Skip to main content

THE SOIL AS A RESERVOIR FOR NATURAL ENEMIES OF PEST INSECTS AND MITES WITH EMPHASIS ON FUNGI AND NEMATODES

  • Chapter
An Ecological and Societal Approach to Biological Control

Part of the book series: Progress in Biological Control ((PIBC,volume 2))

Abstract

The soil is the home of innumerable forms of plants, animals and microbes, and life in the soil is highly diverse, ranging from microscopic single-celled organisms to large burrowing animals. As in above ground environments, there are well-defined food chains and competition for survival in the soil environment (Foth & Turk, 1990). Biotic and abiotic interactions in soil ecosystems may enhance or reduce populations of pest arthropods (defined here as insects and mites). Ninety percent of arthropod pest species spend at least part of their life cycle in soil (Gaugler, 1988; Villani & Wright, 1990; Kaya & Gaugler, 1993). Soil dwelling pest arthropods have natural enemies among soil organisms, but also pests that occasionally come into contact with soil might be consumed by predators or become infected with pathogenic propagules (Sunderland 1975; Purvis & Curry, 1984, Tanada & Kaya 1993; Hajek, 1997; Eilenberg & Meadow, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, B.J. & Nguyen, K.B. (2000). Taxonomy and Systematics. In R. Gaugler (ed.). Entomopathogenic Nematology, CAB International, London, 1–56.

    Google Scholar 

  • Adjei, M.B., Frank, J.H., & Gardner, C.S. (2003). Survey of pest mole crickets (Orthoptera: Gryllotalpidae) activity on pasture in south-central Florida. Florida Entomologist, 86: 199–205.

    Google Scholar 

  • Agrios, G.N. (1997). Plant Pathology. Academic Press, London.

    Google Scholar 

  • Akhurst, R.J., Bedding , R.A., Bull, R.M., & Smith, D.R.J. (1991). An epizootic of Heterorhabditis spp. (Heterorhabditidae: Nematoda) in sugar cane scarabaeids (Coleoptera). Fundamental and Applied Nematology, 15: 71–73.

    Google Scholar 

  • Allen, J.A. (2004). Avian and mammalian predators of terrestrial gastropods. In: Barker, G.M. (ed.). Natural Enemies of Terrestrial Mollusks. Landcare Research, Hamilton, New Zealand. CABI Publishing, Wallingford, UK, 1–36.

    Google Scholar 

  • Alexander, M. (1977). Introduction to Soil Microbiology. John Wiley & Sons, New York.

    Google Scholar 

  • Andalo, V., Moino, A., Santa-Cecilia, L.V.C., & Souza, G.C. (2004). Compatibility of Beauveria bassiana with chemical pesticides for the control of the coffee root mealybug Dysmicoccus texensis Tinsley (Hemiptera: Pseudococcidae). Neotropical Entomology, 33: 463–467.

    Google Scholar 

  • Andersen, A. (1997). Densities of overwintering carabids and staphylinids (Col, Carabidae and Staphylinidae) in cereal and grass fields and their boundaries. Journal of Applied Entomology, 121: 77–80.

    Google Scholar 

  • Andersen, A. (1999). Plant protection in spring cereal production with reduced tillage. II. Pests and beneficial insects. Crop Protection, 18: 651–657.

    Google Scholar 

  • Andersen, A., & Eltun, R. (2000). Long-term developments in the carabid and staphylinid (Col., Carabidae and Staphylinidae) fauna during conversion from conventional to biological farming. Journal of Applied Entomology, 124: 51–56.

    Google Scholar 

  • Andersen, A., Sjursen, H., & Rafoss, T. (2004). Biodiversity of Agromyzidae (Diptera) in biologically and conventionally grown spring barley and grass field. Biological Agriculture and Horticulture, 22: 143–155.

    Google Scholar 

  • Anderson, T.E., Hajek, A.E., Roberts, D.W., Preisler, H.K., & Robertson, J.L. (1989). Colorado potato beetle (Coleoptera: Chrysomelidae) effects of combinations of Beauveria bassiana with insecticides. Journal of Economic Entomology, 82: 83–89.

    CAS  Google Scholar 

  • Anderson, T.E., & Roberts, D.W. (1983). Compatibility of Beauveria bassiana isolates with insecticide formulations used in Colorado potato beetle (Coleoptera: Chrysomelidae) control. Journal of Economic Entomology, 76: 1437–1441.

    CAS  Google Scholar 

  • Anderson, J., & Skorping, A. (1991). Parasites of carabid beetles: prevalence depends on habitat selection of the host. Canadian Journal of Zoology, 69: 1216–1220.

    Google Scholar 

  • Ansari, M.A., Long, P.K., & Moens, M. (2003). Heterorhabditis bacteriophora (Heterorhabditidae: Rhabditida), parasitic in natural populations of white grubs (Coleoptera: Scarabaeidae) in Belgium. Russian Journal of Nematology, 11: 57–59.

    Google Scholar 

  • Bardgett, R.D., & Cook, R. (1998). Functional aspects of soil animal diversity in agricultural grasslands. Applied Soil Ecology, 10: 263–276.

    Google Scholar 

  • Barker, G.M. (2002). Mollusks as Crop Pests. Landcare Research, Hamilton, New Zealand. CABI Publishing, Wallingford, UK.

    Google Scholar 

  • Barker, G.M. (2004). Natural Enemies of Terrestrial Molluscs. Landcare Research, Hamilton, New Zealand. CABI Publishing, Wallingford, UK.

    Google Scholar 

  • Barker, G.M., Knutson, L., Vala, J-C. , Coupland, J.B., & Barnes, J.K. (2004). Overview of the biology of marsh flies (Diptera: Sciomyzidae), with special reference to predators and parasitoids of terrestrial gastropods. In: G.M. Barker (ed.). Natural Enemies of Terrestrial Mollusks. Landcare Research, Hamilton, New Zealand. CABI Publishing, 159–226, Wallingford, UK, 159–226.

    Google Scholar 

  • Bathon, H. (1996). Impact of entomopathogenic nematodes on non-target hosts. Biocontrol Science and Technology 6: 421–434.

    Google Scholar 

  • Barbercheck, M.E. (1992). Effect of soil physical factors on biological control agents of soil insect pests. Florida Entomologist, 75: 539–548.

    Google Scholar 

  • Barbercheck, M.E., & Duncan, L. (2004). Abiotic factors. In R. Gaugler & A.L. Bilgrami (eds.). Nematode behaviour, CABI Publishing, Wallingford, UK, 309–344.

    Google Scholar 

  • Barbercheck, M.E., & Kaya, H.K. (1991). Effect of host condition and soil texture on host finding by the entomogenous nematodes Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) and Steinernema carpocapsae (Rhabditida: Steinernematidae). Environmental Entomology, 20: 582–589.

    Google Scholar 

  • Baur, M.E., & Kaya, H.K. (2001). Persistence of entomopathogenic nematodes. In M.E. Baur & J. Fuxa (eds.). Environmental Persistence of Entomopathogens and Nematodes. Southern Cooperative Series Bulletin 398. Oklahoma Agricultural Experiment Station, Stillwater, Oklahoma, USA.

    Google Scholar 

  • Bedding, R., Akhurst, R., & Kaya, H.K. (1993). Nematodes and the Biological Control of Insect Pests. CSIRO Publications, Victoria, Australia.

    Google Scholar 

  • Bednarek, A., & Gaugler, R. (1997). Compatibility of soil amendments with entomopathogenic nematodes. Journal of Nematology, 29: 220–227.

    Google Scholar 

  • Bidochka, M.J., Kamp, A.M., Lavender, T.M., Dekoning, J., & De Croos, J.N.A. (2001). Habitat association in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae: Uncovering cryptic species. Applied and Environmental Microbiology, 67: 1335–1342.

    PubMed  CAS  Google Scholar 

  • Bing, L.A., & Lewis, L.C. (1993). Occurrence of the entomopathogen Beauveria bassiana (Balsamo) Vuillemin in different tillage regimes and in Zea mays L. and virulence towards Ostrinia nubilalis (H ü bner). Agriculture, Ecosystems and Environment, 45: 147–156.

    Google Scholar 

  • Boag, B., & Yeates, G.W. (2004). Population dynamics. Nematode behaviour. R. Gaugler & A.L. Bilgrami (eds.). CABI Publishing, Wallingford, UK. 345–370.

    Google Scholar 

  • Boff, M.I.C., van Tol, R.H.W.M., & Smits, P.H. (2002). Behavourial response of Heterorhabditis megidis towards plant roots and insect larvae. BioControl, 47: 67–83.

    Google Scholar 

  • Bongers, T. (1990). The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83: 14–19.

    Google Scholar 

  • Bonkowski, M., Griffiths, B.S., & Ritz, K. (2000). Food preferences of earthworms for soil fungi. Pedobiologia, 44: 666–676.

    Google Scholar 

  • Bovien, P. (1937). Some types of associations between nematodes and insects. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening, 101: 1–114.

    Google Scholar 

  • Brown, I.M., & Gaugler, R. (1996). Cold tolerance of steinernematid and heterorhabditid nematodes. Journal of Thermal Biology, 21: 115–121.

    Google Scholar 

  • Brown, I.M., & Gaugler, R. (1998). Survival of steinernematid nematodes exposed to freezing. Journal of Thermal Biology, 23: 75–80.

