Skip to main content

THE SOIL AS A RESERVOIR FOR ANTAGONISTS TO PLANT DISEASES

  • Chapter
An Ecological and Societal Approach to Biological Control

Part of the book series: Progress in Biological Control ((PIBC,volume 2))

Abstract

The soil is often considered the milieu providing support for plant roots, water and nutrients for plant growth. But it is also considered a hostile environment harbouring plant pathogenic nematodes, bacteria and fungi. The most common attitude is to try to eliminate the plant pathogenic organisms by biocidal treatments such as methyl bromide fumigation, which are dangerous for man and the environment. Beside this pathogen eradication strategy, another approach to control soil-borne plant diseases consists in studying the plant-pathogen interactions at the cellular and molecular level to create new resistant cultivars or to develop new plant protection products based on elicitation of plant defence reactions. This field of research only focuses on plant pathogen interactions, not taking into account the environment in which they take place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P. B., and D. R. Fravel, 1993. Dynamics of Sporidesmium, a naturally occurring fungal mycoparasite. In: R. D. Lumsden and J. L. Vaughn (eds.), Pest management: Biologically Based Technologies. American Chemical Society, Washington, DC. pp. 189–195.

    Google Scholar 

  • Alabouvette, C. 1986. Fusarium-wilt suppressive soils from the Châteaurenard region: review of a 10-year study. Agronomie. 6:273–284.

    Google Scholar 

  • Alabouvette, C., C. Olivain, C. Cordier, P. Lemanceau, and S. Gianinazzi. 2001. Enhancing Biological Control by Combining Microorganisms. In: M. Vurro, J. Gressel, T. Butt, G. Harman, D. Nuss, D. Sends and R. St Leger (eds), Enhancing Biocontrol Agents and Handling Risks. IOP Press Amsterdam, pp. 64–76.

    Google Scholar 

  • Alabouvette, C., Y. Couteaudier and J. Louvet. 1982. Comparaison de la r é ceptivit é de différents sols et Substrats de culture aux fusarioses vasculaires. Agronomie. 2:1–6.

    Google Scholar 

  • Alabouvette, C., Y. Couteaudier and P. Lemanceau. 1986. Nature of intrageneric competition between pathogenic and non-pathogenic Fusarium in a wilt-suppressive soil. In: T. R. Swinburne (ed.) Iron, Siderophores and Plant Diseases. Plenum Publishing Corporation, New York. pp. 165–178.

    Google Scholar 

  • Amir, H. and C. Alabouvette. 1993. Involvement of soil abiotic factors in the mechanisms of soil suppressiveness to fusarium wilts. Soil Biology and Biochemistry. 25:157–164.

    Article  Google Scholar 

  • Arnault, I., N. Mondy, S. Diwo, and J. Auger. 2004. Soil behaviour of sulfur natural fumigants used as methyl bromide substitutes. International Journal of Environmental Analytical Chemistry. 84:75–82.

    Article  CAS  Google Scholar 

  • Bailey, K. L. and G. Lazarovits. 2003. Suppressing soil-borne diseases with residue management and organic amendments. Soil & Tillage Research. 72:169–180.

    Article  Google Scholar 

  • Bailey, K. L., B. D. Gossen, D. A. Derksen, and P. R. Watson. 2000. Impact of agronomic practices and environment on diseases of wheat and lentil in southeastern Saskatchewan. Canadian Journal of Plant Science. 80:917–927.

    Google Scholar 

  • Baird, R. E., C. E. Watson, and M. Scruggs. 2003. Relative longevity of Macrophomina phaseolina and associated mycobiota on residual soybean roots in soil. Plant Disease. 87:563–566.

    Google Scholar 

  • Baker, K. F. 1978. Biological control of Phytophthora cinnamomi. Proc. Internatl. Plant Prop. Soc. 28:72–79

    Google Scholar 

  • Baker, R. 1968. Mechanisms of biological control of soil-borne pathogens. Annu. Rev. Phytopathol. 6:263–294

    Article  Google Scholar 

  • Baker, R., C.L. Maurer, and R.A. Maurer. 1967. Ecology of Plant Pathogens in Soil. VII. Mathematical Models and Inoculum Density. Phytopathology. 57:662–666.

