Applied Entomology, 126: 231–237.Google Scholar
  159. Klingen, I., Salinas, S.H., & Meadow, R. (2002d). Checklist of naturally occurring pathogens of insects and mites in Norway. Norwegian Journal of Entomology, 49: 23–28.Google Scholar
  160. Klubertanz, T.H., Pedigo, L.P., & Carlson, R.E. (1991). Impact of fungal epizootics on the biology and management of the twospotted spider mite (Acari, Tetranychidae) in soybean. Environmental Entomology, 20: 731–735.Google Scholar
  161. Koppenhofer, A.M., Baur, M.E., Stock, S.P., Choo, H.Y., Chinnasri, B., & Kaya, H.K. (1997). Survival of entomopathogenic nematodes within host cadavers in dry soil. Applied Soil Ecology, 6: 231–240.Google Scholar
  162. Koppenhofer, A.M., & Fuzy E.M. 2003. Ecological characterization of Steinernema scarabaei, a scarab-adapted entomopathogenic nematode from New Jersey. Journal of Invertebrate Pathology, 83: 139–148.PubMedGoogle Scholar
  163. Koppenhofer, A.M., Jaffee, B.A., Muldoon, A.E., & Strong, D.R. (1997). Suppression of an entomopathogenic nematode by the nematode-trapping fungi Geniculifera paucispora and Monacrosporium eudermatum as affected by the fungus Arthrobotrys oligospora. Mycologia, 89: 220–227.Google Scholar
  164. Koppenhofer, A.M., Jaffee, B.A., Muldoon, A.E., Strong, D.R., & Kaya, H.K. (1996). Effect of nematode-trapping fungi on an entomopathogenic nematode originating from the same field site in California. Journal of Invertebrate Pathology, 68: 246–252.PubMedGoogle Scholar
  165. Koppenhofer, A.M., Kaya, H.K., & Taormino, S.P. (1995). Infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae) at different soil depths and moisture. Journal of Invertebrate Pathology, 65: 193–199.Google Scholar
  166. Koppenhofer, A.M., & Kaya, H.K. (1998). Synergism of Imidacloprid and an entomopathogenic nematode: a new approach to white grub (Coleoptera: Scarabaeidae) control in turfgrass. Journal of Economic Entomology, 91: 618– 623.Google Scholar
  167. Koppenhofer, A.M. & Kaya, H.K. (1999). Ecological characterization of Steinernema rarum. Journal of Invertebrate Pathology, 73: 120–128.PubMedGoogle Scholar
  168. Kouassi, M., Coderre, D., & Todorva, S.I. (2003). Effects of the timing of applications on the incompatibility of three fungicides and one isolate of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina). Journal of Applied Entomology, 127: 421–426.Google Scholar
  169. Kowalska, J. (2000). Effect of the alternative host Strophosoma faber (Herbst) on efficacy of the entomopathogenic nematode Steinernema glaseri in control of Amphimallon solstitiale grubs in the soil. Journal of Plant Protection Research, 40: 244–248.Google Scholar
  170. Kraglund, H.O., & Ekelund, F. (2002). Infestation of natural populations of earthworm cocoons by Rhabditid and Cephalobid nematodes. Pedobiologia, 46: 125–135.Google Scholar
  171. Krall, E.L. (1991). Wheat and grass nematodes: Anguina, Subanguina, and related genera. In W.R. Nickle (ed.). Manual of Agricultural Nematology. Marcel Dekker Inc., New York, 721–760.Google Scholar
  172. Kung, S.-P., & Gaugler, R. (1990). Soil type and entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 55: 401–406.Google Scholar
  173. Kung, S.-P., & Gaugler, R. (1991). Effects of soil temperature, moisture, and relative humidity on entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 57: 242–249.Google Scholar
  174. Kung, S.-P., Gaugler, R., & Kaya, H. (1990). Influence of soil pH and oxygen on persistence of Steinernema spp. Journal of Nematology, 22: 440–445.Google Scholar
  175. Lacey, L.A., Mesquita, A.L.M., Mercadier, G., Debire, R., Kazmer, D.J., & Leclant, F. (1997). Acute and sublethal activity of the entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) on adult Aphelinus asychis (Hymenoptera: Aphelinidae). Environmental Entomology, 26: 1452–1460.Google Scholar