    Google Scholar 

  • Brown, I.M., Lovett, B.J., Grewal, P.S., & Gaugler, R. (2002). Latent infection: a low temperature survival strategy in steinernematid nematodes. Journal of Thermal Biology, 27: 531–539.

    Google Scholar 

  • Broza, M., Pereira, R.M., & Stimac, J.L. (2001). The nonsusceptibility of soil Collembola to insect pathogens and their potential as scavengers of microbial pesticides. Pedobiologia, 45: 523–534.

    Google Scholar 

  • Buckley, D.H., & Schmidt, T.M. (2002). Exploring the biodiversity of soil -a microbial rain forest. In J.T. Staley & A.- L. Reysenbach (eds.). Biodiversity of Microbial Life. John Wiley & Sons Inc., New York, 183–208.

    Google Scholar 

  • Cannon, P.F. (1996). Filamentous fungi. In G.S. Hall (ed.). Methods for the examination of organismal diversity in soils and sediments. CAB International, Wallingford, UK, 125–143.

    Google Scholar 

  • Cannon, P.F., & Kinsey, G.C. (1996). Isolation and identification of fungi associated with soil and leaf litter. In. P.F. Cannon (ed.). Isolation and Identification of Fungi from Natural Habitats. Course held at International Mycological Institute. 18–22 November 1996. CAB International Surrey, UK.

    Google Scholar 

  • Capinera, J.L., Blue, S.L., & Wheeler, G.S. (1982). Survival of earthworms exposed to Neoaplectana carpocapsae nematodes. Journal of Invertebrate Pathology, 39: 419–421.

    Google Scholar 

  • Carruthers, R.I. (1981). The Biology and Eology of Entomophthora muscae (Cohn) in the Onion Agroecosystem. Michigan State University, USA (PhD thesis).

    Google Scholar 

  • Carruthers, R.I., Haynes, D.L., & MacLeod, D.M. (1985). Entomophthora muscae (Entomophthorales: Entomophthoraceae) mycosis in the onion fly Delia antiqua (Diptera: Anthomyiidae). Journal of Invertebrate Pathology, 45: 81–93.

    Google Scholar 

  • Carruthers, R.I., & Soper, R.S. (1987). Fungal diseases. In J.R. Fuxa & Y. Tanada (eds.). Epizootiology of insect diseases. John Wiley & Sons, Inc., New York, 357–416.

    Google Scholar 

  • Chandler, D., Hay, D., & Reid, A.P. (1997). Sampling and occurrence of entomopathogenic fungi and nematodes in UK soils. Applied Soil Ecology, 5: 133–141.

    Google Scholar 

  • Chen, S., Li, J., Han, X., & Moens, M. (2003). Effect of temperature on the pathogenicity of entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) to Delia radicum. BioControl, 48: 713–724.

    Google Scholar 

  • Coaker, T.H., & Finch, S. (1971). The cabbage root fly, Erioischia brassicae (Bouché). National Vegetable Research Station Twenty-first Annual Report 1970, Wellsbourne, Warwick, 23–42.

    Google Scholar 

  • Coleman, D.C. (1986). The role of microfloral and faunal interactions in affecting soil processes. In: M.J., Mitchell & J.P. Nakas (eds.). Microfloral and Faunal Interactions in Natural and Agro-ecosystems. Martinus Nijhoff/ Dr W. Junk Publishers, 317–398.

    Google Scholar 

  • Coleman, D.C., Crossley, D.A.Jr., & Hendrix, P.F. (2004). Fundamentals of Soil Ecology. Elsevier Academic Press, London.

    Google Scholar 

  • Cutler, G.C., & Webster, J.M. (2003). Host-finding ability of three entomopathogenic nematode isolates in the presence of plant roots. Nematology, 5: 601–608.

    Google Scholar 

  • Dallinger, R., Berger, B., Triebskorn-Köhler, R., & K ö hler, H. (2001). Soil Biology and ecotoxicology. In: Barker, G.M. (ed.). The Biology of Terrestrial Molluscs. CABI Publishing, Wallingford, UK. 489–525

    Google Scholar 

  • De Croos, J.N.A., & Bidochka, M.J. (1999). Effects of low temperature on growth parameters in the entomopathogenic fungus Metarhizium anisopliae. Canadian Journal of Microbiology, 45: 1055–1061.

    Google Scholar 

  • De Ley, P. (2000). Lost in worm space: Phylogeny and morphology as road maps to nematode diversity. Nematology 2: 9–16.

    Google Scholar 

  • De Ley, P., & Blaxter, M. (2002). Systematic position and phylogeny. In D.L. Lee (ed.). The Biology of Nematodes. Taylor & Francis, London. 1–30.

    Google Scholar 

  • De Nardo, E.A.B., Sindermann, A.B., Grewal, S.K., & Grewal, P.S. (2004). Non-susceptibility of earthworm Eisenia fetida to the rhabditid nematode Phasmarhabditis hermaphrodita, a biocontrol agent of slugs. Biocontrol Science and Technology, 14: 93–98.

    Google Scholar 

  • De Oliveira, R.C., & Neves, P.M.O.J. (2004). Compatibility of Beauveria bassiana with Acaricides. Neotropical Entomology, 33: 353–358.

    Google Scholar 

  • Dighton, J., Jones, H.E., Robinson, C.H., & Beckett, J. (1997). The role of abiotic factors, cultivation practices and soil fauna in the dispersal of genetically modified microorganisms in soils. Applied Soil Ecology, 5: 109–131.

    Google Scholar 

  • Dillon, A. (2003). Biological Control of the Large Pine Weevil, Hylobius abietis L., (Coleoptera: Curculionidae) using Entomopathogenic Nematodes. PhD thesis, National University of Maynooth, Ireland.

    Google Scholar 

  • Dritschilo, W., & Wanner, D. (1980). Ground beetles abundance in organic and conventional corn fields. Environmental Entomology, 9: 629–631.

    Google Scholar 

  • Dromph, K.M. (2001). Dispersal of entomopathogenic fungi by collembolans. Soil Biology & Biochemistry, 33: 2047–2051.

    CAS  Google Scholar 

  • Dromph, K.M. (2003). Collembolans as vectors of entomopathogenic fungi. Pedobiologia, 47: 245–256.

    Google Scholar 

  • Duddington, C.L. (1965). Biological control - predaceous fungi. In J.N. Sasser & W.R. Jenkins (eds.) Nematology, Fundamentals and Recent Advances with Emphasis on Plant Parasitic and Soil Forms. The University of North Carolina Press, Chapel Hill, USA, 461–465.

    Google Scholar 

  • Dugaw, C.J., Hastings, A., Preisser, E.L., & Strong, D.R. (2004). Seasonally limited host supply generates microparasite population cycles. Bulletin of Mathematical Biology, 66: 583–594.

    PubMed  Google Scholar 

  • Duncan, L.W., & McCoy, C.W. (2001). Hydrolic lift increases herbivory by Diaprepes abbreviatus larvae and persistence of Steinernema riobrave in dry soil. Journal of Nematology, 33: 142–146.

    Google Scholar 

  • Duncan, L.W., Dunn, D.C., Bague, G., & Nguyen, K. (2003). Competition between entomopathogenic and free-living bactivorous nematodes in larvae of the weevil Diaprepes abbreviatus. Journal of Nematology, 35: 187–193.

    Google Scholar 

  • Dutky, S.R. (1959). Insect microbiology. Advances in Applied Microbiology, 1: 175–200.

    PubMed  CAS  Google Scholar 

  • Ehlers, R.-U. (1996). Current and future use of nematodes in biocontrol: practice and commercial aspects with regard to regulatory policy issues. Biocontrol Science and Technology, 6: 303–316.

    Google Scholar 

  • Ehlers, R.-U., Deseö, K.V., & Stackebrandt, E. (1991). Identification of Steinernema spp. (Nematoda) and their symbiotic bacteria Xenorhabdus spp. from Italian and German soils. Nematologica, 37: 360–366.

    Google Scholar 

  • Ekesi, S., Maniania, N.K., & Lux, S.A. (2003). Effect of soil temperature and moisture on survival and infectivity of Metarhizium anisopliae to four tephritid fruit fly puparia. Journal of Invertebrate Pathology, 83: 157–167.

    PubMed  CAS  Google Scholar 

  • Eilenberg, J., Hajek, A.E., & Lomer, C. (2001). Suggestions for unifying the terminology in biological control. BioControl, 46: 387–400.

    Google Scholar 

  • Eilenberg, J., & Meadow, R. (2002). Fungi for biological control of brassica root flies Delia radicum and Delia floralis. In R.K. Upadhyay (ed.). Advances in Microbial Control of Insect Pests. Kluwer Academic/ Plenum Publishers, New York, 181–191.

    Google Scholar 

  • Enkerli, J., Widmer, F., & Keller, S. (2004). Long-term field persistence of Beauveria brongniartii strains applied as biocontrol agents against European cockchafer larvae in Switzerland. Biological Control, 29: 115–123.

    Google Scholar 

  • Enright, M.R., McInerney, J.O., & Griffin, C.T. (2003). Characterization of endospore-forming bacteria associated with entomopathogenic nematodes, Heterorhabditid spp., and description of Paenibacillus nematophilus sp. nov. International Journal of Systematic and Evolutionary Microbiology, 53: 435–441.

