Skip to main content

Characterization and Monitoring of Urban/Peri-urban Ecological Function and Landscape Structure Using Satellite Data

  • Chapter
  • First Online:
Remote Sensing of Urban and Suburban Areas

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 10))

Abstract

This chapter utilizes a case study from Phoenix, Arizona to examine the relationships between ecological variables and landscape structure in cities. The relationships are assessed using ASTER and MODIS data; and through the techniques of expert system land cover classification and grid-based landscape metric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams M (2000) The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA’s Terra platform. Int J Remote Sens 21(5):847–859

    Article  Google Scholar 

  • Alberti M, Waddell P (2000) An integrated urban development and ecological simulation model. Integr Assess 1:215–227

    Article  Google Scholar 

  • Barnsley MJ, Barr SL (2000) Monitoring urban land use by Earth observation. Surv Geophys 21:269–289

    Article  Google Scholar 

  • Botkin DB, Estes JE, MacDonald RB (1984) Studying the Earth’s vegetation from space. BioScience 34:508–514

    Article  Google Scholar 

  • Brazel AJ, Selover N, Vose R, Heisler G (2000) The tale of two climates: Baltimore and Phoenix LTER sites. Climate Res 15:123–135

    Article  Google Scholar 

  • Buyantuyev A, Wu J, Gries C (2007) Estimating vegetation cover in an urban environment based on Landsat ETM+ imagery: a case study in Phoenix, USA. Int J Remote Sens 28:269–291

    Article  Google Scholar 

  • Churchill P, Hubbard N (1994) Centre for Earth Observations (CEO). EARSeL Newsl 20:18–21

    Google Scholar 

  • Dell’Acqua F, Gamba P (2001) Detection of urban structures in SAR images by robust fuzzy clustering algorithms: the example of street tracking. IEEE Trans Geosci Remote Sens 39(10):2287–2297

    Article  Google Scholar 

  • Dial G, Bowen H, Gerlach F, Grodecki J, Oleszczuk R (2003) IKONOS satellite, imagery, and products. Remote Sens Environ 88:23–36

    Article  Google Scholar 

  • Donnay J-P, Barnsley MJ, Longley PA (2001) Remote sensing and urban analysis. In: Donnay J-P, Barnsley MJ, Longley PA (eds) Remote sensing and urban analysis. Taylor & Francis, New York, pp 245–258

    Chapter  Google Scholar 

  • Elvidge CD, Hobson VR, Nelson IL, Safran JM, Tuttle BT, Dietz JB, Baugh KE (2001) Overview of DMSP OLS and scope of applications. In: Mesev V (ed) Remotely sensed cities. Taylor & Francis, New York, pp 245–258

    Google Scholar 

  • Eurostat (1995) Pilot project delimitation of urban agglomerations by remote sensing: results and conclusions. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Forster BC (1980) Urban residential ground cover using Landsat digital data. Photogramm Eng Remote Sens 46:547–558

    Google Scholar 

  • Gamba P, Dell’Acqua F, Lisini G, Cisotta F (2006) Improving building footprints in InSAR data by comparison with a lidar DSM. Photogramm Eng Remote Sens 72(1):63–70

    Google Scholar 

  • Gammage G Jr (1999) Phoenix in perspective: reflection on developing the desert. Arizona State University, Tempe, AZ

    Google Scholar 

  • Geosystems L (2003) ERDAS field guide, 7th edn. Leica geosystems GIS & mapping, Atlanta, GA

    Google Scholar 

  • Gong P, Howarth PJ (1990) The use of structural information for improving land – cover classification accuracies at the rural – urban fringe. Photogramm Eng Remote Sens 56:67–73

    Google Scholar 

  • GP2100 (2003) Greater Phoenix regional atlas: a preview of the region’s 50-year future. Arizona State University, Tempe, AZ

    Google Scholar 

  • Greenhill DR, Ripke LT, Hitchman AP, Jones GA, Wilkinson GG (2003) Characterization of suburban areas for land use planning using landscape ecological indicators derived from Ikonos-2 multispectral imagery. IEEE Trans Geosci Remote Sens 41:2015–2021