  176. Lacey, L.A., Unruh, T.R. & Headrick H.L. (2003). Interactions of two idiobiont parasitoids (Hymenoptera: Ichneumonidae) of codling moth (Lepidoptera: Tortricidae) with the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae). Journal of Invertebrate Pathology, 83: 230–239.PubMedGoogle Scholar
  177. Lee, D.J. (2002). The Biology of Nematodes. Taylor & Francis London.Google Scholar
  178. Lei, Z., Rutherford, T.A., & Webster, J.M. (1992). Heterorhabditid behaviour in the presence of the cabbage maggot, Delia radicum, and its host plants. Journal of Nematology, 24: 9–15.Google Scholar
  179. Lewis, E.E. (2002). Behavioural ecology. In: R. Gaugler (ed.), Entomopathogenic nematology. CABI Publishing, Wallingford, UK, 205–224.Google Scholar
  180. Lewis, E.E., Campbell, J.F., & Gaugler, R. (1998). A conservation approach to using entomopathogenic nematodes in turf and landscapes. In P. Barbosa (ed.). Conservation Biological Control. Academic Press, London, 235–254.Google Scholar
  181. Li, W., Fang, X.F., & Sheng, C.F. (2004). Impact of sixteen chemical pesticides on conidial germination of two entomophthoralean fungi: Conidiobolus thromboides and Pandora nouryi. Biocontrol Science and Technology, 14: 737–741.Google Scholar
  182. Li, D.P., & Holdom, D.G. (1994). Effects of pesticides on growth and sporulation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes). Journal of Invertebrate Pathology, 63: 209–211.Google Scholar
  183. Long, S.J., Richardson, P.N., & Fenlon, J.S. (2000). Influence of temperature on the infectivity of entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) to larvae and pupae of the vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae). Nematology, 2: 309–317.Google Scholar
  184. Lynch, J.M. (1990). Introduction: Some consequences of microbial rhizosphere competence for plant and soil. In J.M. Lynch. The Rhizosphere. John Wiley & Sons, New York, 1–10.Google Scholar
  185. Magdoff, F. (2001). Concept, components and strategies of soil health in agroecosystems. Journal of Nematology, 33: 169–172.Google Scholar
  186. Majchrowicz, I., & Poprawski, T.J. (1993). Effects in vitro of nine fungicides on growth of entomopathogenic fungi. Biocontrol Science and Technology, 3: 321–336.Google Scholar
  187. McSorely, R. (2003). Adaptions of nematodes to environmental extremes. Florida Entomologist, 86: 138–142.Google Scholar
  188. Mietkiewski, R., Górski, R., & Tkaczuk, C. (1995). Occurrence of entomopathogenic fungi in soil in relation to depth. Proceedings of the conference on “Actual and Potential Use of Biological Pest Control on Plants” . Skierniewice, Poland, 22–23 November 1993, 94–99.Google Scholar
  189. Mietkiewski, R.T., Pell, J.K., & Clark, S.J. (1997). Influence of pesticide use on the natural occurrence of entomopathogenic fungi in arable soils in the UK: Field and laboratory comparisons. Biocontrol Science and Technology, 7: 565–575.Google Scholar
  190. Mietkiewski, R., Tkaczuk, C., Zurek, M., & van der Geest, L.P.S. (1994). Temperature requirements of four entomopathogenic fungi. Acta Mycologica, 1: 109–120.Google Scholar
  191. Millar, L.C., & Barbercheck, M.E. (2002). Effects of tillage practices on entomopathogenic nematodes in a corn agroecosystems. Biological Control, 25: 1–11.Google Scholar
  192. Milner, R.J., Samson, P., & Morton, R. (2003). Persistence of conidia of Metarhizium anisopliae in sugarcane fields: Effect of isolate and formulation on persistence over 3.5 years. Biocontrol Science and Technology, 13: 507–516.Google Scholar
  193. Molyneux, A.S. (1986). Heterorhabditis spp. and Steinernema (=Neoaplectana) spp.: temperature, and aspects of behaviour and infectivity. Experimental Parasitology, 62: 169–180.PubMedGoogle Scholar
  194. Moore, J.C., Walter, D.E., & Hunt, H.W. (1988). Arthropod regulation of micro- and mesobiota in below-ground detrital food webs. Annual Review of Entomology, 33: 419–439.Google Scholar