    PubMed  CAS  Google Scholar 

  • Evans, H.F. (2000). Viruses. Field Manual of Techniques in Invertebrate Pathology. In L.A. Lacey & H.K. Kaya, (eds.). Kluwer Academic Publishers, London, 179–208.

    Google Scholar 

  • Fadl, A., Purvis, G., & Towey, K. (1996). The effect of time of soil cultivation on the incidence of Pterostichus melanarius (Illig) (Coleoptera: Carabidae) in arable land in Ireland. Annales Zoologici Fennici, 33: 207–214.

    Google Scholar 

  • Fain, A. (2004). Mites (Acari) parasitic and predaceous on terrestrial gastropods. In G.M. Barker (ed.). Natural Enemies of Terrestrial Molluscs. CABI Publishing Wallingford, UK, 505–524.

    Google Scholar 

  • Fenton, A., Fairbairn, J., Norman, J., & Hudson, P. (2001). Evaluating the optimum use of entomopathogenic nematodes as biological control agents: A populations dynamics approach. In C.T. Griffin, A.M. Burnell, M.J. Downes & Mulder, R. (eds.). Developments in Entomopathogenic Nematode/bacterial Research. European Commission, Luxembourg, 132–139.

    Google Scholar 

  • Fenton, A., & Sands, S.A. (2004). Optimal parasite infection strategies: a state-dependent approach. International Journal for Parasitology, 34: 813–821.

    PubMed  Google Scholar 

  • Feltham, D.L., Chaplain, M.A.J., Young, I.M., & Crawford, J.W. (2002). A mathematical analysis of a minimal model of nematode migration in soil. Journal of Biological Systems, 10: 15–32.

    Google Scholar 

  • Ferris, H. (1993). New frontiers in nematode ecology. Journal of Nematology, 25: 374–382.

    Google Scholar 

  • Ferris, H., Bongers, T., & de Goede, R.G.M. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18: 13–29.

    Google Scholar 

  • Filipjev, I.N., & Schuurmans-Stekhoven J.H. Jr. (1941). A Manual of Agricultural Helminthology. E.J. Brill, Leiden, Netherlands.

    Google Scholar 

  • Foth, H.D. (1984). Fundamentals of Soil Science. John Wiley & Sons, Inc., London.

    Google Scholar 

  • Foth, H.D., & Turk, L.M. (1990). Fundamentals of Soil Science. John Wiley & Sons, Inc., London.

    Google Scholar 

  • Frank, J.H., Parkman, J.P., & Bennett, F.D. (1995). Larra bicolor (Hymenoptera: Sphecidae), a biological control agent of scapteriscus mole crickets (Orthoptera: Gryllotalpidae), established in northern Florida. Florida Entomologist, 78: 619–623.

    Google Scholar 

  • Freckman, D.W., & Baldwin, J.G. (1990), Nematoda. In D.L. Dindal (ed.). Soil Biology Guide. John Wiley & Sons, New York, 155–200.

    Google Scholar 

  • Friedman, M.J. (1990). Commercial production and development. In R. Gaugler & H.K. Kaya (eds.). Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, Florida USA, 153–172.

    Google Scholar 

  • Fuxa, J.R. (1998). Environmental manipulation for microbial control of insects. In P. Barbosa (ed.). Conservation Biological Control. Academic Press, London, 255–268.

    Google Scholar 

  • Fuxa, J.R., & Tanada, Y. (1987). Epizootiology of Insect Diseases. John Wiley & Sons, New York.

    Google Scholar 

  • Gaugler, R., (1988). Ecological considerations in the biological control of soil-inhabiting insects with entomopathogenic nematodes. Agriculture, Ecosystems and Environment, 24: 351–361.

    Google Scholar 

  • Gaugler, R. (2002). Entomopathogenic Nematology. CABI Publishing, Wallingford, UK.

    Google Scholar 

  • Gaugler, R., & Han, R. (2002). Production technology. In R. Gaugler (ed.). Entomopathogenic Nematology CABI Publishing, Wallingford, UK. 289–310.

    Google Scholar 

  • Gaugler, R., & Kaya H.K. (1990). Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Gaugler, R., LeBeck, L., Nagaki, B., & Boush, G.M. (1980). Orientation of the entomogenous nematode Neoaplectana carpocapsae to carbon dioxide. Environmental Entomology, 9: 649–652.

    Google Scholar 

  • Georgis, R, Kaya, H.K., & Gaugler, R. (1991). Effect of steinernematid and heterorhabditid nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) of nontarget arthropods. Environmental Entomology, 20: 815–822.

    Google Scholar 

  • Glaser, I. (2002). Survival biology. In R. Gaugler (ed.). Entomopathogenic Nematology. CABI publishing, Wallingford, UK 169–187.

    Google Scholar 

  • Goettel, M.S., Hajek, A.E., Siegel, J.P., & Evans, H.C. (2001). Safety of fungal biocontrol agents. In T.M., Butt C. Jackson & N. Magan. Fungi as Biocontrol Agents. Progress, Problems and Potential. CABI Publishing, Wallingford, UK, 347–375.

    Google Scholar 

  • Goodey (1951). Soil and Freshwater Nematodes. Methuen & Co, London.

    Google Scholar 

  • Gouge, D.H., Smith, K.A., Lee, L.L., & Henneberry, T.J. (2000). Effect of soil depth and moisture on the vertical distribution of Steinernema riobrave (Nematoda: Steinernematidae). Journal of Nematology, 32: 223–228.

    Google Scholar 

  • Gradinarov, D. (2003). New natural hosts of entomopathogenic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae) from Bulgaria. Acta Zoologica Bulgarica, 55: 59–64.

    Google Scholar 

  • Gradinarov, D., Shishiniova, M., & Budurova, L. (2000). Entomopathogenic nematodes of the family Steinernematidae in Bulgaria -distribution in natural ecosystems and hosts. Acta Entomologica Bulgarica, 6: 34–39.

    Google Scholar 

  • Grant, J.A., & Villani, M.G. (2003a). Soil moisture effects on entomopathogenic nematodes. Environmental Entomology, 32: 80–87.

    Google Scholar 

  • Grant, J.A., & Villani, M.G. (2003b). Effects of soil rehydration on the virulence of entomopathogenic nematodes. Environmental Entomology 32: 983–991.

    Google Scholar 

  • Grewal, P.S. (2002). Formulation and application technology. In R. Gaugler (ed.). Entomopathogenic Nematology. CABI Publishing, Wallingford, UK, 265–287.

    Google Scholar 

  • Grewal, P.S., & Grewal, S.K. (2003). Survival of earthworms exposed to the slug-parastic nematode Phasmarhabditis hermaphrodita. Journal of Invertebrate Pathology, 82: 72–74.

    PubMed  Google Scholar 

  • Grewal, P.S., Selvan, S., & Gaugler, R. (1994). Thermal adaption of entomopathogenic nematodes: niche breadth for infection, establishment, and reproduction. Journal of Thermal Biology, 19: 245–253.

    Google Scholar 

  • Grewal, P.S., Grewal, S., Tan, L., & Adams, B.J. (2003). Parasitism of molluscs by nematodes: Types of associations and evolutionary trends. Journal of Nematology, 35: 146–156.

    Google Scholar 

  • Griffin, C.T. (1993). Temperature responses of entomopathogenic nematodes: Implications for the success of biological control programs. In R. Bedding, R. Akhurst & H.K. Kaya (eds.). Nematodes and the Biological Control of Insect Pests. CSIRO, Australia, 115–126.

    Google Scholar 

  • Gurr, G., Wratten, S.D., & Barbosa, P. (2000). Success in conservation biological control of Arthropods. In G. Gurr & S. Wratten (eds.). Biological Control: Measures of Success. Kluwer Academic Publishers, London, 105–132.

    Google Scholar 

  • Gökce, A., & Er, M.K. (2003). First description of disease by Conidiobolus osmodes on Tipula paludosa larvae with the report of a natural epizootic. Journal of Invertebrate Pathology, 84: 83–89.

    PubMed  Google Scholar 

  • Hajek, A.E. (1997). Ecology of terrestrial fungal entomopathogens. In: Jones (ed.) Advances in Microbial Ecology. Plenum Press, New York, 193–249.

    Google Scholar 

  • Hajek, A.E., Delalibera Jr, I., & Butler, L. (2003). Entomopathogenic fungi as classical biological control agents. In H.M.T. Hokkanen & A.E. Hajek (eds.). Environmental Impacts of Microbial Insecticides. Need and Methods for Risk Assessment. Kluwer Academic Publishers, London, 15–34.

    Google Scholar 

  • Hajek, A.E., Delalibera Jr, I., & McManus, M.L. (2000). Introduction of exotic pathogens and documentation of their establishment and impact. In L.A. Lacey & H.K. Kaya (eds.). Field Manual of Techniques in Invertebrate Pathology. Kluwer Academic Publishers, London, 339–369.

    Google Scholar 

  • Hajek, A.E., & Humber, R.A. (1997). Formation and germination of Entomophaga maimaiga azygospores. Canadian Journal of Botany, 75: 1739–1747.

    Google Scholar 

  • Hajek, A.E., & Leger, R.J.St. (1994). Interactions between fungal pathogens and insect hosts. Annual Review of Entomology, 39: 293–322.

