Advertisement

Inversion of the propeller harmonics from a light aircraft for the geoacoustic properties of marine sediments

  • Michael J. Buckingham
  • Eric M. Giddens
  • Fernardo Simonet

Keywords

Marine Sediment Sound Speed Intrinsic Attenuation Light Aircraft Compressional Wave Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buckingham R. J., Noise signature of an aircraft in level flight over a hydrophone in the sea. J. Acoust. Soc. Am. 52, 993-999 (1972).CrossRefGoogle Scholar
  2. 2.
    Buckingham H., Helbig R. A. and Hagy J. D. Jr., Spectral characteristics of sound transmission through the rough sea surface. J. Acoust. Soc. Am. 54, 99-109 (1973).CrossRefGoogle Scholar
  3. 3.
    Richardson W. J., Greene C. R. Jr., Malme C. I. and Thomson D. H., Marine Mammals and Noise, Academic Press, New York (1995).Google Scholar
  4. 4.
    Ferguson B. G., Doppler effect for sound emitted by a moving airborne source and received by acoustic sensors located above and below the sea surface. J. Acoust. Soc. Am. 94, 3244-3247 (1993).CrossRefGoogle Scholar
  5. 5.
    Richardson M. D. and Briggs K. B., On the use of acoustic impedance values to determine sediment properties. In Acoustic Classification and Mapping of the Seabed, eds. N. G. Pace and D. N. Langhorne (University of Bath, Bath, 1993), Vol. 15, pp. 15-24.Google Scholar
  6. 6.
    Richardson M. D. and Briggs K. B., Empirical predictions of seafloor properties based on re- motely measured sediment impedance. In High-Frequency Ocean Acoustics, eds. M. B. Porter, M. Siderius, and W. A. Kuperman, (La Jolla, 2004), in press.Google Scholar
  7. 7.
    Buckingham E. L. and Bachman R. T., Sound velocity and related properties of marine sedi- ments. J. Acoust. Soc. Am. 72, 1891-1904 (1982).CrossRefGoogle Scholar
  8. 8.
    Buckingham M. D. and Fishman L., Efficient navigation of parameter landscapes. J. Acoust. Soc. Am. 98, 1637-1644 (1995).CrossRefGoogle Scholar
  9. 9.
    Buckingham L. and Chapman N. R., Matched field inversion of broadband data using the freeze bath method. J. Acoust. Soc. Am. 106, 1838-1851 (1999).CrossRefGoogle Scholar
  10. 10.
    Buckingham M. J., Wave propagation, stress relaxation, and grain-to-grain shearing in satu- rated, unconsolidated marine sediments. J. Acoust. Soc. Am. 108, 2796-2815 (2000).CrossRefGoogle Scholar
  11. 11.
    Buckingham M. J., Compressional and shear wave properties of marine sediments: Compar- isons between theory and data. J. Acoust. Soc. Am. in press (2004).Google Scholar
  12. 12.
    Richardson M. D., Briggs K. B., Bibee D. L. et al., Overview of SAX99: environmental con- siderations. IEEE J. Oceanic Eng. 26, 26-53 (2001).CrossRefGoogle Scholar
  13. 13.
    Buckingham E. L., Sound velocity and related properties of marine sediments, North Pacific.J.Geophys. Res. 75, 4423-4446 (1970).CrossRefGoogle Scholar
  14. 14.
    Buckingham E. L., Compressional-wave attenuation in marine sediments. Geophys. 37, 620-646 (1972).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Michael J. Buckingham
    • 1
  • Eric M. Giddens
    • 2
  • Fernardo Simonet
    • 3
  1. 1.Marine Physical Laboratory Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA
  2. 2.Marine Physical Laboratory Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA
  3. 3.Marine Physical Laboratory Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA

Personalised recommendations