  195. Morand, S., Wilson, M.J., & Glen, D.M. (2004). Nematodes (Nematoda) parasitic in terrestrial gastropods. In G.M. Barker (ed.). Natural Enemies of Terrestrial Molluscs, CABI Publishing, Wallingford, UK, 525–558.Google Scholar
  196. Mráčzek, Z. (1982). Horizontal distribution in soil, and seasonal dynamics of the nematode Steinernema kraussei, a parasite of Cephalcia abietis. Journal of Applied Entomology, 94: 110–112.Google Scholar
  197. Mráčzek, Z., & Bečvář S. (2000). Insect aggregations and entomopathogenic nematode occurrence. Nematology, 2: 297–301Google Scholar
  198. Mrázek, Z., BečvářS., Kindlmann, P., & Webster, J.M. (1999). Factors influencing the infectivity of a Canadian isolate of Steinernema kraussei (Nematoda: Steinernematidae) at low temperature. Journal of Invertebrate Pathology, 73: 243–247.Google Scholar
  199. Mrázek, Z., & D. Sturhan (2000). Epizootic of the entomopathogenic nematode Steinernema intermedium (Poinar) in an aggregation of the bibionid fly, Bibio marci L. Journal of Invertebrate Pathology, 76: 149–50.Google Scholar
  200. Neher, D.A. (2001). Role of nematodes in soil health and their use as indicators. Journal of Nematology, 33: 161–168.Google Scholar
  201. Nelson, D.R., & Higgins, R.P. (1990). Tardigrada. In D.L. Dindal (ed.). Soil Biology Guide. John Wiley & Sons, New York, 393–419.Google Scholar
  202. Nielsen, C., Hajek, A.E., Humber, R.A., Bresciani, J., & Eilenberg, J. (2003). Soil as an environment for winter survival of aphid-pathogenic Entomophthorales. Biological Control, 28: 92–100.Google Scholar
  203. Nielsen, O., & Philipsen, H. (2003). Danish surveys on insects naturally infected with entomopathogenic nematodes. IOBC Bulletin, 26: 131–136.Google Scholar
  204. Nielsen, O., & Philipsen, H. (2004). Recycling of entomopathogenic nematodes in Delia radicum and in other insects from cruciferous crops. BioControl 49: 285–294.Google Scholar
  205. Nishimatsu, T., & Jackson, J.J. (1998). Interaction of insecticides, entomopathogenic nematodes, and larvae of the western corn rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 91: 410–418.PubMedGoogle Scholar
  206. Norton, D.C. (1978). Ecology of Plant Parasitic Nematodes. John Wiley & Sons Inc, New York.Google Scholar
  207. Norton, D.C. (1989). Abiotic soil factors and plant-parasitic nematode communities. Journal of Nematology, 21: 299–307.Google Scholar
  208. Norton, D.C., & Niblack, T.L. (1991). Biology and ecology of nematodes. In W.R. Nickle (ed.) Manual of Agricultural Nematology. Marcel Decker, Inc. New York, 47–72.Google Scholar
  209. Oduor, G.I., Yaninek, J.S., van der Geest, L.P.S. & Moraes, G.J. (1995). Survival of Neozygites cf. floridana (Zygomycetes: Entomophthorales) in mummified cassava green mites and the viability of its primary conidia. Experimental & Applied Acarology, 19: 479–488.Google Scholar
  210. O’Halloran, D.M., & Burnell, A.M. (2003). An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora. Parasitology, 127: 375–385.PubMedGoogle Scholar
  211. Ohbayashi, T., & Iwabuchi, K. (1991). Abnormal behavior of the common armyworm Pseudaletia separata (Walker) (Lepidoptera, Noctuidae) larvae infected with an entomogenous fungus, Entomophaga aulicae, and a nuclear polyhedrosis virus. Applied Entomology and Zoology, 26: 579–585.Google Scholar
  212. Overgaard Nielsen, C. (1949). Studies on the soil microfauna II. The soil-inhabiting nematodes. Natura Jutlandica, 2: 1–131.Google Scholar
  213. Overgaard Nielsen, C. (1967). Nematoda. In A. Burges & F. Raw (eds.). Soil Biology, Academic Press, London, 197–211.Google Scholar
  214. Padmavathi, J., Devi, K.U., & Rao, C.U.M. (2003). The optimum and tolerance pH range is correlated to colonial morphology in isolates of the entomopathogenic fungus Beauveria bassiana – a potential biopesticide. World Journal of Microbiology & Biotechnology, 19: 469–477.Google Scholar