    Google Scholar 

  • Hajek, A.E., Wheeler, M., & Siegert, N.W. (2004). Using bioassays to estimate abundance of Entomophaga maimaiga resting spores in soil. Journal of Invertebrate Pathology: 86, 61–64.

    PubMed  Google Scholar 

  • Hazir, S., Stock, S.P., Kaya, H.K., Koppenhofer, A.M., & Keskin, N. (2001). Developmental temperature effects on five geographic isolates of the entomopathogenic nematode Steinernema feltiae (Nematoda: Steinernematidae). Journal of Invertebrate Pathology, 77: 243–250.

    PubMed  CAS  Google Scholar 

  • Haukeland, S. (1993). Entomopathogenic nematodes found in Norway. Norwegian Journal of Agricultural Sciences, 7: 13–17.

    Google Scholar 

  • Hawksworth, D.L. (1991). The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycological Research, 95: 641–655.

    Google Scholar 

  • Hawksworth, D.L. (2001). The magnitude of fungal diversity: the 1.5 million species estimate revised. Mycological Research, 105: 1422–1432.

    Google Scholar 

  • Hokkanen, H.M.T., & Hajek, A.E. (2003). Environmental Impacts of Microbial Insecticides. Kluwer Academic Publishers, London.

    Google Scholar 

  • Hokkanen, H., & Holopainen, J.K. (1986). Carabid species and activity densities in biologically and conventional managed cabbage fields. Journal of Applied Entomology, 102: 353–363.

    Google Scholar 

  • Hominick, W.H. (2002). Biogeography. In R. Gaugler (ed.). Entomopathogenic Nematology. CABI publishing, Wallingford, UK, 115–143.

    Google Scholar 

  • Hominick, W.H., & Kerry, B. (2002). Biological control. In D. Lee (ed.). The Biology of Nematodes. Taylor & Francis, London, 483–509.

    Google Scholar 

  • Hominick, W.M., Reid, A.P., Bohan, D.A., & Briscoe, B.R. (1996). Entomopathogenic nematodes: Biodiversity, geographical distribution and the convention on biological diversity. Biocontrol Science and Technology, 6: 317–331.

    Google Scholar 

  • Hozzank, A., Keller, S., Daniel, O., & Schweizer, Ch. (2003a). Impact of Beauveria brongniartii and Metarhizium anisopliae (Hyphomycetes) on Lumbricus terrestris (Oligochaeta, Lumbricidae). Insect Pathogens and Insect Parasitic Nematodes, IOBC WPRS Bulletin, 26: 31–34.

    Google Scholar 

  • Hozzank, A., Wegensteiner, R., Waitzauber, W., Burnell, A., & Mrácek, Z. (2003b). Investigations on the occurrence of entomopathogenic fungi and entomoparasitic nematodes in soils from Lower Austria. Insect Pathogens and Insect Parasitic Nematodes, IOBC WPRS Bulletin, 26: 77–80.

    Google Scholar 

  • Howarth, F.G. (2000). Non-target effects of biological control agents. In G. Gurr & S. Wratten (eds.). Biological Control: Measures of Success. Kluwer Academic Publishers, London, 369–403.

    Google Scholar 

  • Hull, R. (2002). Plant virology. Academic Press, London.

    Google Scholar 

  • Humber, R.A., (1997). Fungi: Identification. In: L. Lacey (ed.). Manual of Techniques in Insect Pathology. Academic Press, London.

    Google Scholar 

  • Hummel, R.L., Walgenbach, J.F., Barbercheck, M.E., Kennedy, G.G., Hoyt, G.D., & Arellano, C. (2002). Effects of production practices on soil-borne entomopathogens in western North Carolina vegetable systems. Environmental Entomology, 31: 84–91.

    Google Scholar 

  • Hunt, W.H., Wall, D.H., Decrappeo N.M., & Brenner, J.S. (2001). A model for nematode locomotion in soil. Nematology, 3: 705–716.

    Google Scholar 

  • Hunter-Fujita, F.R., Entwistle, P.F., Evans, H.F., & Crook, N.E. (1998). Insect Viruses and Pest Management.. John Wiley & Sons, New York.

    Google Scholar 

  • Iglesias, J., Castillejo, J., & Castro, R. (2003). The effects of repeated applications of the molluscicide metaldehyde and the biocontrol nematode Phasmarhabditis hermaphrodita on molluscs, earthworms, nematodes, acarids and collembolans: a two-year study in north-west Spain. Pest Management Sciences, 59: 1217–1224.

    CAS  Google Scholar 

  • Ignoffo, C.M., Garcia, C., Hostetter, D.L., & Pinnell, R.E. (1977). Vertical movement of conidia of Nomuraea rileyi through sand and loam soils. Journal of Economic Entomology, 70: 163–164.

    Google Scholar 

  • Inglis, G.D., Goettel, M.S., Butt, T.M., & Strasser, H. (2001). Use of Hyphomycetous fungi for managing insect pests. In T.M. Butt, C. Jackson & N. Magan (eds.). Fungi as Biocontrol Agents. Progress, Problems and Potential. CABI Publishing, Wallingford, UK, 23–69.

    Google Scholar 

  • Ingold, C.T., & Hudson, H.J. (1993). The Biology of Fungi. Chapman & Hall, London.

    Google Scholar 

  • Inyang, E.N., Butt, T.M., Doughty, K.J., Todd, A.D., & Archer, S. (1999). The effect of isothiocyanates on the growth of the entomopathogenic fungus Metarhizium anisopliae and its infection of the mustard beetle. Mycological Research, 103: 974–980.

    CAS  Google Scholar 

  • Irigaray, F.J.S.D., Marco-Mancebon, V., & Perez-Moreno, I. (2003). The entomopathogenic fungus Beauveria bassiana and its compatibility with triflumuron: effects on the twospotted spider mite Tetranychus urticae. Biological Control, 26: 168–173.

    Google Scholar 

  • Jackson, T.A., Alves, S.B., & Pereira, R.M. (2000). Success in biological control of soil-dwelling insects by pathogens and nematodes. In G. Gurr & S. Wratten (eds.). Biological Control: Measures of Success. Kluwer Academic Publishers, London, 271–296.

    Google Scholar 

  • Jonasson, T., Ahlström-Olsson, M., & Johansen, T.J. (1995). Aleochara suffusa and A. bilineata [Col: Staphylinidae] as parasitoids of Brassica root flies in northern Norway. Entomophaga, 40: 163–167.

    Google Scholar 

  • Jones, F.G.W. (1978). The soil-plant environment. In: J.F. Southey (ed.), Plant Nematology. Her Majesty’s Stationary Office, London, UK, 46–62.

    Google Scholar 

  • Kaiser, H. (1991). Terrestrial and semiterrestrial Mermithidae. In W.R. Nickle (ed.) Manual of Agricultural Nematology. Marcel Decker, Inc. New York, 899–966.

    Google Scholar 

  • Kaya, H.K. (1990). Soil Ecology. In R. Gaugler & H.K. Kaya (eds.), Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, Florida USA, 93–115.

    Google Scholar 

  • Kaya, H.K. (2002). Natural enemies and other antagonists. In R. Gaugler (ed.). Entomopathogenic Nematology. CABI publishing, Wallingford, UK, 189–203.

    Google Scholar 

  • Kaya, H.K., & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology, 38: 181–206.

    Google Scholar 

  • Keller, S. (1992). The Beauveria-Melolontha project: experiences with regard to locust and grasshopper control. In: C.J. Lomer & C. Prior. Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, UK, 279–286

    Google Scholar 

  • Keller, S., Kessler, P., & Schweizer, C. (2003). Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metarhizium anisopliae. BioControl, 48: 307–319.

    Google Scholar 

  • Keller, S., Parli, B., Lujan, M., & Schweizer, C. (1993). Influence of fungicides on the insect pathogenic fungus Beauveria bassiana (Sacc) Petch. Anzeiger für Schä dlingskunde Pflanzenschutz Umweltschutz, 66: 108–114.

    Google Scholar 

  • Keller, S., & Zimmermann, G. (1989). Mycopathogens of soil insects. In N. Wilding, N.M. Coillins, P.M. Hammond & J.F. Webber (eds.). Insect-fungus Interactions. Academic Press, London, 239–270.

    Google Scholar 

  • Kenis, M., Wegensteiner, R., & Griffin, C.T. (2004). Parasitoids, predators, nematodes and pathogens associated with bark weevil pests in Europe. In: F. Lieutier, K.R., Day, A., Battisti, J.C., Gregoire, & H.F. Evans (eds.). Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Kluwer Academic Publishers, Dordrecht, Netherlands, 395–414.

    Google Scholar 

  • Kessler, P., Enkerli, J., Schweizer, C. & Keller, S. (2004). Survival of Beauveria brongniartii in the soil after application as a biocontrol agent against the European cockchafer Melolontha melolontha. BioControl, 49: 563–581.

    Google Scholar 

  • Kessler, P., Matzke, H. & Keller, S. (2003). The effect of application time and soil factors on the occurrence of Beauveria brongniartii applied as a biological control agent in soil. Journal of Invertebrate Pathology, 84: 15–23.