    Google Scholar 

  • Bakker, P.A.H.M., R. Van Peer and B. Schippers. 1991. Suppression of soil-borne plant pathogens by fluorescent pseudomonads: mechanisms and prospects. In: A.B.R. Beemster, G.J. Bollen, M. Gerlach, M.A. Ruissen, B. Schippers and A. Tempel (eds.), Development in agriculturally managed-Forest ecology. Elsevier, Amsterdam. 23:217–230

    Google Scholar 

  • Benson, D. M., and R. Baker. 1970. Rhizosphere competition in model soil systems. Phytopathology. 60:1058–1061.

    Article  CAS  Google Scholar 

  • Biles, C.L., and R.D. Martyn. 1989. Local and systemic resistance induced in watermelons by formae speciales of Fusarium oxysporum. Phytopathology. 79:856–860.

    Google Scholar 

  • Blok, W.J., J.G. Lamers, A.J. Termorshuizen and A.J. Bollen 2000 Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology. 30, 253–259.

    Google Scholar 

  • Bockus, W.W., and J. P. Shroyer. 1998. The impact of reduced tillage on soilborne plant pathogens. Annu. Rev. Phytopathol. 36:485–500.

    Article  PubMed  CAS  Google Scholar 

  • Bollen, G. J. 1969. The selective effect of heat treatment on the microflora of a greenhouse soil. Neth. J. Plant Pathol. 75:157–163.

    Article  Google Scholar 

  • Bouhot D. 1979. Estimation of inoculum density and inoculum potential: techniques and their values for disease prediction. In: B.Schippers and W.Gams (eds.), Soil-borne plant pathogens. Academic Press, London. pp.250–278

    Google Scholar 

  • Chet, I. and Baker, R. 1981. Isolation and biocontrol potential of Trichoderma harmatum from soil naturally suppressive to Rhizoctonia solani. Phytopathology. 71:286–290.

    Google Scholar 

  • Cook, R. J. 2003. Take-all of wheat. Physiological and Molecular Plant Pathology 62:73–86.

    Article  Google Scholar 

  • Cook, R. J., and W. C Snyder. 1965. Influence of host exudate on growth and survival of germlings of Fusarium solani f. phaseoli in soil. Phytopathology. 55:1021–1025.

    Google Scholar 

  • Cook, R. J., W. F. Schillinger, and N. W. Christensen. 2002. Rhizoctonia root rot and take-all of wheat in diverse direct-seed spring cropping systems. Canadian Journal of Plant Pathology. 24:349–358.

    Article  Google Scholar 

  • Cook, R., and K. F. Baker. 1983. The nature and practice of biological control of plant pathogens, Am. Phytopathol. Soc. St Paul, Minnesota, p. 539

    Google Scholar 

  • Gotten, T.K. and G.P. Munkvold. 1998. Survival of Fusarium moniliforme, F. proliferatum, and F. subglutinans in maize stalk residue. Phytopathology. 88:550–555.

    Google Scholar 

  • Cotxarrera, L., M.I. Trillas-Gay, C. Steinberg, and C. Alabouvette. 2002. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biology & Biochemistry. 34:467–476.

    Article  CAS  Google Scholar 

  • Couteaudier, Y. and C. Alabouvette. 1990. Quantitative comparison of Fusarium oxysporum competitiveness in relation with carbon utilization. FEMS Microbiology Ecology. 74:261–268.

    Article  CAS  Google Scholar 

  • Coventry, E., R. Noble, A. Mead, and J. M. Whipps. 2002. Control of Allium white rot (Sclerotium cepivorum) with composted onion waste. Soil Biology & Biochemistry. 34:1037–1045.

    Article  CAS  Google Scholar 

  • Défago, G. and D. Haas. 1990. Pseudomonads as antagonists of soilborne plant pathogens: modes of action and genetic analysis. In: J.M. Bollag and G. Stotsky (eds.), Soil Biochemistry. Marcel Dekker Inc. New York. pp. 249–291

    Google Scholar 

  • DeVay, J.E. 1995. Solarization: an Environmental-Friendly Technology for Pest Management. Arab J. Plant Prot. 13:56–61.