  215. Parkman, J.P., Frank, J.H., Walker, T.J., & Schuster, D.J. (1996). Classical biological control of Scapteriscus spp (Orthoptera: Gryllotalpidae) in Florida. Environmental Entomology, 25: 1415–1420.Google Scholar
  216. Pell, J.K., Eilenberg, J., Hajek, A.E., & Steinkraus, D.C. (2001). Biology, ecology and pest management potential of Entomophthorales. In T.M. Butt, C.W. Jackson & N. Magan. Fungi as Biocontrol Agents. Progress, Problems and Potential. CABI Publishing, Wallingford, UK, 71–153.Google Scholar
  217. Perry, R.N. (2002). Hatching. In: Lee, D.L. (ed.): The Biology of Nematodes. Taylor & Francis, London, 147–170.Google Scholar
  218. Peters, A. (1996). The natural host range of Steinernema and Heterorhabditis and their impact on insect populations. Biocontrol Science and Technology, 6: 389–402.Google Scholar
  219. Poinar, G.O. Jr. (1975). Entomogenous Nematodes: A Manual and Host List of Insect-nematode Associations. E.J. Brill, Leiden, Netherlands.Google Scholar
  220. Poinar, G.O. Jr. (1992). Steinernema feltiae new record (Steinernematidae: Rhabditida) parasitizing adult fungus gnats (Mycetophilidae: Diptera) in California. Fundamental and Applied Nematology, 15: 427–430.Google Scholar
  221. Poinar G.O., Karunakar, G.K. & David, H. (1992). Heterorhabditis indicus– n.sp. (Rhabditida, Nematoda) from India-separation of Heterorhabditis spp. by infective juveniles. Fundamental and Applied Nematology, 15: 467–472.Google Scholar
  222. Poprawski, T.J. & Majchrowicz, I. (1995). Effects of herbicides on in-vitro vegetative growth and sporulation of entomopathogenic fungi. Crop Protection, 14: 81–87.Google Scholar
  223. Popowska-Nowak, E., Bajan, C., Augustyniuk-Kram, A., Kolomiec, E., Chikleva, A. & Lobanok, A. (2003). Interactions between soil microorganisms: Bacteria, actinomycetes and entomopathogenic fungi of the genera Beauveria and Paecilomyces. Polish Journal of Ecology, 51: 85–90.Google Scholar
  224. Portillo-Aguilar C., Villani, M.G., Tauber, M.J., Tauber, C.A., & Nyrop, J.P. (1999). Entomopathogenic Nematode (Rhabditida: Heterorhabditidae) and Steinernematidae) response to soil texture and bulk density. Environmental Entomology, 28: 1021–1035.Google Scholar
  225. Purvis, G., & Curry, J.P. (1984). The influence of weeds and farmyard manure on the activity of Carabidae and other ground-dwelling arthropods in a sugar beet crop. Journal of Applied Ecology, 21: 271–283.Google Scholar
  226. Pye, A.E., & Burman, M. 1981. Neoaplectana carpocapsae: Nematode accumulations on chemical and bacterial gradients. Experimental Parasitology, 51: 13–20.PubMedGoogle Scholar
  227. Rath, A.C., Koen, T.B., & Yip, H.Y. (1992). The influence of abiotic factors on the distribution and abundance of Metarhizium anisopliae in Tasmanian pasture soils. Mycological Research, 96: 378–384.Google Scholar
  228. Remillet, M. & Laumond, C. (1991). Sphaerularioid nematodes of importance in agriculture. In W.R. Nickle (ed.) Manual of Agricultural Nematology. Marcel Decker, Inc. New York, 967–1024.Google Scholar
  229. Rogers, M.E., Cole, T.J., Ramaswamy, S.B., & Potter, D.A. (2003). Behavioral changes in Japanese beetle and masked chafer grubs (Coleoptera: Scarabaeidae) after parasitism by tiphiid wasps (Hymenoptera: Tiphiidae). Environmental Entomology, 32: 618–625.Google Scholar
  230. Ross, K.T.A., & Anderson, M. (1992). Larval responses of 3 vegetable root fly pests of the genus Delia (Diptera, Anthomyiidae) to plant volatiles. Bulletin of Entomological Research, 82: 393–398.Google Scholar
  231. Roy, H.E. & Pell, J.K. (2000). Interactions between entomopathogenic fungi and other natural enemies: Implications for biological control. Biocontrol Science and Technology, 10: 737–752.Google Scholar
