Skip to main content

The Spatial and Temporal Nature of Urban Objects

  • Chapter
  • First Online:
Book cover Remote Sensing of Urban and Suburban Areas

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 10))

Abstract

The purpose of this chapter is to examine, from an application perspective, the utility of remote sensing to collect data on urban and suburban areas for Urban Planning and Management (UPM). Specifically, the chapter discusses the use of remote sensing at two different spatial levels, the information needs with respect to monitoring planned and unplanned development, and the optimal spatial and temporal requirements for images used in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott J (2001) The use of spatial data to support the integration of informal settlements into the formal city. Int J Appl Earth Obs Geoinformatics 3:267–277

    Article  Google Scholar 

  • Anderson GL, Hardy EE, Roach JR, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data. USGS Professional Paper, Washington, DC

    Google Scholar 

  • Atkinson PM, Curran PJ (1997) Choosing an appropriate spatial resolution for remote sensing investigations. Photogramm Eng Remote Sens 63:1345–1351

    Google Scholar 

  • Barnsley MJ, Barr SL (1996) Inferring urban land use from satellite sensor image using kernel-based spatial reclassification. Photogramm Eng Remote Sens 62:949–958

    Google Scholar 

  • Baross P (1987) Land supply for low income housing: issues and approaches. Reg Dev Dialogue 8(4):29–45

    Google Scholar 

  • Baudot Y (2001) Geographical analysis of the population of fast-growing cities in the Third World. In: Donnay JP, Barnsley MJ, Longley PA (eds) Remote sensing and urban analysis. Taylor & Francis, London, pp 225–241

    Chapter  Google Scholar 

  • Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens 58:239–258

    Article  Google Scholar 

  • Brussel MA, Belal WE, Rahman MM (2003) Extracting urban road information from IKONOS high resolution imagery. In: Proceedings of the 4th international conference of urban remote sensing, Regensburg, Germany, 27–29 June 2003, pp 29–34

    Google Scholar 

  • Chen CM, Hepner GF, Forster RR (2003) Fusion of hyperspectral and radar data using IHS transformation to enhance urban surface features. ISPRS J Photogramm Remote Sens 58:19–30

    Article  Google Scholar 

  • Coulter L, Stow D, Kiracofe B, Langevin C, Chen D, Daeschner S, Service D, Kaiser J (1999) Deriving current land-use information for metropolitan transportation planning through integration of remotely sensed data and GIS. Photogramm Eng Remote Sens 65:1293–1300

    Google Scholar 

  • Cowen DJ, Jensen JR (1998) Extraction and modeling of urban attributes using remote sensing technology. In: Liverman D, Morna EF, Rindfuss RR, Stern PC (eds) People and pixels: linking remote sensing and social science. National Academy Press, Washington, DC, pp 164–188

    Google Scholar 

  • Donnay JP, Barnsley MJ, Longley PA (2001) Remote sensing and urban analysis. In: Donnay JP, Barnsley MJ, Longley PA (eds) Remote sensing and urban analysis. Taylor & Francis, London, pp 1–18

    Chapter  Google Scholar 

  • Ehlers M, Schiewe J, et al. (2002) Urban remote sensing: new developments and challenges. Remote Sensing of Urban Areas, Istanbul, Turkey. 11–13 June 2002, pp 130–137

    Google Scholar 

  • Forster BC (1985) An examination of some problems and solutions in monitoring urban areas from satellite platforms. Int J Remote Sens 6:139–151

    Article  Google Scholar 

  • Gluch R (2002) Urban growth detection using texture analysis on merged Landsat TM and SPOT-P data. Photogramm Eng Remote Sens 68:1283–1288

    Google Scholar 

  • Gorte BGH (1998) Probabilistic segmentation of remotely sensed images. Published Ph.D. dissertation, Wageningen Agricultural University, Wageningen

    Google Scholar 

  • Grey WMF, Luckman AJ, Holland D (2003) Mapping urban change in the UK using satellite radar interferometry. Remote Sens Environ 87:16–22

    Article  Google Scholar 

  • Hardoy JE, Satterthwaitec D (1989) Squatter citizen: life in the urban Third World. Earthscan, London

    Google Scholar 

  • Harris PM, Ventura SJ (1995) The integration of geographic data with remotely sensed imagery to improve classification in an urban area. Photogramm Eng Remote Sens 61:993–998

    Google Scholar 

  • Herold M, Liu XH, Clarke KC (2003) Spatial metrics and image texture for mapping urban land use. Photogramm Eng Remote Sens 69:991–1001

    Google Scholar 

  • Hung MC, Ridd M (2002) A subpixel classifier for urban land-cover mapping based on a maximum-likelihood approach and expert system rules. Photogramm Eng Remote Sens 68:1173–1180

    Google Scholar 

  • Jensen JR, Cowen C (1999) Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogramm Eng Remote Sens 65:611–622

    Google Scholar 

  • Laurini R, Thompson D (1996) Fundamentals of spatial information systems. Academic, London

    Google Scholar 

  • Masser I (1986) Strategic monitoring for urban planning in developing countries: some guidelines from British and Dutch experience. Int J Inf Manag 6:17–28