    Google Scholar 

  • DeVay, J.E., J.J. Stapleton and C.L. Elmore. 1991. Soil Solarization. Proceedings, First International Conference on Soil Solarization, Amman, Jordan. Plant Production and Protection Paper 109, FAO, Rome, Italy.

    Google Scholar 

  • Dulout, A., P. Lucas, A. Sarniguet, and T. Dore. 1997. Effects of wheat volunteers and blackgrass in set-aside following a winter wheat crop on soil infectivity and soil conduciveness to take-all. Plant and Soil. 197:149–155.

    Article  CAS  Google Scholar 

  • Eilenberg, J., A. Hajek and C. Lomer. 2001. Suggestions for unifying the terminology in biological control. BioControl. 46:387–400.

    Article  Google Scholar 

  • Elad, Y., and R. Baker. 1985. Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Phytopathology. 75:1047–1052.

    CAS  Google Scholar 

  • Erhart, E., K. Burian, W. Hartl, and K. Stich. 1999. Suppression of Pythium ultimum by biowaste composts in relation to compost microbial biomass, activity and content of phenolic compounds. Journal of Phytopathology. 147:299–305.

    Article  CAS  Google Scholar 

  • Fravel, D.R, J.A. Lewis, and J.L. Chittams. 1995. Alginate prill formulations of Talaromyces flavus with organic carriers for biocontrol of Verticillium dahliae. Phytopathology. 85:165–168.

    Google Scholar 

  • Fravel, D.R., J.J. Marois, R.D. Lumsden and W.J. Connick. 1985. Encapsulation of potential biocontrol agents in an alginate-clay matrix. Phytopathology. 75:774–777.

    Google Scholar 

  • Garbeva, P., J.A. van Veen, and J. D. van Elsas. 2004. Assessment of the diversity and antagonism toward Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. Fems Microbiology Ecology. 47:51–64.

    Article  CAS  PubMed  Google Scholar 

  • Garrett, S.D. 1956. Biology of root infecting fungi. Cambridge University Press, London, p.294

    Google Scholar 

  • Garrett, S.D. 1970. Pathogenic root-infecting fungi. Cambridge University Press, London, p.294

    Google Scholar 

  • Gerlagh, M. 1968. Introduction of Ophiobolus graminis into new polders and its decline. Neth. Jour. Plant Pathol. 74:1–97

    Article  Google Scholar 

  • Guillemaut, C. 2003. Identification eté tude de l'écologie de Rhizoctonia solani, responsable de la maladie de pourriture brune de la betterave sucrière. PhD thesis: Ecologie Microbienne, Universit é Claude Bernard-Lyon I, Lyon.

    Google Scholar 

  • Hagn, A., K. Pritsch, M. Schloter, and J. C. Munch. 2003. Fungal diversity in agricultural soil under different farming management systems, with special reference to biocontrol strains of Trichoderma spp. Biology and Fertility of Soils. 38:236–244.

    Article  CAS  Google Scholar 

  • Hoitink H.A.J. 1980. Composted bark, a lightweight growth medium with fungicidal properties. Plant disease. 66:142–147.

    Article  Google Scholar 

  • Hoitink, H.A.J., and M.J. Boehm. 1999. Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. In: Annu. Rev. Phytopathol. pp. 427–446

    Google Scholar 

  • Hökeberg, M., B. Gerhardson, and L. Johnsson. 1997. Biological control of cereal seed-borne diseases by seed bacterization with greenhouse-selected bacteria. European Journal of Plant Patholog. 103:25–33.

    Article  Google Scholar 

  • Höper, H., C. Steinberg and C. Alabouvette. 1995. Involvement of clay type and pH in the mechanisms of soil suppressiveness to fusarium wilt of flax. Soil Biology and Biochemistry. 27:955–967.

    Article  Google Scholar 

  • Hornby, D. 1998. Take all Disease of Cereals: a Regional Perspective, CAB International, Wallingford. p.384.

    Google Scholar 

  • Jeger, M.J. 2004. Analysis of disease progress as a basis for evaluating disease management practices. Annu. Rev. Phytopathol. 42:61–82.

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson, D.S., and- D.S. Powelson. 1976. The effects of biocidal treatments on metabolism in soil. Soil Biology and Biochemistry. 8:209–213.