  232. Saito, T. & Yabuta, M. (1996). Laboratory studies on effect of pesticides on entomopathogenic fungus, Verticillium lecanii. Japanese Journal of Applied Entomology and Zoology, 40: 71–76.Google Scholar
  233. Salinas, H.S. (1996). Nematoder som nyttedyr -naturlig forekomst i Norge. Gartneryrket 7:13–17. (In Norwegian).Google Scholar
  234. Schmidt, J. & All, J.N. (1979). Attraction of Neoaplectana carpocapsae (Nematoda: Steinernematidae) to common excretory products of insects. Environmental Entomology, 7: 605–607.Google Scholar
  235. Schmidt, J., & All, J.N. (1978). Chemical attraction of Neoaplectana carpocapsae (Nematoda: Steinernematidae) to insect larvae. Environmental Entomology, 7: 605–607.Google Scholar
  236. Serwe-Rodrigues, J., Sonnenberg, K., Appleman, B., & Bornstein-Forst S. (2004). Effects of host desiccation on development, survival, and infectivity of entomopathogenic nematode Steinernema carpocapsae. Journal of Invertebrate Pathology, 85: 175–181.Google Scholar
  237. Shah, P.A., Brooks, A.R., Ashby, J.E., Perry, J.N., & Woiwod, I.P. (2003). Diversity and abundance of the coleopteran fauna from organic and conventional management systems in southern England. Agricultural and Forest Entomology, 5: 51–60.Google Scholar
  238. Shapiro, D.I., Tylka, G.L., Berry, E.C., & Lewis, L.C. (1995). Effects of earthworms on the dispersal of Steinernema spp. Journal of Nematology, 27: 21–28.Google Scholar
  239. Smith, K. (1999). Factors affecting efficacy. Optimal Use of Insecticidal Nematodes in Pest Management. Proceedings of a workshop, New Brunswick, New Jersey, USA.Google Scholar
  240. Somasekhar N., Grewal P.S., De Nardo E.A.B., & Stinner B.R. (2002). Non-target effects of entomopathogenic nematodes on the soil nematode community. Journal of Applied Ecology 39: 735–744.Google Scholar
  241. Sosa-Gomez, D.R., & Moscardi, F. (1994). Effect of till and no-till soybean cultivation on dynamics of entomopathogenic fungi in the soil. Florida Entomologist, 77: 284–287.Google Scholar
  242. Spiridinov, S.E., Reid, A.P., Podrucka, K., Subbotin, S.A., & Moens, M. (2004). Phylogenetic relationships within the genus Steinernema (Nematoda: Rhabditida) as inferred from analysis of sequences of the ITS1-5.8S-ITS2 region of rDNA and morphological features. Nematology, 6: 547–566.Google Scholar
  243. Stary, P. (1988). Aphidiidae. In A.K. Minks & P. Harrewÿn (eds.). Aphis, their biology, natural enemies and control. Elsevier, Amsterdam, 171–184.Google Scholar
  244. Steenberg, T., Langer, V., & Esbjerg, P. (1995). Entomopathogenic fungi in predatory beetles (Col: Carabidae and Staphylinidae) from agricultural fields. Entomophaga, 40: 77–85.Google Scholar
  245. Steenberg, T., & Øgaard, L. (2000). Mortality in hibernating turnip moth larvae, Agrotis segetum, caused by Tolypocladium cylindrosporum. Mycological Research, 104: 87–91.Google Scholar
  246. Steinkraus, D.C., Hollingsworth, R.G. & Boys, G.O. (1996). Aerial spores of Neozygites fresenii (Entomophthorales: Neozygitaceae): density, periodicity, and potential role in cotton aphid (Homoptera: Aphididae) epizootics. Environmental Entomology, 25: 48–57.Google Scholar
  247. Stirling, G. (1991). Biological control of Plant Parasitic Nematodes. CAB International, Wallingford, UK.Google Scholar
  248. Stock, S.P., & Koppenhofer A.M. (2003). Steinernema scarabaei n. sp (Rhabditida: Steinernematidae), a natural pathogen of scarab beetle larvae (Coleoptera: Scarabaeidae) from New Jersey, USA. Nematology, 5: 191–204.Google Scholar
  249. Storey, G.K., & Gardner, W.A. (1987). Vertical movement of commercially formulated Beauveria bassiana conidia through four Georgia soil types. Environmental Entomology, 16: 178–181.Google Scholar
  250. Strasser, H., Vey, A., & Butt, T.M. (2000). Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Science and Technology, 10: 717–735.Google Scholar