    Article  Google Scholar 

  • Grimm NB, Grove JM, Redman CL, Pickett STA (2000) Integrated approaches to long-term studies of urban ecological systems. BioScience 70:571–584

    Article  Google Scholar 

  • Grossman-Clarke S, Zehnder JA, Stefanov WL, Yubao L, Zoldak MA (2005) Urban modifications in a mesoscale meteorological model and the effects on near-surface variables in an arid metropolitan region. J Appl Meteorol 44:1281–1297

    Article  Google Scholar 

  • Haack B (1983) An analysis of Thematic Mapper Simulator data for urban environments. Remote Sens Environ 13:265–275

    Article  Google Scholar 

  • Haack B, Bryant N, Adams S (1987) An assessment of Landsat MSS and TM data for urban and near-urban land-cover digital classification. Remote Sens Environ 21:201–212

    Article  Google Scholar 

  • Haff PK (2002) Neogeomorphology. Am Geophys Union EOS Trans 83(29):310–317

    Article  Google Scholar 

  • Hawkins TW, Brazel A, Stefanov WL, Bigler W, Safell EM (2004) The role of rural variability in urban heat island and oasis determination for Phoenix, Arizona. J Appl Meteorol 43:476–486

    Article  Google Scholar 

  • Herold M, Scepan J, Clarke KC (2002) The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environ Plann A 34(8):1443–1458

    Article  Google Scholar 

  • Herold M, Couclelis H, Clarke KC (2005) The role of spatial metrics in the analysis and modeling of urban land use change. Comput Environ Urban Syst 29:369–399

    Article  Google Scholar 

  • Hope D, Gries C, Zhu W, Fagan WF, Redman CL, Grimm NB, Nelson AL, Martin C, Kinzig A (2003) Socioeconomics drive urban plant diversity. Proc Nat Acad Sci 1000(15):8788–8792

    Article  Google Scholar 

  • Huang J, Lu XX, Sellers JM (2007) A global comparative analysis of urban form: applying spatial metrics and remote sensing. Landscape Urban Plann 82:184–197

    Article  Google Scholar 

  • Imhoff ML, Lawrence WT, Stutzer DC, Elvidge CD (1997) A technique for using composite DMSP/OLS “City Lights” satellite data to map urban area. Remote Sens Environ 61(3):361–370

    Article  Google Scholar 

  • Irons JR, Petersen GW (1981) Texture transforms of remote sensing data. Remote Sens Environ 11:359–370

    Article  Google Scholar 

  • Jackson MJ, Carter P, Smith TF, Gardner W (1980) Urban land mapping from remotely-sensed data. Photogramm Eng Remote Sens 46:1041–1050

    Google Scholar 

  • Jenerette GD, Harlan SL, Brazel A, Jones N, Larsen L, Stefanov WL (2007) Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landscape Ecol 22:353–365

    Article  Google Scholar 

  • Jensen JR (1981) Urban change detection mapping using Landsat data. Am Cartographer 8:1237–1247

    Google Scholar 

  • Jensen JR (1996) Introductory image processing: a remote sensing perspective, 2nd edn. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Jensen JR (2000) Remote sensing of the environment: an earth resource perspective. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Knyazikhin Y, Glassy J, Privette JL, Tian Y, Lotsch A, Zhang Y, Wang Y, Morisette JT, Votava P, Myneni RB, Nemani RR, Running SW (1999) MODIS Leaf Area Index (LAI) and fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) product (MOD15) algorithm theoretical basis document. http://modis-land.gsfc.nasa.gov/pdfs/atbd_mod15.pdf. Accessed 8 Feb 2004

  • Kupel DE (2003) Fuel for growth: water and Arizona’s urban environment. University of Arizona Press, Tucson, AZ

    Google Scholar 

  • Lavalle C, Demicheli L, Turchini M, Casals CP, Niederhuber M (2001) Monitoring mega-cities: the MURBANDY/MOLAND approach. Dev Pract 11(2–3):350–357

    Article  Google Scholar 

  • Longley PA (2002) Geographic information systems: will developments in urban remote sensing and GIS lead to ‘better’ urban geography? Progr Hum Geogr 26(2):213–239