    Article  CAS  Google Scholar 

  • Katan, J. 1996. Soil solarization: Integrated control aspects. In: R. Hall (ed.), Principle and practice of managing soilborne plant pathogens. The American Phytopathological Society, St Paul, Minnesota. pp: 250–278.

    Google Scholar 

  • Katan, J. and J.E. DeVay. 1991. Soil Solarization. CRC Press, Boca Raton, FL. p. 267.

    Google Scholar 

  • Katan, J., G. Fishier and A. Grinstein. 1983. Short- and long- term effects of soil solarization and crop sequence on Fusarium wilt and yield of cotton in Israel. Phytopathology. 73:1215–1219

    Google Scholar 

  • Kirkegaard, J.A., and M. Sarwar. 1998. Biofumigation potential of brassicas - I. Variation in glucosinolate profiles of diverse field-grown brassicas. Plant and Soil. 201:71–89.

    Article  CAS  Google Scholar 

  • Kloepper, J.W., G.W. Zehnder, S. Tuzun, J.F. Murphy, G. Wei, C. Yao and G. Raupach. 1996. Toward agricultural implementation of PGPR-mediated induced systemic resistance against crop pests. In: W. Tang, R.J. Cook and A. Rovira (eds.), Advances in biological control of plant diseases. China Agricultural University Press, Haidian, Beijing. ppl65–174.

    Google Scholar 

  • Kuc, J. 1987. Plant immunization and its applicability for disease control. In: I. Chet (ed.), Innovative Approaches to Plant Disease Control. John Wiley and Sons, New York, pp: 255–274.

    Google Scholar 

  • Lamers J., P. Wanten and W. Blok. 2004. Biological soil disinfestation: a safe and effective approach for controlling soilborne pests and diseases, (in press)

    Google Scholar 

  • Lemanceau, P. 1989. Role of competition for carbon and iron in mechanisms of soil suppressiveness to fusarium wilts. In: Tjamos, E. C. and Beckman, C. H. (eds.), Vascular Wilt diseases of Plants – Basic studies and control. NATO ASI Series, Springer Verlag, Berlin, pp. 386–396

    Google Scholar 

  • Lemanceau, P. and C. Alabouvette. 1993. Suppression of fusarium-wilts by fluorescent pseudomonads: mechanisms and applications. Biocontrol Sci. Technol. 3:219–234.

    Google Scholar 

  • Lewis, J.A., G.C. Papavizas and R.D. Lumsden. 1991. A new formulation system for the application of biocontrol fungi to soil Biocontrol Sci. Technol. 1:59–69.

    Google Scholar 

  • Lewis, J.A. 1991. Formulation and delivery systems of biocontrol agents with emphasis on fungi. In: D. L. Keister and P. B. Cregan (eds.), The rhizosphere and plant growth. Kluwer Academic Publishers. 279–287

    Google Scholar 

  • Linderman, R.G., L.W. Moore, K.F. Baker and D.A. Cooksey. 1983. Strategies for detecting and characterizing systems. Plant Dis. 67:1058–1064.

    Google Scholar 

  • Lockwood J.L. 1977. Fungistasis in soils. Biology Review 52:1–43

    CAS  Google Scholar 

  • Loper, J.E. and S.E. Lindow. 1993. Roles of competition and antibiosis in suppression of plant diseases by bacterial biological control agents. In: R.D. Lumsden and J.L. Vaughn (eds.), Pest management: Biologically based Technologies. American Chemical Society, Washington DC. pp: 144–155.

    Google Scholar 

  • Louvet, J. 1973. Les perspectives de lutte biologique centre les champignons parasites des organes Souterrains des plantes. In: Perspectives de lutte biologique contre les champignons parasites des plantes cultivées et des tissus ligneux. Station fédérale de recherches agronomiques de Lausanne. pp: 48–58.

    Google Scholar 

  • Lumsden, R.D. and Lewis, J.A. 1989. Biological control of soil-borne plant pathogens: problems and progress. In: J. M. Whipps and R. D. Lumsden (eds.), Biotechnology of fungi for improving plant growth. Cambridge University Press, Cambridge, pp. 171–190.