  251. Strong, D.R., Maron, J.L., Connors, P.G., Whipple, A., Harrison, S., & Jefferies, R.L. (1995). High mortality, fluctuation in numbers and heavy subterranean insect herbivory in bush lupine, Lupinus arboreus. Oecologia, 104: 85–92.Google Scholar
  252. Studdert, J.P., Kaya, H.K., & Duniway, J.M. (1990). Effect of water potential, temperature, and clay-coating on survival of Beauveria bassiana conidia in a loam and peat soil. Journal of Invertebrate Pathology, 55: 417–427.Google Scholar
  253. Sturhan, D. (1999). Prevalence and habitat specificity of entomopathogenic nematodes in Germany. In R.L., Gwynn, P.H. Smith, C. Griffin, Ehlers, R.-U., Boemare, N., & J.P. Mason (eds.). COST 819, Entomopathogenic Nematodes: Application and Persistence of Entomopathogenic Nematodes. European Commission DG XII, Luxembourg, 123–132.Google Scholar
  254. Sturhan, D. & Brzeski, M.W. (1991), Stem and bulb nematodes, Ditylenchus spp. In W.R. Nickle (ed.). Manual of Agricultural Nematology. Marcel Dekker Inc., New York, 423–464.Google Scholar
  255. Sturhan, D., & Reuss, L. (1999). An undescribed Steinernema sp. (Nematoda: Steinernematidae) from Germany and the Scandinavian Subarctic. Russian Journal of Nematology, 7: 43–47.Google Scholar
  256. Subinprasert, S. (1987). Natural enemies and their impact on overwintering codling moth populations (Laspeyresia pomonella L.) (Lep., Tortricidae) in South Sweden. Journal of Applied Entomology, 103: 46–55.Google Scholar
  257. Sundby, R.A., & Taksdal, G. (1969). Surveys of parasites of Hylemya brassicae (Bouché), and H. floralis (Fallén) (Diptera, Muscidae) in Norway. Norsk Entomologisk Tidsskrift, 16: 97–106.Google Scholar
  258. Sunderland, K.D. (1975). The diet of some predatory arthropods in cereal crops. Journal of Applied Ecology, 12: 507–515.Google Scholar
  259. Sundin, P. (1990). Plant root exudates in interactions between plants and soil microorganisms. A gnotobiotic approach. Department of Ecology, Chemical Ecology and Ecotoxicology, Lund University, Lund, Sweden. (PhD Thesis).Google Scholar
  260. Symondson, W.O.C. (2004). Coleoptera (Carabidae, Staphylinidae, Lampyridae, Drilidae and Silphidae) as predators of terrestrial gastropods. In: Barker, G.M. (ed.). Natural Enemies of Terrestrial Molluscs. Landcare Research, Hamilton, New Zealand. CABI Publishing, Wallingford, UK, 37–84.Google Scholar
  261. Symondson, W.O.C., Glen, D.M., Ives, A.R., Langdon, C.J., & Wiltshire, C.W. (2002). Dynamics of the relationship between a generalist predator and slugs over five years. Ecology, 83: 137–147.Google Scholar
  262. Tanada, Y., & Kaya, H.K. (1993). Insect Pathology. Academic Press, Inc. London.Google Scholar
  263. Timper, P. & Davies, K.G. (2004). Biotic interactions. In R. Gaugler & A.L. Bilgrami (eds.). Nematode Behaviour CABI Publishing, Wallingford, UK, 277–238.Google Scholar
  264. Tkaczuk, C., Mietkiewski, R., & Balazy, S. (2000). Temperature as a selective factor for isolation of entomopathogenic fungi from soil by means of the insect bait method. IOBC/WPRS Bulletin, 23: 197–202.Google Scholar
  265. Todorva, S.I., Coderre, D., Duchesne, R.-M. & Côté, J.-C. (1998). Compatibility of Beauveria bassiana with selected fungicides and herbicides. Environmental Entomology, 27: 427–433.Google Scholar
  266. Torr, P. Heritage, S., & Wilson, M.J. (2004). Vibrations as a novel signal for host location by parasitic nematodes. International Journal for Parasitology, 34: 997–999.PubMedGoogle Scholar
  267. Townsend, R.J., Glare, T.R., & Willoughby, B.E. (1995). The fungi Beauveria spp. cause epizootics in grass grub populations in Waikato. Proceedings of the 48th New Zealand Plant Protection Conference, 237–241.Google Scholar
  268. Tsuneda, A. 1983. Fungal Morphology and Ecology. The Tottori Mycological Institute, Tottori, Japan.Google Scholar