    Article  Google Scholar 

  • Maricopa Association of Governments (2000) Existing (year 2000) land use. Maricopa Association of Governments, Phoenix, AZ

    Google Scholar 

  • Martin LRG, Howarth PJ, Holder G (1988) Multispectral classification of land use at the rural–urban fringe using SPOT data. Can J Remote Sens 14(2):72–79

    Google Scholar 

  • McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. USDA For. Serv. Gen. Tech. Rep. PNW-351

    Google Scholar 

  • Mesev V (2003) Remotely sensed cities: an introduction. In: Mesev V (ed) Remotely sensed cities. Taylor & Francis, London, pp 1–19

    Google Scholar 

  • Musacchio L (2003) Landscape ecological classification and analysis of a 100-year floodplain corridor in the Phoenix metropolitan region. Central Arizona-Phoenix Long-Term Ecological Research (CAP LTER) Fifth Annual Poster Symposium, Tempe, AZ, 19 Feb

    Google Scholar 

  • Narumalani S, Mishra DR, Rothwell RG (2004) Change detection and landscape metrics for inferring anthropogenic processes in the greater EFMO area. Remote Sens Environ 91:478–489

    Article  Google Scholar 

  • Nations D, Stump E (1996) Geology of Arizona, 2nd edn. Kendall/Hunt Publishing Company, Dubuque, IA

    Google Scholar 

  • Netzband M, Kirstein W (2001) Landscape metrics as a tool for the comparison of different urban areas. Regensburger Geographische Schriften 35:222–231

    Google Scholar 

  • Netzband M, Stefanov WL (2003) Assessment of urban spatial variation using ASTER data. The international archives of the photogrammetry, remote sensing, and spatial information sciences, vol 34, part 7/W9. Regensburg, Germany, pp 138–143

    Google Scholar 

  • Netzband M, Stefanov WL, Redman CL (2007) Remote sensing as a tool for urban planning and sustainability. In: Netzband M, Stefanov WL, Redman C (eds) Applied remote sensing for urban planning, governance, and sustainability. Springer, Berlin, pp 1–23

    Chapter  Google Scholar 

  • Parkinson CL, Greenstone R (2000) EOS data products handbook: volume 2. NASA Goddard Space Flight Center, Greenbelt

    Google Scholar 

  • Rainis R (2003) Application of GIS and landscape metrics in monitoring urban land use change. In: Hashim NM, Rainis R (eds) Urban ecosystem studies in Malaysia – a study of change. Universal Publishers, Parkland, pp 267–278

    Google Scholar 

  • Ramsey MS (2003) Mapping the city landscape from space: the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) Urban Environmental Monitoring Program. In: Heiken G, Fakundiny R, Sutter J (eds) Earth science in the city: a reader. American Geophysical Union, Washington, DC, pp 337–361

    Chapter  Google Scholar 

  • Ramsey MS, Stefanov WL, Christensen PR (1999) Monitoring world-wide urban land cover changes using ASTER: preliminary results from the Phoenix, AZ LTER site. In: Proceedings of the 13th international conference, applied geological remote sensing, vol 2, Vancouver, BC, Canada, 1–3 Mar

    Google Scholar 

  • Ridd M (1995) Exploring a V-I-S (Vegetation-Impervious Surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy of cities. Int J Remote Sens 16:2165–2185

    Article  Google Scholar 

  • Ridd MK, Liu J (1998) A comparison of four algorithms for change detection in an urban environment. Remote Sens Environ 63:95–100

    Article  Google Scholar 

  • Robinson JA, McRay B, Lulla KP (2000) Twenty-eight years of urban growth in North America quantified by analysis of photographs from Apollo, Skylab, and Shuttle-Mir. In: Lulla KP, Dessinov LV (eds) Dynamic earth environments: remote sensing observations from Shuttle-Mir missions. Wiley, New York, pp 25–41

    Google Scholar 

  • Running SW, Thornton PE, Nemani RR, Glassy JM (2000) Global terrestrial gross and net primary productivity from the Earth Observing System. In: Sala O, Jackson R, Mooney H (eds) Methods in ecosystem science. Springer, New York, pp 44–57

