Skip to main content

Acoustic inversion at low kHz frequencies using an active, vertical line array

  • Chapter
Acoustic Sensing Techniques for the Shallow Water Environment
  • 1198 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heald G. J., High frequency seabed scattering and sediment discrimination. Proc. Inst. of  Acoustics 23, 258-267 (2001).

    Google Scholar 

  2. Pace N. G., Al-Hamdani Z. and Thorne P. D., The range dependence of normal incidence acoustic backscatter from a rough surface. J. Acoust. Soc. Am. 77, 101-112 (1985).

    Article  Google Scholar 

  3. Briggs K. B., Tang D. and Williams K. L., Characterization of Interface Roughness of Rippled Sand Off Fort Walton Beach, Florida. IEEE J. of Ocean. Eng. 27, 505-514 (2002).

    Article  Google Scholar 

  4. Hines P. C. and Heald G. J., Seabed classification using normal incidence backscatter measurements in the 1-10 kHz frequency band. Proc. Inst. of Acoustics 23, 42-50 (2001).

    Google Scholar 

  5. Carey W. M., Doutt J., Evans R. B. and Dillman L. M., Shallow-water sound transmission measurements on the New Jersey Continental Shelf. IEEE J. of Ocean. Eng. 20, 321-336 (1995).

    Article  Google Scholar 

  6. Osler J. C., Hines P. C. and Trevorrow M. V., Acoustic and In-Situ Techniques for Measuring the Spatial Variability of Seabed Geoacoustic Parameters in Littoral Environments. In Proc. Impact of Littoral Environmental Variability on Acoustic Predictions and Sonar Performance, Ed. N.G. Pace and F.B. Jensen (Kluwer Academic Publishers, 2002) pp. 83-90,

    Google Scholar 

  7. In the previous seabed classification experiments using the UAT (See [6]) a pair of vertically separated spherical projectors were used so that cardioid pulses could be formed to direct a null at the sea surface. However, this limited the lowest frequency to 3 kHz so the decision was made to use FFR's to extend the frequency band down to 1 kHz.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Hines, P.C., Coffin, M. (2006). Acoustic inversion at low kHz frequencies using an active, vertical line array. In: Caiti, A., Chapman, N.R., Hermand, JP., Jesus, S.M. (eds) Acoustic Sensing Techniques for the Shallow Water Environment. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4386-4_4

Download citation

Publish with us

Policies and ethics