    Google Scholar 

  • Lumsden, R.D., Lewis, J.A., and P.D. Millner. 1983. Effect of composted sewage sludge on several soilborne pathogens and diseases. Phytopathology. 73:1543–1548.

    Google Scholar 

  • Mazzola, M. 1999. Transformation of soil microbial communitiy strucutre and Rhizoctonia-suppressive potential in response to apple roots. Phytopathology. 89:920–927.

    PubMed  CAS  Google Scholar 

  • Mazzola, M. 2004. Assessment and management of soil microbial community strucutre for disease suppression. Annu. Rev. Phytopathol. 42:35–59.

    Article  PubMed  CAS  Google Scholar 

  • Olivain, C., C. Alabouvette and C. Steinberg. 2003. Production of a mixed inoculum of Fusarium oxysporum Fo47 and Pseudomonas fluorescens C7 to control Fusarium diseases. Biocontrol Sci. Technol. 14:227–238.

    Article  Google Scholar 

  • Oyarzun, P.J., M. Gerlagh, and J.C. Zadoks. 1998. Factors associated with soil receptivity to some fungal root rot pathogens of peas. Applied Soil Ecology. 10:151–169.

    Article  Google Scholar 

  • Pankhurst, C.E., H.J. McDonald, B.G. Hawke, and C.A. Kirkby. 2002. Effect of tillage and stubble management on chemical and microbiological properties and the development of suppression towards cereal root disease in soils from two sites in NSW, Australia. Soil Biology and Biochemistry. 34:833–840.

    Article  CAS  Google Scholar 

  • Persson, L., M. Larsson Wikström, and B. Gerhardson. 1999. Assessment of soil suppressiveness to Aphanomyces root rot of pea. Plant Disease. 83:1108–1112.

    Google Scholar 

  • Peters, R. D., A. V. Sturz, M. R. Carter, and J. B. Sanderson. 2003. Developing disease-suppressive soils through crop rotation and tillage management practices. Soil and Tillage Research. 72:181–192.

    Article  Google Scholar 

  • Raaijmakers, J.M., and D.M. Weller. 1998. Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Molecular Plant-Microbe Interactions. 11, 144–152.

    CAS  Google Scholar 

  • Roget, D.K., S.M. Neate, and A.D. Rovira. 1996. Effect of sowing point out design and tillage practice on the incidence of Rhizoctonia root rot, take all and cereal cyst nematode in wheat and barley. Australian Journal of Experimental Agriculture. 36:683–693.

    Article  Google Scholar 

  • Sarwar, M., J.A. Kirkegaard, P.T.W. Wong and J.M. Desmarchelier. 1998. Biofumigation potential of brassicas - III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant and Soil. 201:103–112.

    Article  CAS  Google Scholar 

  • Scher, P.M. and R. Baker. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to fusarium wilt pathogens. Phytopathology. 72:1567–1573.

    CAS  Google Scholar 

  • Schippers, B. 1992. Prospects for management of natural suppressiveness to control soilborne pathogens. In: E.C. Tjamos, G.C. Papavizas. And R.J. Cook (eds.) Biological control of plant diseases. Plenum Press, New York, pp. 21–34

    Google Scholar 

  • Schippers, B., A.W. Bakker and P.A.H.M. Bakker. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Ann. Rev. Phytopathol. 25:339–358.

    Article  Google Scholar 

  • Schneider, R.W. 1982. Suppressive soils and plant disease, Amer. Phytopathol. Soc., St Paul, Minnesota, p.96.

    Google Scholar 

  • Schneider, O., J.N. Aubertot, J. Roger-Estrade and T. Doré. 2003. Analysis and modelling of the amount of oilseed rape residues left at the soil surface after different soil tillage operations. Proceedings of 7th International Conference on Plant Pathology, AFPP. Paris.

    Google Scholar 

  • Serra-Wittling, C., S. Houot, and C. Alabouvette. 1996. Increased soil suppressiveness to fusarium wilt of flax after addition of municipal solid waste compost. Soil Biol. Biochem. 28:1207–1214.