  269. van Tol, R. W. H., van Bezooijen, J., & Ketelaars, T. A. C. M. (1998). Searching behaviour of entomopathogenic nematodes: roots and soil determine success of black vine weevil (Otiorhynchus sulcatus) control. IOBC/WPRS Bulletin, 21: 187–191.Google Scholar
  270. van Tol, R.W.H.M., van der Sommen, A.T.C., Boff, M.I.C., van Bezooijen, J., Sabelis, M.W., & Smits, P.H. (2001). Plants protect their roots by alerting the enemies of grubs. Ecology Letters 4:292–294.Google Scholar
  271. Vänninen, I. (1995) Distribution and occurrence of four entomopathogenic fungi in Finland: effect of geographical location, habitat type and soil type. Mycological Research, 100: 93–101.Google Scholar
  272. Vänninen, I. (1999). The distribution, ecological fitness and virulence of deuteromycetous entomopathogenic fungi in Finland. University of Helsinki, Department of Applied Zoology. Helsinki, Finland (PhD Thesis).Google Scholar
  273. Vänninen, I., & Hokkanen, H. (1988). Effect of pesticides on four species of entomopathogenic fungi in vitro. Annales Agriculturae Fenniae, 27: 345–353.Google Scholar
  274. Vänninen, I., Hokkanen, H.M.T., & Tyni-Julsin, J. (1999a). Attempts to control cabbage root flies (Delia radicum L. and Delia floralis (Fall.); Diptera, Anthomyiidae) with entomopathogenic fungi: laboratory and greenhouse tests. Journal of Applied Entomology, 123: 107–113.Google Scholar
  275. Vänninen, I., Hokkanen, H., & Tyni-Julsin, J. (1999b). Screening of field performance of entomopathogenic fungi and nematodes against cabbage root flies (Delia radicum L. and D. floralis (Fall.); Diptera, Anthomyiidae). Acta Agriculturae Scandinavica, 49: 167–183.Google Scholar
  276. Vänninen, I., Husberg, G.B., & Hokkanen, H.M.T. (1989). Occurrence of entomopathogenic fungi and entomoparasitic nematodes in cultivated soils in Finland. Acta Entomologica Fennica, 53: 65–71.Google Scholar
  277. Vänninen, I., Tyni-Julsin, J., & Hokkanen, H. (2000). Persistence of augmented Metarhizium anisopliae and Beauveria bassiana in Finnish agricultural soils. BioControl, 45: 201–222.Google Scholar
  278. Vega, F.E., Dowd, P.F., McGuire, M.R., Jackson, M.A., & Nelsen, T.C. (1997). In vitro effects of secondary plant compounds on germination of blastospores of the entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes). Journal of Invertebrate Pathology, 70: 209–213.PubMedGoogle Scholar
  279. Vestergaard, S., Cherry, A., Keller, S., & Goettel, M. (2003). Safety of Hyphomycete fungi as microbial control agents. In H.MT. Hokkanen & A.E. Hajek (eds.). Environmental Impacts of Microbial Insecticides. Need and Methods for Risk Assessment. Kluwer Academic Publishers, London, 35–62.Google Scholar
  280. Villani, M.G., & Wright, R.J. (1990). Environmental influences on soil macroarthropod behaviour in agricultural systems. Annual Review of Entomology, 35: 249–269.Google Scholar
  281. Wajnberg, E., Scott, J.K., & Quimby, P.C. (2001) Evaluating Indirect Ecological Effects of Biological Control. CABI Publishing, Wallingford, UK.Google Scholar
  282. Wallace, H.R. (1963). The Biology of Plant Parasitic Nematodes. Edward Arnold Ltd., London.Google Scholar
  283. Wallace, H.R. (1968). The dynamics of nematode movement. Annual Revue of Phytopathology, 6: 91–114.Google Scholar
  284. Wallace, H.R. (1971). Abiotic Influences in the Soil Environment. In: Zuckerman, B.M., Mai, W.F. & Rohde, R.A. (eds.). Plant Parasitic Nematodes Volume I. Academic Press, London, 257–280.Google Scholar
  285. Wallace, H.R. (1973). Nematode Ecology and Plant Disease. Edward Arnold, London.Google Scholar
  286. Wallwork, J.A. (1970). Ecology of Soil Animals. McGraw-Hill Publishing Company Limited, London.Google Scholar
  287. Walter, D.E., & Proctor, H.C. (1999). Mites. Ecology, evolution and behaviour. CABI Publishing, Wallingford, UK.Google Scholar
