Skip to main content

Natural Disturbance Production Functions

  • Chapter
The Economics of Forest Disturbances

Part of the book series: Forestry Sciences ((FOSC,volume 79))

Natural disturbances in forests are driven by physical and biological processes. Large, landscape scale disturbances derive primarily from weather (droughts, winds, ice storms, and floods), geophysical activities (earthquakes, volcanic eruptions, even asteroid strikes), fires, insects, and diseases. Humans have always been affected by these processes and have invented ways to harness such processes or manipulate vegetation to enhance the values obtained from nature or reduce their negative impacts on human societies. For example, humans have cleared brush using fire to reduce pest populations and encourage forage for animals (Pyne 1995). Historically, humans have relied on traditions, rules of thumb, and trial and error to predict how their actions may affect disturbance probabilities and characteristics. More recently, economic assessment tools have helped gauge the consequences of natural disturbances on forests.

As the availability of science, technology, and environmental data have improved, scientists and economists have been able to quantify disturbances as production processes that emanate from a combination of biological, physical, and (or) human-initiated inputs. Ecologists have long recognized that disturbances lead to changes in ecological communities, which subsequently affect human societies. Economists, on the other hand, have been focused on understanding how humans can intervene to alter both the frequency and severity of natural disturbances. Improving scientific and economic assessment tools, and experience using them, have in turn helped us to appreciate the many consequences of natural disturbances. The objectives of this chapter are to (1) define disturbances and their stages, (2) discuss how mathematical expressions of disturbance processes, disturbance production functions, may differ from the production functions defined in neoclassical economics, (3) identify the stages of disturbances, (4) provide a typology of production functions relevant to forest disturbances, and (5) conclude with a discussion of management and science implications of recent research. Our focus is to understand how disturbances are produced and how they may be affected by intentional managerial actions. We show that quantitative characterization of disturbance processes is required to understand how management interventions into disturbances can lead to net societal gains. Throughout the chapter, we provide examples of how information about disturbances can be used to better achieve management and policy goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, P. L., and C. D. Bevins. 1999. BEHAVE fire modeling system: Redesign and expansion. Fire Management Notes 59(2):16-19.

    Google Scholar 

  • Babcock, B. A., and J. F. Shogren. 1995. The cost of agricultural production risk. Agricultural Economics 12(2):141-150.

    Article  Google Scholar 

  • Barnett, T. P., and J. Brenner. 1992. Prediction of wildfire activity in the southeastern United States. Southeast Regional Climate Center Research Paper Number 011592. Columbia SC: South Carolina Water Resources Commission.

    Google Scholar 

  • Butry, D. T. 2006. Estimating the efficacy of wildfire management using propensity scores. Ph. D. Dissertation, North Carolina State University.

    Google Scholar 

  • Butry, D. T., D. E. Mercer, J. P. Prestemon, J. M. Pye, and T. P. Holmes. 2001. What is the price of catastrophic wildfire? Journal of Forestry 99(11):9-17.

    Google Scholar 

  • Butry, D. T., and J. P. Prestemon. 2005. Spatio-temporal wildland arson crime functions. Paper presented at the Annual Meeting of the American Agricultural Economics Association, July 26-29, 2005, Providence, Rhode Island. 18 p.

    Google Scholar 

  • Carpentier, A., and R. D. Weaver. 1997. Damage control: Why econometrics matters. American Journal of Agricultural Economics 74(1):47-61.

    Article  Google Scholar 

  • Chambers, R. G. 1991. Applied production analysis: A dual approach. New York: Cambridge University Press. 331 p.

    Google Scholar 

  • Collett, D. 1994. Modelling survival data in medical research. New York, NY: Chapman and Hall/CRC. 347 p.

    Google Scholar 

  • Cox, D. R., and D. Oakes. 1984. Analysis of survival data. London: Chapman and Hall. Davis, L. S. 1965. The economics of wildfire protection with emphasis on fuel break systems. Sacramento, CA: State of California, Department of Conservation, Division of Forestry. 166 p.

    Google Scholar 

  • Davis, L. S., and R. W. Cooper. 1963. How prescribed burning affects wildfire occurrence. Journal of Forestry 61(12):915-917.

    Google Scholar 

  • di Castri, F. 1989. History of biological invasions with emphasis on the Old World. In: Biological Invasions: A Global Perspective, J. Drake, F. di Castri, R. Groves, F. Kruger, H. A. Mooney, M. Rejmanek, and M. Williamson (eds.). New York, NY: Wiley. 30 p.

    Google Scholar 

  • Donovan, G. H., and D. B. Rideout. 2003a. An integer programming model to optimize resource allocation for wildfire containment. Forest Science 49(2):331-335.