    Article  CAS  Google Scholar 

  • Sneh, B., M. Dupler, Y. Elad, and R. Baker. 1984. Chlamydospore germination of Fusarium oxysporum f.sp. cucumerinum as affected by fluorescent and lytic bacteria from a Fusarium-suppressive soil. Phytopathology. 74, 1115–1124.

    Article  Google Scholar 

  • Stanghellini, M.E., M.M. Waugh, K.C. Radewald, D.H. Kim, D.M. Ferrin and T. Turini. 2004. Crop residue destruction strategies that enhance rather than inhibit reproduction of Monosporascus cannonballus. Plant Pathology 53:50-53.

    Article  Google Scholar 

  • Steinberg, C., V. Edel-Hermann, C. Guillemaut, A. Pérez-Piqueres, P. Singh, and C. Alabouvette. 2004. Impact of organic amendments on soil suppressiveness to diseases. In: R. A. Sikora, S. Gowen, R. Hauschild and S. Kiewnick (eds.), Multitrophic interactions in soil and integrated control. IOBC/WPRS Bulletin. pp.259–266.

    Google Scholar 

  • Stotzky, G., and R.T. Martin. 1963. Soil mineralogy in relation to the spread of Fusarium wilt of banana in Central America. Plant and Soil 18:317–337.

    Article  CAS  Google Scholar 

  • Stover, R. H. (1962) Fusarial wilt (Panama disease) of bananas and other Musa species. CMI, Phytopathological Papers. 4. p. 117.

    Google Scholar 

  • Sturtz, A.V., M.R. Carter, and H.W. Johnston. 1997. A review of plant disease, pathogen interactions and microbial antagonism under conservation tillage in temperate humid agriculture. Soil and Tillage Research. 41:169–189.

    Article  Google Scholar 

  • Stutz, E., G. Kahr, and G. Défago. 1989. Clays involved in suppression of tobacco black root rot by a strain of Pseudomonas fluorescens. Soil Biology and Biochemistry. 21:361–366.

    Article  Google Scholar 

  • Thomashow, L.S. and D.M. Weller. 1996. Molecular basis of pathogen suppression by antibiosis in the rhizosphere. In: R. Hall (ed.), Principles and practice of managing soilborne plant pathogens. American Phytopathological Society, Saint-Paul, Mn. pp. 80–103.

    Google Scholar 

  • Tilston, EX., D. Pitt, and A.C. Groenhof. 2002. Composted recycled organic matter suppresses soil-borne diseases of field crops. New Phytologist. 154:731–740.

    Article  CAS  Google Scholar 

  • Toresani, S., E. Gomez, B. Bonel, V. Bisaro, and S. Montico. 1998. Cellulolytic population dynamics in a vertic soil under three tillage systems in the Humid Pampa of Argentina. Soil and Tillage Research. 49:79–83.

    Article  Google Scholar 

  • Van Loon, L.C., P.A.H.M. Bakker and C.M.J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453–483.

    Article  PubMed  Google Scholar 

  • Wang, B., M.L. Dale, J.K. Kochman and N.R. Obst. 1999. Effects of plant residue, soil characteristics, cotton cultivars and other crops on fusarium wilt of cotton in Australia. Australian Journal of Experimental Agriculture. 39:203–209

    Article  Google Scholar 

  • Westphal, A. and J.O. Becker. 2001. Soil suppressiveness to Heterodera schachtii under different cropping sequences. Nemaiology 3:551–558.

    Article  Google Scholar 

  • Whipps, J.M. 1997. Interactions between fungi and plant pathogens in soil and the rhizosphere. In: A.C. Gange and V.K. Brown (eds.), Multitrophic interactions in terrestrial systems. Blackwell Science, Oxford, UK. pp.47–63

    Google Scholar 

  • Widmer, T.L., N.A. Mitkowski, and G.S. Abawi. 2002. Soil organic matter and management of plant-parasitic nematodes. Journal of Nematology. 34:289–295

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Alabouvette, C., Steinberg, C. (2006). THE SOIL AS A RESERVOIR FOR ANTAGONISTS TO PLANT DISEASES. In: EILENBERG, J., HOKKANEN, H. (eds) An Ecological and Societal Approach to Biological Control. Progress in Biological Control, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4401-4_8

Download citation

Publish with us

Policies and ethics