    PubMed  Google Scholar 

  • Kleespies, von R., Bathon, H., & Zimmermann, G. (1989). Investigation on the natural occurrence of entomopathogenic fungi and nematodes in different soils in the surroundings of Darmstadt. Gesunde Pflanzen, 41: 350–354. (In German, English summary).

    Google Scholar 

  • Klingen, I. (2000). Natural occurrence of insect pathogenic fungi and their pathogenicity on different host species with emphasis on Delia radicum and Delia floralis. Agricultural University of Norway (PhD thesis 2000:24).

    Google Scholar 

  • Klingen, I., Eilenberg, J., & Meadow, R. (2002a). Impact of farming system, field margins and bait insect on the occurrence of insect pathogenic fungi in soils. Agriculture, Ecosystems and Environment, 91: 191–198.

    Google Scholar 

  • Klingen, I., Hajek, A.E., Meadow, R., & J.A.A. Renwick (2002b) Effect of brassicaceous plants on the survival and infectivity of insect pathogenic fungi. BioControl, 47: 411–425.

    CAS  Google Scholar 

  • Klingen, I., Meadow, R., & Aandahl, T. (2002c). Mortality of Delia floralis, Galleria mellonella and Mamestra brassicae treated with insect pathogenic hyphomycetous fungi. Journal of Applied Entomology, 126: 231–237.

    Google Scholar 

  • Klingen, I., Salinas, S.H., & Meadow, R. (2002d). Checklist of naturally occurring pathogens of insects and mites in Norway. Norwegian Journal of Entomology, 49: 23–28.

    Google Scholar 

  • Klubertanz, T.H., Pedigo, L.P., & Carlson, R.E. (1991). Impact of fungal epizootics on the biology and management of the twospotted spider mite (Acari, Tetranychidae) in soybean. Environmental Entomology, 20: 731–735.

    Google Scholar 

  • Koppenhofer, A.M., Baur, M.E., Stock, S.P., Choo, H.Y., Chinnasri, B., & Kaya, H.K. (1997). Survival of entomopathogenic nematodes within host cadavers in dry soil. Applied Soil Ecology, 6: 231–240.

    Google Scholar 

  • Koppenhofer, A.M., & Fuzy E.M. 2003. Ecological characterization of Steinernema scarabaei, a scarab-adapted entomopathogenic nematode from New Jersey. Journal of Invertebrate Pathology, 83: 139–148.

    PubMed  Google Scholar 

  • Koppenhofer, A.M., Jaffee, B.A., Muldoon, A.E., & Strong, D.R. (1997). Suppression of an entomopathogenic nematode by the nematode-trapping fungi Geniculifera paucispora and Monacrosporium eudermatum as affected by the fungus Arthrobotrys oligospora. Mycologia, 89: 220–227.

    Google Scholar 

  • Koppenhofer, A.M., Jaffee, B.A., Muldoon, A.E., Strong, D.R., & Kaya, H.K. (1996). Effect of nematode-trapping fungi on an entomopathogenic nematode originating from the same field site in California. Journal of Invertebrate Pathology, 68: 246–252.

    PubMed  CAS  Google Scholar 

  • Koppenhofer, A.M., Kaya, H.K., & Taormino, S.P. (1995). Infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae) at different soil depths and moisture. Journal of Invertebrate Pathology, 65: 193–199.

    Google Scholar 

  • Koppenhofer, A.M., & Kaya, H.K. (1998). Synergism of Imidacloprid and an entomopathogenic nematode: a new approach to white grub (Coleoptera: Scarabaeidae) control in turfgrass. Journal of Economic Entomology, 91: 618– 623.

    CAS  Google Scholar 

  • Koppenhofer, A.M. & Kaya, H.K. (1999). Ecological characterization of Steinernema rarum. Journal of Invertebrate Pathology, 73: 120–128.

    PubMed  Google Scholar 

  • Kouassi, M., Coderre, D., & Todorva, S.I. (2003). Effects of the timing of applications on the incompatibility of three fungicides and one isolate of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina). Journal of Applied Entomology, 127: 421–426.

    CAS  Google Scholar 

  • Kowalska, J. (2000). Effect of the alternative host Strophosoma faber (Herbst) on efficacy of the entomopathogenic nematode Steinernema glaseri in control of Amphimallon solstitiale grubs in the soil. Journal of Plant Protection Research, 40: 244–248.

    Google Scholar 

  • Kraglund, H.O., & Ekelund, F. (2002). Infestation of natural populations of earthworm cocoons by Rhabditid and Cephalobid nematodes. Pedobiologia, 46: 125–135.

    Google Scholar 

  • Krall, E.L. (1991). Wheat and grass nematodes: Anguina, Subanguina, and related genera. In W.R. Nickle (ed.). Manual of Agricultural Nematology. Marcel Dekker Inc., New York, 721–760.

    Google Scholar 

  • Kung, S.-P., & Gaugler, R. (1990). Soil type and entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 55: 401–406.

    Google Scholar 

  • Kung, S.-P., & Gaugler, R. (1991). Effects of soil temperature, moisture, and relative humidity on entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 57: 242–249.

    Google Scholar 

  • Kung, S.-P., Gaugler, R., & Kaya, H. (1990). Influence of soil pH and oxygen on persistence of Steinernema spp. Journal of Nematology, 22: 440–445.

    Google Scholar 

  • Lacey, L.A., Mesquita, A.L.M., Mercadier, G., Debire, R., Kazmer, D.J., & Leclant, F. (1997). Acute and sublethal activity of the entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) on adult Aphelinus asychis (Hymenoptera: Aphelinidae). Environmental Entomology, 26: 1452–1460.

    Google Scholar 

  • Lacey, L.A., Unruh, T.R. & Headrick H.L. (2003). Interactions of two idiobiont parasitoids (Hymenoptera: Ichneumonidae) of codling moth (Lepidoptera: Tortricidae) with the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae). Journal of Invertebrate Pathology, 83: 230–239.

    PubMed  Google Scholar 

  • Lee, D.J. (2002). The Biology of Nematodes. Taylor & Francis London.

    Google Scholar 

  • Lei, Z., Rutherford, T.A., & Webster, J.M. (1992). Heterorhabditid behaviour in the presence of the cabbage maggot, Delia radicum, and its host plants. Journal of Nematology, 24: 9–15.

    Google Scholar 

  • Lewis, E.E. (2002). Behavioural ecology. In: R. Gaugler (ed.), Entomopathogenic nematology. CABI Publishing, Wallingford, UK, 205–224.

    Google Scholar 

  • Lewis, E.E., Campbell, J.F., & Gaugler, R. (1998). A conservation approach to using entomopathogenic nematodes in turf and landscapes. In P. Barbosa (ed.). Conservation Biological Control. Academic Press, London, 235–254.

    Google Scholar 

  • Li, W., Fang, X.F., & Sheng, C.F. (2004). Impact of sixteen chemical pesticides on conidial germination of two entomophthoralean fungi: Conidiobolus thromboides and Pandora nouryi. Biocontrol Science and Technology, 14: 737–741.

    Google Scholar 

  • Li, D.P., & Holdom, D.G. (1994). Effects of pesticides on growth and sporulation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes). Journal of Invertebrate Pathology, 63: 209–211.

    Google Scholar 

  • Long, S.J., Richardson, P.N., & Fenlon, J.S. (2000). Influence of temperature on the infectivity of entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) to larvae and pupae of the vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae). Nematology, 2: 309–317.

    Google Scholar 

  • Lynch, J.M. (1990). Introduction: Some consequences of microbial rhizosphere competence for plant and soil. In J.M. Lynch. The Rhizosphere. John Wiley & Sons, New York, 1–10.

    Google Scholar 

  • Magdoff, F. (2001). Concept, components and strategies of soil health in agroecosystems. Journal of Nematology, 33: 169–172.

    Google Scholar 

  • Majchrowicz, I., & Poprawski, T.J. (1993). Effects in vitro of nine fungicides on growth of entomopathogenic fungi. Biocontrol Science and Technology, 3: 321–336.

    Google Scholar 

  • McSorely, R. (2003). Adaptions of nematodes to environmental extremes. Florida Entomologist, 86: 138–142.

    Google Scholar 

  • Mietkiewski, R., Górski, R., & Tkaczuk, C. (1995). Occurrence of entomopathogenic fungi in soil in relation to depth. Proceedings of the conference on “Actual and Potential Use of Biological Pest Control on Plants” . Skierniewice, Poland, 22–23 November 1993, 94–99.

    Google Scholar 

  • Mietkiewski, R.T., Pell, J.K., & Clark, S.J. (1997). Influence of pesticide use on the natural occurrence of entomopathogenic fungi in arable soils in the UK: Field and laboratory comparisons. Biocontrol Science and Technology, 7: 565–575.

    Google Scholar 

  • Mietkiewski, R., Tkaczuk, C., Zurek, M., & van der Geest, L.P.S. (1994). Temperature requirements of four entomopathogenic fungi. Acta Mycologica, 1: 109–120.

    Google Scholar 

  • Millar, L.C., & Barbercheck, M.E. (2002). Effects of tillage practices on entomopathogenic nematodes in a corn agroecosystems. Biological Control, 25: 1–11.

    Google Scholar 

  • Milner, R.J., Samson, P., & Morton, R. (2003). Persistence of conidia of Metarhizium anisopliae in sugarcane fields: Effect of isolate and formulation on persistence over 3.5 years. Biocontrol Science and Technology, 13: 507–516.