    Chapter  Google Scholar 

  • Sabins FF (1997) Remote sensing: principles and interpretation, 3rd edn. W.H. Freeman, New York

    Google Scholar 

  • Sawaya KE, Olmanson LG, Heinert NJ, Brezonik PL, Bauer ME (2003) Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery. Remote Sens Environ 88:144–156

    Article  Google Scholar 

  • Schaaf CB, Gao F, Strahler AH, Lucht W, Li XW, Tsang T, Strugnell NC, Zhang XY, Jin YF, Muller JP, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, d’Entremont RP, Hu BX, Liang SL, Privette JL, Roy D (2002) First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sens Environ 83(1–2):135–148

    Article  Google Scholar 

  • Schneider A, McIver DK, Friedl MA, Woodcock CE (2003) Mapping urban areas by fusing coarse resolution remotely sensed data. Photogramm Eng Remote Sens 69:1377–1386

    Google Scholar 

  • Schöpfer E, Moeller MS (2006) Comparing metropolitan areas – a transferable object-based image analysis approach. Photogrammetrie, Fernerkundung, Geoinformation 4:277–286

    Google Scholar 

  • Seto KC, Fragkias M, Schneider A (2007) 20 years after reforms: challenges to planning and development in China’s city-regions and opportunities for remote sensing. In: Netzband M, Stefanov WL, Redman C (eds) Applied remote sensing for urban planning, governance, and sustainability. Springer, Berlin, pp 249–269

    Chapter  Google Scholar 

  • Small C (2003) High spatial resolution spectral mixture analysis of urban reflectance. Remote Sens Environ 88:170–186

    Article  Google Scholar 

  • Small C (2007) Spatial analysis of urban vegetation scale and abundance. In: Netzband M, Stefanov WL, Redman C (eds) Applied remote sensing for urban planning, governance, and sustainability. Springer, Berlin, pp 53–76

    Chapter  Google Scholar 

  • Smith RL (1980) Ecology and field biology, 3rd edn. Harper & Row, New York

    Google Scholar 

  • Stefanov WL (2002) Remote sensing of urban ecology at the Central Arizona-Phoenix Long Term Ecological Research site. Arid Lands Newsletter, 51. http://ag.arizona.edu/OALS/ALN/aln51/stefanov.html. Accessed 20 Feb 2009

  • Stefanov WL, Brazel AJ (2007) Challenges in characterizing and mitigating urban heat islands – a role for integrated approaches including remote sensing. In: Netzband M, Stefanov WL, Redman C (eds) Applied remote sensing for urban planning, governance, and sustainability. Springer, Berlin, pp 117–135

    Chapter  Google Scholar 

  • Stefanov WL, Netzband M (2005) Assessment of ASTER land cover and MODIS NDVI data at multiple scales for ecological characterization of an arid urban center. Remote Sens Environ 99:31–43

    Article  Google Scholar 

  • Stefanov WL, Christensen PR, Ramsey MS (2001a) Remote sensing of urban ecology at regional and global scales: results from the Central Arizona-Phoenix LTER site and ASTER Urban Environmental Monitoring Program. Regensburger Geographische Schriften 35:313–321

    Google Scholar 

  • Stefanov WL, Ramsey MS, Christensen PR (2001b) Monitoring urban land cover change: an expert system approach to land cover classification of semiarid to arid urban centers. Remote Sens Environ 77:173–185

    Article  Google Scholar 

  • Stefanov WL, Ramsey MS, Christensen PR (2003) Identification of fugitive dust generation, transport, and deposition areas using remote sensing. Environ Eng Geosci 9:151–165

    Article  Google Scholar 

  • Stefanov WL, Netzband M, Möller MS, Redman CL, Mack C (2007) Phoenix, Arizona, USA: applications of remote sensing in a rapidly urbanizing desert region. In: Netzband M, Stefanov WL, Redman C (eds) Applied remote sensing for urban planning, governance, and sustainability. Springer, Berlin, pp 137–164