    Google Scholar 

  • Donovan, G. H., and D. B. Rideout. 2003b. A reformulation of the cost plus net value change (C+NVC) model of wildfire economics. Forest Science 49(2):318-323.

    Google Scholar 

  • Ehrlich, I., and G. Becker. 1972. Market insurance, self-insurance, and self-protection. Journal of Political Economy 80:623-648.

    Article  Google Scholar 

  • Finney, M. A. 1998. FARSITE: Fire Area Simulator: Model development and evaluation. Res. Pap. RMRS-RP-4. USDA Forest Service. 47 p.

    Google Scholar 

  • Finney, M. A., and P. L. Andrews. 1999. FARSITE- A program for fire growth simulation. Fire Management Notes 59(2):13-15.

    Google Scholar 

  • Friedman, M., and L. J. Savage. 1948. The utility analysis of choices involving risk. Journal of Political Economy 56:279-304.

    Article  Google Scholar 

  • Genton, M. G., D. T. Butry, M. Gumpertz, and J. P. Prestemon. 2006. Spatio-temporal analysis of wildfire ignitions in the St. Johns River Water Management District. International Journal of Wildland Fire 15(1):87-97.

    Article  Google Scholar 

  • Gill, A. M., K. R. Christian, P. H. R. Moore, and R. I. Forrester. 1987. Bush fire incidence, fire hazard and fuel reduction burning. Australian Journal of Ecology 12:299-306.

    Article  Google Scholar 

  • Gorte, J. K., and R. W. Gorte. 1979. Application of economic techniques to fire manage-ment—A status review and evaluation. Gen. Tech. Rep. INT-53. USDA Forest Service, Ogden UT.

    Google Scholar 

  • Gumpertz, M. L., C. -T. Wu, and J. M. Pye. 2000. Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation. Forest Science 46(1):95-107.

    Google Scholar 

  • Headly, R. 1916. Fire Suppression District 5. USDA Forest Service, Washington, D. C.

    Google Scholar 

  • Holmes, T. P. 1991. Price and welfare effects of catastrophic forest damage from southern pine beetle epidemics. Forest Science 37(2):500-516.

    Google Scholar 

  • Holmes, T. P, J. P. Prestemon, J. M. Pye, D. T. Butry, D. E. Mercer, and K. Abt. 2004. Using size-frequency distributions to analyze fire regimes in Florida. In: Fire in Temperate, Boreal and Montane Ecosystems, Proceedings of the Tall Timbers 22nd Fire Ecology Conference, W. J. de Groot and R. T. Engstrom (eds.). Tall Timbers Research Station and the Canadian Forest Service, October 15-18, 2001, Kananaskis Village, Alberta, Canada.

    Google Scholar 

  • Hyde, K., G. Jones, R. Silverstein, K. Stockmann, and D. Loeffler. 2006. Integrating fuel treatments into comprehensive ecosystem management. P. 549-561 In: Fuels Management-How to Measure Success: Conference Proceedings, P. L. Andrews and B. W. Butler (eds. ). USDA Forest Service RMRS. 41 p.

    Google Scholar 

  • Just, R. E. 1975. Risk aversion under profit maximization. American Journal of Agricultural Economics 57(2):347-352.

    Article  Google Scholar 

  • Keeley, J. E., C. J. Fotheringham, and M. Morais. 1999. Reexamining fire suppression impacts on brushland fire regimes. Science 284:1829-1832.

    Article  CAS  PubMed  Google Scholar 

  • Kent, B., K. Gebert, S. McCaffrey, W. Martin, D. Calkin, I. Schuster, H. Martin, W. Bender, G. Alward, K. Yoshitaka, P. J. Cohn, M. Carroll, D. Williams, and C. Ekarius. 2003. In: Social and Economic Issues of the Hayman Fire, R. T. Graham (tech. ed. ). Hayman Fire Case Study. Gen. Tech. Rep. RMRS-114 (Revision), Fort Collins, CO: U. S. Department of Agriculture, Forest Service. p. 315-395.

    Google Scholar 

  • Kuosmanen, T., D. Pemsi, and J. Wesseler. 2006. Specification and estimation of production functions involving damage control inputs: A two-stage, semiparametric approach. American Journal of Agricultural Economics 88(2):499-511.

    Article  Google Scholar 

  • Lee, B., P. S. Park, and J. Chung. 2006. Temporal and spatial characteristics of forest fires in South Korea between 1970 and 2003. International Journal of Wildland Fire 15 (3):389-396.

    Article  Google Scholar 

  • Leung, B., J. M. Drake, and D. M. Lodgea. 2004. Predicting invasions: Propagule pressure and the gravity of Allee effects. Ecology 85(6):1651-1660.