    Google Scholar 

  • Molyneux, A.S. (1986). Heterorhabditis spp. and Steinernema (=Neoaplectana) spp.: temperature, and aspects of behaviour and infectivity. Experimental Parasitology, 62: 169–180.

    PubMed  CAS  Google Scholar 

  • Moore, J.C., Walter, D.E., & Hunt, H.W. (1988). Arthropod regulation of micro- and mesobiota in below-ground detrital food webs. Annual Review of Entomology, 33: 419–439.

    Google Scholar 

  • Morand, S., Wilson, M.J., & Glen, D.M. (2004). Nematodes (Nematoda) parasitic in terrestrial gastropods. In G.M. Barker (ed.). Natural Enemies of Terrestrial Molluscs, CABI Publishing, Wallingford, UK, 525–558.

    Google Scholar 

  • Mráčzek, Z. (1982). Horizontal distribution in soil, and seasonal dynamics of the nematode Steinernema kraussei, a parasite of Cephalcia abietis. Journal of Applied Entomology, 94: 110–112.

    Google Scholar 

  • Mráčzek, Z., & Bečvář S. (2000). Insect aggregations and entomopathogenic nematode occurrence. Nematology, 2: 297–301

    Google Scholar 

  • Mrázek, Z., BečvářS., Kindlmann, P., & Webster, J.M. (1999). Factors influencing the infectivity of a Canadian isolate of Steinernema kraussei (Nematoda: Steinernematidae) at low temperature. Journal of Invertebrate Pathology, 73: 243–247.

    Google Scholar 

  • Mrázek, Z., & D. Sturhan (2000). Epizootic of the entomopathogenic nematode Steinernema intermedium (Poinar) in an aggregation of the bibionid fly, Bibio marci L. Journal of Invertebrate Pathology, 76: 149–50.

    Google Scholar 

  • Neher, D.A. (2001). Role of nematodes in soil health and their use as indicators. Journal of Nematology, 33: 161–168.

    Google Scholar 

  • Nelson, D.R., & Higgins, R.P. (1990). Tardigrada. In D.L. Dindal (ed.). Soil Biology Guide. John Wiley & Sons, New York, 393–419.

    Google Scholar 

  • Nielsen, C., Hajek, A.E., Humber, R.A., Bresciani, J., & Eilenberg, J. (2003). Soil as an environment for winter survival of aphid-pathogenic Entomophthorales. Biological Control, 28: 92–100.

    Google Scholar 

  • Nielsen, O., & Philipsen, H. (2003). Danish surveys on insects naturally infected with entomopathogenic nematodes. IOBC Bulletin, 26: 131–136.

    Google Scholar 

  • Nielsen, O., & Philipsen, H. (2004). Recycling of entomopathogenic nematodes in Delia radicum and in other insects from cruciferous crops. BioControl 49: 285–294.

    Google Scholar 

  • Nishimatsu, T., & Jackson, J.J. (1998). Interaction of insecticides, entomopathogenic nematodes, and larvae of the western corn rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 91: 410–418.

    PubMed  CAS  Google Scholar 

  • Norton, D.C. (1978). Ecology of Plant Parasitic Nematodes. John Wiley & Sons Inc, New York.

    Google Scholar 

  • Norton, D.C. (1989). Abiotic soil factors and plant-parasitic nematode communities. Journal of Nematology, 21: 299–307.

    Google Scholar 

  • Norton, D.C., & Niblack, T.L. (1991). Biology and ecology of nematodes. In W.R. Nickle (ed.) Manual of Agricultural Nematology. Marcel Decker, Inc. New York, 47–72.

    Google Scholar 

  • Oduor, G.I., Yaninek, J.S., van der Geest, L.P.S. & Moraes, G.J. (1995). Survival of Neozygites cf. floridana (Zygomycetes: Entomophthorales) in mummified cassava green mites and the viability of its primary conidia. Experimental & Applied Acarology, 19: 479–488.

    Google Scholar 

  • O’Halloran, D.M., & Burnell, A.M. (2003). An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora. Parasitology, 127: 375–385.

    PubMed  CAS  Google Scholar 

  • Ohbayashi, T., & Iwabuchi, K. (1991). Abnormal behavior of the common armyworm Pseudaletia separata (Walker) (Lepidoptera, Noctuidae) larvae infected with an entomogenous fungus, Entomophaga aulicae, and a nuclear polyhedrosis virus. Applied Entomology and Zoology, 26: 579–585.

    Google Scholar 

  • Overgaard Nielsen, C. (1949). Studies on the soil microfauna II. The soil-inhabiting nematodes. Natura Jutlandica, 2: 1–131.

    Google Scholar 

  • Overgaard Nielsen, C. (1967). Nematoda. In A. Burges & F. Raw (eds.). Soil Biology, Academic Press, London, 197–211.

    Google Scholar 

  • Padmavathi, J., Devi, K.U., & Rao, C.U.M. (2003). The optimum and tolerance pH range is correlated to colonial morphology in isolates of the entomopathogenic fungus Beauveria bassiana – a potential biopesticide. World Journal of Microbiology & Biotechnology, 19: 469–477.

    Google Scholar 

  • Parkman, J.P., Frank, J.H., Walker, T.J., & Schuster, D.J. (1996). Classical biological control of Scapteriscus spp (Orthoptera: Gryllotalpidae) in Florida. Environmental Entomology, 25: 1415–1420.

    Google Scholar 

  • Pell, J.K., Eilenberg, J., Hajek, A.E., & Steinkraus, D.C. (2001). Biology, ecology and pest management potential of Entomophthorales. In T.M. Butt, C.W. Jackson & N. Magan. Fungi as Biocontrol Agents. Progress, Problems and Potential. CABI Publishing, Wallingford, UK, 71–153.

    Google Scholar 

  • Perry, R.N. (2002). Hatching. In: Lee, D.L. (ed.): The Biology of Nematodes. Taylor & Francis, London, 147–170.

    Google Scholar 

  • Peters, A. (1996). The natural host range of Steinernema and Heterorhabditis and their impact on insect populations. Biocontrol Science and Technology, 6: 389–402.

    Google Scholar 

  • Poinar, G.O. Jr. (1975). Entomogenous Nematodes: A Manual and Host List of Insect-nematode Associations. E.J. Brill, Leiden, Netherlands.

    Google Scholar 

  • Poinar, G.O. Jr. (1992). Steinernema feltiae new record (Steinernematidae: Rhabditida) parasitizing adult fungus gnats (Mycetophilidae: Diptera) in California. Fundamental and Applied Nematology, 15: 427–430.

    Google Scholar 

  • Poinar G.O., Karunakar, G.K. & David, H. (1992). Heterorhabditis indicus– n.sp. (Rhabditida, Nematoda) from India-separation of Heterorhabditis spp. by infective juveniles. Fundamental and Applied Nematology, 15: 467–472.

    Google Scholar 

  • Poprawski, T.J. & Majchrowicz, I. (1995). Effects of herbicides on in-vitro vegetative growth and sporulation of entomopathogenic fungi. Crop Protection, 14: 81–87.

    CAS  Google Scholar 

  • Popowska-Nowak, E., Bajan, C., Augustyniuk-Kram, A., Kolomiec, E., Chikleva, A. & Lobanok, A. (2003). Interactions between soil microorganisms: Bacteria, actinomycetes and entomopathogenic fungi of the genera Beauveria and Paecilomyces. Polish Journal of Ecology, 51: 85–90.

    Google Scholar 

  • Portillo-Aguilar C., Villani, M.G., Tauber, M.J., Tauber, C.A., & Nyrop, J.P. (1999). Entomopathogenic Nematode (Rhabditida: Heterorhabditidae) and Steinernematidae) response to soil texture and bulk density. Environmental Entomology, 28: 1021–1035.

    Google Scholar 

  • Purvis, G., & Curry, J.P. (1984). The influence of weeds and farmyard manure on the activity of Carabidae and other ground-dwelling arthropods in a sugar beet crop. Journal of Applied Ecology, 21: 271–283.

    Google Scholar 

  • Pye, A.E., & Burman, M. 1981. Neoaplectana carpocapsae: Nematode accumulations on chemical and bacterial gradients. Experimental Parasitology, 51: 13–20.

    PubMed  CAS  Google Scholar 

  • Rath, A.C., Koen, T.B., & Yip, H.Y. (1992). The influence of abiotic factors on the distribution and abundance of Metarhizium anisopliae in Tasmanian pasture soils. Mycological Research, 96: 378–384.

    Google Scholar 

  • Remillet, M. & Laumond, C. (1991). Sphaerularioid nematodes of importance in agriculture. In W.R. Nickle (ed.) Manual of Agricultural Nematology. Marcel Decker, Inc. New York, 967–1024.

    Google Scholar 

  • Rogers, M.E., Cole, T.J., Ramaswamy, S.B., & Potter, D.A. (2003). Behavioral changes in Japanese beetle and masked chafer grubs (Coleoptera: Scarabaeidae) after parasitism by tiphiid wasps (Hymenoptera: Tiphiidae). Environmental Entomology, 32: 618–625.

    Google Scholar 

  • Ross, K.T.A., & Anderson, M. (1992). Larval responses of 3 vegetable root fly pests of the genus Delia (Diptera, Anthomyiidae) to plant volatiles. Bulletin of Entomological Research, 82: 393–398.