  288. Wardle, D.A., Nicholson, K.S., Bonner, K.I., & Yeates, G.W. (1999). Effects of agricultural intensification on soil-associated arthropod population dynamics, community structure, diversity and temporal variability over a sevenyear period. Soil Biology & Biochemistry, 31: 1691–1706.Google Scholar
  289. Weiser, J. (1987). Patterns over place and time. In J.R. Fuxa & Y. Tanada (eds.), Epizootiology of Insect Diseases. John Wiley & Sons, New York, 215–242.Google Scholar
  290. Wharton, D.A. (2002). Nematode survival strategies. In D.L. Lee (ed.). The Biology of Nematodes. Taylor & Francis, London, 389–411.Google Scholar
  291. Widden, P. & Parkinson, D. (1979). Population of fungi in a high artic ecosystem. Canadian Journal of Botany, 57: 2408–2417.Google Scholar
  292. Whitehead, A.G. (1997). Plant Nematode Control. CABI Publishing, Wallingford, UK.Google Scholar
  293. Wiens, J.A. (1989). Spatial scaling in ecology. Functional Ecology, 3: 385–397.Google Scholar
  294. Willmott, D.M., Hart, A.J., Long, S.J., Edmundson, R.N., & Richardson, P.N. (2002). Use of a cold-active entomopathogenic nematode Steinernema kraussei to control overwintering larvae of the black vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae) in outdoor strawberry plants. Nematology, 4: 925–932.Google Scholar
  295. Wilson, M.J., Glen, D.M., & George, S.K. (1993). The Rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs. Biocontrol Science and Technology, 3: 503–511.Google Scholar
  296. Winslow, R.D. (1960). Some aspects of the ecology of free-living and plant parasitic nematodes. In J.N. Sasser & Jenkins, W.R. (eds). Nematology, fundamentals and recent advances with emphasis on plant parasitic and soil forms. The University of North Carolina Press Chapel Hill, USA, 341–415.Google Scholar
  297. Womersley, C.Z. (1987). A reevaluation of strategies employed by nematode anhydrobiotis in relation to their natural environment. In J.A. Veech & D.W. Dickson (eds.). Vistas on Nematology: a Commemoration of the Twenty-fifth Anniversary of the Society of Nematologists. E.O. Painter Printing Co. DeLeon Springs, Florida, USA, 165–173.Google Scholar
  298. Womersley, C.Z. (1990). Dehydration survival and anhydrobiotic potential. In R. Gaugler & H.K. Kaya (eds.), Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, Florida, USA, 117–137.Google Scholar
  299. Wright, P.J. (1992). Cool temperature reproduction of steinernematid and heterorhabditid nematodes. Journal of Invertebrate Pathology, 60: 148–151.Google Scholar
  300. Yeates, G.W. (1971). Feeding types and feeding groups in plant and soil nematodes. Pedobiologia, 11: 173–179.Google Scholar
  301. Yeates, G.W. (1979). Soil nematodes in terrestrial ecosystems. Journal of Nematology, 11: 117–212.Google Scholar
  302. Yeates, G.W. (1981), Nematode populations in relation to soil environmental factors: A review. Pedobiologia, 22: 312–338.Google Scholar
  303. Yeates, G.W. (2004). Ecological and behavioural adaptations. In: Gaugler, R & Bilgrami A.L. (eds.) Nematode Behaviour. CABI Publishing, Wallingford, UK, 1–24.Google Scholar
  304. Yeates, G.W., & Bongers, T. (1999). Nematode diversity in agroecosystems. Agriculture, Ecosystems and Environment, 74: 113–135.Google Scholar
  305. Yeates, G.W. Bongers, T., de Goede, R.G.M., Freckman, D.W., & Georgieva, S.S. (1993). Feeding habits in soil nematode families and genera: an outline for soil ecologists. Journal of Nematology, 25: 101–113.Google Scholar
  306. Yeates, G.W., Wardle, D.A., & Watson, R.N. (1999). Responses of soil nematode populations, community structure, diversity and temporal variability to agricultural intensification over a seven-year period. Soil Biology and Biochemistry, 31: 1721–1733.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Ingeborg Klingen
  • Solveig Haukeland

There are no affiliations available

Personalised recommendations