    Chapter  Google Scholar 

  • Stuckens J, Coppin PR, Bauer ME (2000) Integrating contextual information with per-pixel classification for improved land cover classification. Remote Sens Environ 71:282–296

    Article  Google Scholar 

  • Sutton PC (2003) Estimation of human population parameters using night-time satellite imagery. In: Mesev V (ed) Remotely sensed cities. Taylor & Francis, London, pp 301–333

    Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • Vogelmann JE, Sohl T, Howard SM (1998) Regional characterization of land cover using multiple sources of data. Photogramm Eng Remote Sens 64:45–57

    Google Scholar 

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86:370–384

    Article  Google Scholar 

  • Wan Z, Li Z-L (1997) A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans Geosci Remote Sens 35:980–996

    Article  Google Scholar 

  • Weber C (1994) Per-zone classification of urban land cover for urban population estimation. In: Foody GM, Curran PJ (eds) Environmental remote sensing from regional to global scales. Wiley, Chichester, pp 142–148

    Google Scholar 

  • Weber C (2001) Urban agglomeration delimitation using remote sensing data. In: Donnay J-P, Barnsley MJ, Longley PA (eds) Remote sensing and urban analysis. Taylor & Francis, New York, pp 245–258

    Google Scholar 

  • Weber C, Puissant A (2003) Urbanization pressure and modeling of urban growth: example of the Tunis metropolitan area. Remote Sens Environ 86:341–352

    Article  Google Scholar 

  • Wentz EA, Stefanov WL, Gries C, Hope D (2006) Land use and land cover mapping from diverse sources for an arid urban environments. Comput Environ Urban Syst 30:320–346

    Article  Google Scholar 

  • Wentz EA, Nelson D, Rahman A, Stefanov WL, Roy SS (2008) Expert system classification of urban land use/cover for Delhi, India. Int J Remote Sens 29(15):4405–4427

    Article  Google Scholar 

  • Wentz EA, Stefanov WL, Netzband M, Möller M, Brazel A (2009) The urban environmental monitoring/100 cities project: legacy of the first phase and next steps. In: Gamba P, Martin H (eds) Global mapping of human settlement: experiences, data sets, and prospects. Taylor & Francis, New York

    Google Scholar 

  • Whitford WG (2002) Ecology of desert systems. Academic, New York

    Google Scholar 

  • Whitford V, Ennos AR, Handley JF (2001) City form and natural process – indicators for the ecological performance of urban areas and their application to Merseyside, UK. Landscape Urban Plann 57:91–103

    Article  Google Scholar 

  • Woodcock CE, Strahler AH (1987) The factor of scale in remote sensing. Remote Sens Environ 21:311–332

    Article  Google Scholar 

  • Wu J, Jelinski DE, Luck M, Tueller PT (2000) Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics. Geogr Inf Sci 6:6–19

    Google Scholar 

  • Yu XJ, Ng CH (2007) Spatial and temporal dynamics of urban dynamics of urban sprawl along two urban–rural transects: a case study of Guangzhou, China. Landscape Urban Plann 79:96–109

    Article  Google Scholar 

  • Zehnder JA (2002) Simple modifications to improve fifth-generation Pennsylvania State University-National Center for Atmospheric Research mesoscale model performance for the Phoenix, Arizona metropolitan area. J Appl Meteorol 41:971–979

    Article  Google Scholar 

  • Zhu G, Blumberg DG (2002) Classification using ASTER data and SVM algorithms: the case study of Beer Sheva, Israel. Remote Sens Environ 80:233–240

    Article  Google Scholar 

  • Zipperer WC, Wu J, Pouyat RV, Pickett STA (2000) The application of ecological principles to urban and urbanizing landscapes. Ecol Appl 10(3):685–688

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William L. Stefanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Stefanov, W.L., Netzband, M. (2010). Characterization and Monitoring of Urban/Peri-urban Ecological Function and Landscape Structure Using Satellite Data. In: Rashed, T., Jürgens, C. (eds) Remote Sensing of Urban and Suburban Areas. Remote Sensing and Digital Image Processing, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4385-7_12

Download citation

Publish with us

Policies and ethics