    Google Scholar 

  • Roy, H.E. & Pell, J.K. (2000). Interactions between entomopathogenic fungi and other natural enemies: Implications for biological control. Biocontrol Science and Technology, 10: 737–752.

    Google Scholar 

  • Saito, T. & Yabuta, M. (1996). Laboratory studies on effect of pesticides on entomopathogenic fungus, Verticillium lecanii. Japanese Journal of Applied Entomology and Zoology, 40: 71–76.

    CAS  Google Scholar 

  • Salinas, H.S. (1996). Nematoder som nyttedyr -naturlig forekomst i Norge. Gartneryrket 7:13–17. (In Norwegian).

    Google Scholar 

  • Schmidt, J. & All, J.N. (1979). Attraction of Neoaplectana carpocapsae (Nematoda: Steinernematidae) to common excretory products of insects. Environmental Entomology, 7: 605–607.

    Google Scholar 

  • Schmidt, J., & All, J.N. (1978). Chemical attraction of Neoaplectana carpocapsae (Nematoda: Steinernematidae) to insect larvae. Environmental Entomology, 7: 605–607.

    Google Scholar 

  • Serwe-Rodrigues, J., Sonnenberg, K., Appleman, B., & Bornstein-Forst S. (2004). Effects of host desiccation on development, survival, and infectivity of entomopathogenic nematode Steinernema carpocapsae. Journal of Invertebrate Pathology, 85: 175–181.

    Google Scholar 

  • Shah, P.A., Brooks, A.R., Ashby, J.E., Perry, J.N., & Woiwod, I.P. (2003). Diversity and abundance of the coleopteran fauna from organic and conventional management systems in southern England. Agricultural and Forest Entomology, 5: 51–60.

    Google Scholar 

  • Shapiro, D.I., Tylka, G.L., Berry, E.C., & Lewis, L.C. (1995). Effects of earthworms on the dispersal of Steinernema spp. Journal of Nematology, 27: 21–28.

    Google Scholar 

  • Smith, K. (1999). Factors affecting efficacy. Optimal Use of Insecticidal Nematodes in Pest Management. Proceedings of a workshop, New Brunswick, New Jersey, USA.

    Google Scholar 

  • Somasekhar N., Grewal P.S., De Nardo E.A.B., & Stinner B.R. (2002). Non-target effects of entomopathogenic nematodes on the soil nematode community. Journal of Applied Ecology 39: 735–744.

    Google Scholar 

  • Sosa-Gomez, D.R., & Moscardi, F. (1994). Effect of till and no-till soybean cultivation on dynamics of entomopathogenic fungi in the soil. Florida Entomologist, 77: 284–287.

    Google Scholar 

  • Spiridinov, S.E., Reid, A.P., Podrucka, K., Subbotin, S.A., & Moens, M. (2004). Phylogenetic relationships within the genus Steinernema (Nematoda: Rhabditida) as inferred from analysis of sequences of the ITS1-5.8S-ITS2 region of rDNA and morphological features. Nematology, 6: 547–566.

    Google Scholar 

  • Stary, P. (1988). Aphidiidae. In A.K. Minks & P. Harrewÿn (eds.). Aphis, their biology, natural enemies and control. Elsevier, Amsterdam, 171–184.

    Google Scholar 

  • Steenberg, T., Langer, V., & Esbjerg, P. (1995). Entomopathogenic fungi in predatory beetles (Col: Carabidae and Staphylinidae) from agricultural fields. Entomophaga, 40: 77–85.

    Google Scholar 

  • Steenberg, T., & Øgaard, L. (2000). Mortality in hibernating turnip moth larvae, Agrotis segetum, caused by Tolypocladium cylindrosporum. Mycological Research, 104: 87–91.

    Google Scholar 

  • Steinkraus, D.C., Hollingsworth, R.G. & Boys, G.O. (1996). Aerial spores of Neozygites fresenii (Entomophthorales: Neozygitaceae): density, periodicity, and potential role in cotton aphid (Homoptera: Aphididae) epizootics. Environmental Entomology, 25: 48–57.

    Google Scholar 

  • Stirling, G. (1991). Biological control of Plant Parasitic Nematodes. CAB International, Wallingford, UK.

    Google Scholar 

  • Stock, S.P., & Koppenhofer A.M. (2003). Steinernema scarabaei n. sp (Rhabditida: Steinernematidae), a natural pathogen of scarab beetle larvae (Coleoptera: Scarabaeidae) from New Jersey, USA. Nematology, 5: 191–204.

    Google Scholar 

  • Storey, G.K., & Gardner, W.A. (1987). Vertical movement of commercially formulated Beauveria bassiana conidia through four Georgia soil types. Environmental Entomology, 16: 178–181.

    Google Scholar 

  • Strasser, H., Vey, A., & Butt, T.M. (2000). Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Science and Technology, 10: 717–735.

    Google Scholar 

  • Strong, D.R., Maron, J.L., Connors, P.G., Whipple, A., Harrison, S., & Jefferies, R.L. (1995). High mortality, fluctuation in numbers and heavy subterranean insect herbivory in bush lupine, Lupinus arboreus. Oecologia, 104: 85–92.

    Google Scholar 

  • Studdert, J.P., Kaya, H.K., & Duniway, J.M. (1990). Effect of water potential, temperature, and clay-coating on survival of Beauveria bassiana conidia in a loam and peat soil. Journal of Invertebrate Pathology, 55: 417–427.

    Google Scholar 

  • Sturhan, D. (1999). Prevalence and habitat specificity of entomopathogenic nematodes in Germany. In R.L., Gwynn, P.H. Smith, C. Griffin, Ehlers, R.-U., Boemare, N., & J.P. Mason (eds.). COST 819, Entomopathogenic Nematodes: Application and Persistence of Entomopathogenic Nematodes. European Commission DG XII, Luxembourg, 123–132.

    Google Scholar 

  • Sturhan, D. & Brzeski, M.W. (1991), Stem and bulb nematodes, Ditylenchus spp. In W.R. Nickle (ed.). Manual of Agricultural Nematology. Marcel Dekker Inc., New York, 423–464.

    Google Scholar 

  • Sturhan, D., & Reuss, L. (1999). An undescribed Steinernema sp. (Nematoda: Steinernematidae) from Germany and the Scandinavian Subarctic. Russian Journal of Nematology, 7: 43–47.

    Google Scholar 

  • Subinprasert, S. (1987). Natural enemies and their impact on overwintering codling moth populations (Laspeyresia pomonella L.) (Lep., Tortricidae) in South Sweden. Journal of Applied Entomology, 103: 46–55.

    Google Scholar 

  • Sundby, R.A., & Taksdal, G. (1969). Surveys of parasites of Hylemya brassicae (Bouché), and H. floralis (Fallén) (Diptera, Muscidae) in Norway. Norsk Entomologisk Tidsskrift, 16: 97–106.

    Google Scholar 

  • Sunderland, K.D. (1975). The diet of some predatory arthropods in cereal crops. Journal of Applied Ecology, 12: 507–515.

    Google Scholar 

  • Sundin, P. (1990). Plant root exudates in interactions between plants and soil microorganisms. A gnotobiotic approach. Department of Ecology, Chemical Ecology and Ecotoxicology, Lund University, Lund, Sweden. (PhD Thesis).

    Google Scholar 

  • Symondson, W.O.C. (2004). Coleoptera (Carabidae, Staphylinidae, Lampyridae, Drilidae and Silphidae) as predators of terrestrial gastropods. In: Barker, G.M. (ed.). Natural Enemies of Terrestrial Molluscs. Landcare Research, Hamilton, New Zealand. CABI Publishing, Wallingford, UK, 37–84.

    Google Scholar 

  • Symondson, W.O.C., Glen, D.M., Ives, A.R., Langdon, C.J., & Wiltshire, C.W. (2002). Dynamics of the relationship between a generalist predator and slugs over five years. Ecology, 83: 137–147.

    Google Scholar 

  • Tanada, Y., & Kaya, H.K. (1993). Insect Pathology. Academic Press, Inc. London.

    Google Scholar 

  • Timper, P. & Davies, K.G. (2004). Biotic interactions. In R. Gaugler & A.L. Bilgrami (eds.). Nematode Behaviour CABI Publishing, Wallingford, UK, 277–238.

    Google Scholar 

  • Tkaczuk, C., Mietkiewski, R., & Balazy, S. (2000). Temperature as a selective factor for isolation of entomopathogenic fungi from soil by means of the insect bait method. IOBC/WPRS Bulletin, 23: 197–202.

    Google Scholar 

  • Todorva, S.I., Coderre, D., Duchesne, R.-M. & Côté, J.-C. (1998). Compatibility of Beauveria bassiana with selected fungicides and herbicides. Environmental Entomology, 27: 427–433.

    Google Scholar 

  • Torr, P. Heritage, S., & Wilson, M.J. (2004). Vibrations as a novel signal for host location by parasitic nematodes. International Journal for Parasitology, 34: 997–999.

    PubMed  CAS  Google Scholar 

  • Townsend, R.J., Glare, T.R., & Willoughby, B.E. (1995). The fungi Beauveria spp. cause epizootics in grass grub populations in Waikato. Proceedings of the 48th New Zealand Plant Protection Conference, 237–241.