    Article  Google Scholar 

  • Mesev V, Longley PA, Batty B, Xie Y (1995) Morphology from imagery: detecting and measuring the density of urban land use. Environ Plann A 27:759–780

    Article  Google Scholar 

  • Niebergall S, Loew A, Mauser W (2007) Object-oriented analysis of very high-resolution QuickBird data for mega city research in Delhi/India. In: Proceedings of urban remote sensing joint event 2007 (URS/URBAN), IEEE, Paris, France

    Google Scholar 

  • Qiu F, Wolter KL, Briggs R (2003) Modelling urban population growth from remotely sensed imagery and TIGER GIS road data. Photogramm Eng Remote Sens 69:1031–1042

    Google Scholar 

  • Radnaabazar G, Kuffer M, Hofstee P (2004) Monitoring the development of informal settlements in Ulaanbaatar, Mongolia. In: Proceedings of CORP2004, Vienna University of Technology, Vienna, 25–28 Feb, pp 333–339

    Google Scholar 

  • Ridd M (1995) Exploring a V-I-S (Vegetation-Imperious Surface-Soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities. Int J Remote Sens 16:2165–2185

    Article  Google Scholar 

  • Sliuzas RV (2001) Understanding the dynamics of informal housing in Dar es Salaam: an exploration of professional knowledge and opinions. TRIALOG 69(2):41–45

    Google Scholar 

  • Sliuzas RV (2004) Managing informal settlements: a study using geoinformation in Dar es Salaam. Faculty of Geosciences, University of Utrecht, Utrecht, Tanzania

    Google Scholar 

  • Sliuzas RV, Brussel M (2000) Usability of large scale topographic data for urban planning and engineering applications: examples of housing studies and DEM generation in Tanzania. ISPRS, vol XXXIII, Part B4/3, Commission IV. Amsterdam, 16–23 July

    Google Scholar 

  • Sliuzas RV, Kerle N, Kuffer M (2008) Object-oriented mapping of urban poverty and deprivation. In: Proceedings Joint Workshop GISDECO 8 and EARSeL special interest group on developing countries, Istanbul, Turkey, 2–6 June

    Google Scholar 

  • Stabel E, Fischer P (2001) Satellite radar interferometric products for the urban application domain. Adv Environ Res 5:425–433

    Article  Google Scholar 

  • Steinle E, Baehr HP (2002) Detectability of urban changes from airborne laserscanning data. ISPRS, vol VII. Hyderabad, India, 3–6 Dec 2002

    Google Scholar 

  • Tao C, Li R, Chapman MA (1998) Automatic reconstruction of road centerlines from mobile mapping image sequences. Photogramm Eng Remote Sens 64:709–715

    Google Scholar 

  • Thurston J (2002) GIS and remote sensing: new trends in feature and object recognition. http://www.integralgis.com/pdf/GIS%20and%20Remote%20Sensing.pdf. Accessed in Nov 2004

  • Vosselman G, Kessels P, Gorte BGH (2005) The utilisation of airborne laser scanning for three-dimensional mapping. Int J Appl Earth Obs Geoinf 6:177–186

    Article  Google Scholar 

  • Weber C (2001) Urban agglomeration delimitation using remote sensing data. In: Donnay JP, Barnsley MJ, Longley PA (eds) Remote sensing and urban analysis. Taylor & Francis, London, pp 145–159

    Chapter  Google Scholar 

  • Webster CJ (1995) Urban morphological fingerprint. Environ Plann B 23:279–297

    Article  Google Scholar 

  • Welch R (1982) Spatial resolution requirement for urban studies. Int J Remote Sens 3:139–146

    Article  Google Scholar 

  • Williamson I, Rajabifard A, Feeney MEF (eds) (2003) Developing spatial data infrastructures: from concept to reality. Taylor & Francis, London

    Google Scholar 

  • Woodcock CE, Strahler AH (1987) The factor of scale in remote sensing. Remote Sens Environ 21:311–332

    Article  Google Scholar 

  • Yang X (2002) Satellite monitoring of urban spatial growth in the Atlanta metropolitan area. Photogramm Eng Remote Sens 68:725–734

    Google Scholar 

  • Yeh AGO, Li X (2001) Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogramm Eng Remote Sens 67:83–90

    Google Scholar 

  • Zhan Q (2003) A hierarchical object-based approach for urban land use classification from remote sensing data. Published Ph.D. thesis, Enschede, ITC, University of Wageningen

    Google Scholar 

  • Zhan Q, Molenaar M, Tempfli K (2002) Hierarchical image-object based structural analysis toward urban land use classification using high-resolution imagery and airborne LIDAR data. In: Proceedings of the 3rd international conference on remote sensing of urban areas, Istanbul, Turkey, 11–13 June 2002, pp 251–258

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Sliuzas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Sliuzas, R., Kuffer, M., Masser, I. (2010). The Spatial and Temporal Nature of Urban Objects. In: Rashed, T., Jürgens, C. (eds) Remote Sensing of Urban and Suburban Areas. Remote Sensing and Digital Image Processing, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4385-7_5

Download citation

Publish with us

Policies and ethics