    Google Scholar 

  • Tsuneda, A. 1983. Fungal Morphology and Ecology. The Tottori Mycological Institute, Tottori, Japan.

    Google Scholar 

  • van Tol, R. W. H., van Bezooijen, J., & Ketelaars, T. A. C. M. (1998). Searching behaviour of entomopathogenic nematodes: roots and soil determine success of black vine weevil (Otiorhynchus sulcatus) control. IOBC/WPRS Bulletin, 21: 187–191.

    Google Scholar 

  • van Tol, R.W.H.M., van der Sommen, A.T.C., Boff, M.I.C., van Bezooijen, J., Sabelis, M.W., & Smits, P.H. (2001). Plants protect their roots by alerting the enemies of grubs. Ecology Letters 4:292–294.

    Google Scholar 

  • Vänninen, I. (1995) Distribution and occurrence of four entomopathogenic fungi in Finland: effect of geographical location, habitat type and soil type. Mycological Research, 100: 93–101.

    Google Scholar 

  • Vänninen, I. (1999). The distribution, ecological fitness and virulence of deuteromycetous entomopathogenic fungi in Finland. University of Helsinki, Department of Applied Zoology. Helsinki, Finland (PhD Thesis).

    Google Scholar 

  • Vänninen, I., & Hokkanen, H. (1988). Effect of pesticides on four species of entomopathogenic fungi in vitro. Annales Agriculturae Fenniae, 27: 345–353.

    Google Scholar 

  • Vänninen, I., Hokkanen, H.M.T., & Tyni-Julsin, J. (1999a). Attempts to control cabbage root flies (Delia radicum L. and Delia floralis (Fall.); Diptera, Anthomyiidae) with entomopathogenic fungi: laboratory and greenhouse tests. Journal of Applied Entomology, 123: 107–113.

    Google Scholar 

  • Vänninen, I., Hokkanen, H., & Tyni-Julsin, J. (1999b). Screening of field performance of entomopathogenic fungi and nematodes against cabbage root flies (Delia radicum L. and D. floralis (Fall.); Diptera, Anthomyiidae). Acta Agriculturae Scandinavica, 49: 167–183.

    Google Scholar 

  • Vänninen, I., Husberg, G.B., & Hokkanen, H.M.T. (1989). Occurrence of entomopathogenic fungi and entomoparasitic nematodes in cultivated soils in Finland. Acta Entomologica Fennica, 53: 65–71.

    Google Scholar 

  • Vänninen, I., Tyni-Julsin, J., & Hokkanen, H. (2000). Persistence of augmented Metarhizium anisopliae and Beauveria bassiana in Finnish agricultural soils. BioControl, 45: 201–222.

    Google Scholar 

  • Vega, F.E., Dowd, P.F., McGuire, M.R., Jackson, M.A., & Nelsen, T.C. (1997). In vitro effects of secondary plant compounds on germination of blastospores of the entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes). Journal of Invertebrate Pathology, 70: 209–213.

    PubMed  CAS  Google Scholar 

  • Vestergaard, S., Cherry, A., Keller, S., & Goettel, M. (2003). Safety of Hyphomycete fungi as microbial control agents. In H.MT. Hokkanen & A.E. Hajek (eds.). Environmental Impacts of Microbial Insecticides. Need and Methods for Risk Assessment. Kluwer Academic Publishers, London, 35–62.

    Google Scholar 

  • Villani, M.G., & Wright, R.J. (1990). Environmental influences on soil macroarthropod behaviour in agricultural systems. Annual Review of Entomology, 35: 249–269.

    Google Scholar 

  • Wajnberg, E., Scott, J.K., & Quimby, P.C. (2001) Evaluating Indirect Ecological Effects of Biological Control. CABI Publishing, Wallingford, UK.

    Google Scholar 

  • Wallace, H.R. (1963). The Biology of Plant Parasitic Nematodes. Edward Arnold Ltd., London.

    Google Scholar 

  • Wallace, H.R. (1968). The dynamics of nematode movement. Annual Revue of Phytopathology, 6: 91–114.

    Google Scholar 

  • Wallace, H.R. (1971). Abiotic Influences in the Soil Environment. In: Zuckerman, B.M., Mai, W.F. & Rohde, R.A. (eds.). Plant Parasitic Nematodes Volume I. Academic Press, London, 257–280.

    Google Scholar 

  • Wallace, H.R. (1973). Nematode Ecology and Plant Disease. Edward Arnold, London.

    Google Scholar 

  • Wallwork, J.A. (1970). Ecology of Soil Animals. McGraw-Hill Publishing Company Limited, London.

    Google Scholar 

  • Walter, D.E., & Proctor, H.C. (1999). Mites. Ecology, evolution and behaviour. CABI Publishing, Wallingford, UK.

    Google Scholar 

  • Wardle, D.A., Nicholson, K.S., Bonner, K.I., & Yeates, G.W. (1999). Effects of agricultural intensification on soil-associated arthropod population dynamics, community structure, diversity and temporal variability over a sevenyear period. Soil Biology & Biochemistry, 31: 1691–1706.

    CAS  Google Scholar 

  • Weiser, J. (1987). Patterns over place and time. In J.R. Fuxa & Y. Tanada (eds.), Epizootiology of Insect Diseases. John Wiley & Sons, New York, 215–242.

    Google Scholar 

  • Wharton, D.A. (2002). Nematode survival strategies. In D.L. Lee (ed.). The Biology of Nematodes. Taylor & Francis, London, 389–411.

    Google Scholar 

  • Widden, P. & Parkinson, D. (1979). Population of fungi in a high artic ecosystem. Canadian Journal of Botany, 57: 2408–2417.

    Google Scholar 

  • Whitehead, A.G. (1997). Plant Nematode Control. CABI Publishing, Wallingford, UK.

    Google Scholar 

  • Wiens, J.A. (1989). Spatial scaling in ecology. Functional Ecology, 3: 385–397.

    Google Scholar 

  • Willmott, D.M., Hart, A.J., Long, S.J., Edmundson, R.N., & Richardson, P.N. (2002). Use of a cold-active entomopathogenic nematode Steinernema kraussei to control overwintering larvae of the black vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae) in outdoor strawberry plants. Nematology, 4: 925–932.

    Google Scholar 

  • Wilson, M.J., Glen, D.M., & George, S.K. (1993). The Rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs. Biocontrol Science and Technology, 3: 503–511.

    Google Scholar 

  • Winslow, R.D. (1960). Some aspects of the ecology of free-living and plant parasitic nematodes. In J.N. Sasser & Jenkins, W.R. (eds). Nematology, fundamentals and recent advances with emphasis on plant parasitic and soil forms. The University of North Carolina Press Chapel Hill, USA, 341–415.

    Google Scholar 

  • Womersley, C.Z. (1987). A reevaluation of strategies employed by nematode anhydrobiotis in relation to their natural environment. In J.A. Veech & D.W. Dickson (eds.). Vistas on Nematology: a Commemoration of the Twenty-fifth Anniversary of the Society of Nematologists. E.O. Painter Printing Co. DeLeon Springs, Florida, USA, 165–173.

    Google Scholar 

  • Womersley, C.Z. (1990). Dehydration survival and anhydrobiotic potential. In R. Gaugler & H.K. Kaya (eds.), Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, Florida, USA, 117–137.

    Google Scholar 

  • Wright, P.J. (1992). Cool temperature reproduction of steinernematid and heterorhabditid nematodes. Journal of Invertebrate Pathology, 60: 148–151.

    Google Scholar 

  • Yeates, G.W. (1971). Feeding types and feeding groups in plant and soil nematodes. Pedobiologia, 11: 173–179.

    Google Scholar 

  • Yeates, G.W. (1979). Soil nematodes in terrestrial ecosystems. Journal of Nematology, 11: 117–212.

    Google Scholar 

  • Yeates, G.W. (1981), Nematode populations in relation to soil environmental factors: A review. Pedobiologia, 22: 312–338.

    Google Scholar 

  • Yeates, G.W. (2004). Ecological and behavioural adaptations. In: Gaugler, R & Bilgrami A.L. (eds.) Nematode Behaviour. CABI Publishing, Wallingford, UK, 1–24.

    Google Scholar 

  • Yeates, G.W., & Bongers, T. (1999). Nematode diversity in agroecosystems. Agriculture, Ecosystems and Environment, 74: 113–135.

    Google Scholar 

  • Yeates, G.W. Bongers, T., de Goede, R.G.M., Freckman, D.W., & Georgieva, S.S. (1993). Feeding habits in soil nematode families and genera: an outline for soil ecologists. Journal of Nematology, 25: 101–113.

    Google Scholar 

  • Yeates, G.W., Wardle, D.A., & Watson, R.N. (1999). Responses of soil nematode populations, community structure, diversity and temporal variability to agricultural intensification over a seven-year period. Soil Biology and Biochemistry, 31: 1721–1733.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Klingen, I., Haukeland, S. (2006). THE SOIL AS A RESERVOIR FOR NATURAL ENEMIES OF PEST INSECTS AND MITES WITH EMPHASIS ON FUNGI AND NEMATODES. In: EILENBERG, J., HOKKANEN, H. (eds) An Ecological and Societal Approach to Biological Control. Progress in Biological Control, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4401-4_9

Download citation

Publish with us

Policies and ethics