    Article  Google Scholar 

  • Li, C., I. G. W. Corns, and R. C. Yang. 1999. Fire frequency and size distribution under natural conditions: A new hypothesis. Landscape Ecology 14:533-542.

    Article  Google Scholar 

  • Lichtenberg, E., and D. Zilberman. 1986. The econometrics of damage control: Why specification matters. American Journal of Agricultural Economics 68(2):261-273.

    Article  Google Scholar 

  • Mack, R. N., D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout, and F. A. Bazzaz. 2000. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecological Applications 10(3):689-710.

    Article  Google Scholar 

  • Martell, D. L. 1980. The optimal rotation of a flammable forest stand. Canadian Journal of Forest Research 10(1):30-34.

    Article  Google Scholar 

  • Martell, D. L., S. Otukol, and B. J. Stocks. 1987. A logistic model for predicting daily people-caused forest fire occurrence in Ontario. Canadian Journal of Forestry Research 17:394-401.

    Article  Google Scholar 

  • McIver, J. D., and L. Starr. 2000. Environmental effects of postfire logging: Literature review and annotated bibliography. Gen. Tech. Rep. PNW-GTR-486. USDA Forest Service. 72 p.

    Google Scholar 

  • McIver, J. D., and L. Starr. 2001. A literature review on the environmental effects of postfire logging. Western Journal of Applied Forestry 16(4):159-168.

    Google Scholar 

  • Mercer, D. E., and J. P. Prestemon. 2005. Comparing production function models for wildfire risk analysis in the wildland-urban interface. Forest Policy and Economics 7 (5):782-795.

    Article  Google Scholar 

  • Mercer, D. E., J. P. Prestemon, D. T. Butry, and J. M. Pye. 2007. Evaluating alternative prescribed burning policies to reduce net economic damages from wildfire. American Journal of Agricultural Economics 89(1):63-77.

    Article  Google Scholar 

  • Meyers, R. K., and D. H. van Lear. 1998. Hurricane-fire interactions in coastal forests of the south: A review and hypothesis. Forest Ecology and Management 103:265-276.

    Article  Google Scholar 

  • Moritz, M. A. 1997. Analyzing extreme disturbance events: Fire in Los Padres National Forest. Ecological Applications 7(4):1252-1262.

    Article  Google Scholar 

  • Norman, S. P., and A. H. Taylor. 2003. Tropical and north Pacific teleconnections influence forest fire regimes in pine-dominated forests of north-eastern California, USA. Journal of Biogeography 30:1081-1092.

    Google Scholar 

  • Podur, J., D. L. Martell, and F. Csillag. 2003. Spatial patterns of lightning-caused forest fires in Ontario, 1976-1998. Ecological Modelling 164:1-20.

    Article  Google Scholar 

  • Pope, R. D., and R. A. Kramer. 1979. Production uncertainty and factor demands for the competition firm. Southern Economics Journal 46:489-501.

    Article  Google Scholar 

  • Prestemon, J. P., and T. P. Holmes. 2004. Market dynamics and optimal timber salvage after a natural catastrophe. Forest Science 50(4):495-511.

    Google Scholar 

  • Prestemon, J. P., and D. T. Butry. 2005. Time to burn: Modeling wildland arson as an autore- gressive crime function. American Journal of Agricultural Economics 87(3):756-770.

    Article  Google Scholar 

  • Prestemon, J. P., J. M. Pye, D. T. Butry, T. P. Holmes, and D. E. Mercer. 2002. Understanding broad scale wildfire risks in a human-dominated landscape. Forest Science 48 (4):685-693.

    Google Scholar 

  • Prestemon, J. P., D. N. Wear, T. P. Holmes, and F. Stewart. 2006. Wildfire, timber salvage, and the economics of expediency. Forest Policy and Economics 8(3):312-322.

    Google Scholar 

  • Pye, J. M., J. P. Prestemon, D. T. Butry, and K. L. Abt. 2003. Prescribed burning and wildfire risk in the 1998 fire season in Florida. In: Conference on Fire, Fuel Treatments and Ecological Restoration, April 16-18, 2002, Ft. Collins, CO, P. Omi (ed. ). Gen. Tech. Rep. RMRS-P-29. USDA Forest Service. p. 15-26.

    Google Scholar 

  • Pyne, S. J. 1995. The culture of fire on earth. New York: Henry Holt. 379 p.

    Google Scholar 

  • Ripley, B. D. 1976. The second-order analysis of stationary point processes. Journal of Applied Probability 13:255-266.

    Article  Google Scholar 

  • Routledge, R. D. 1980. The effect of potential catastrophic mortality and other unpredictable events on optimal forest rotation policy. Forest Science 26(3):389-399.

    Google Scholar 

  • Sharov, A. A., and A. M. Liebhold. 1998a. Bioeconomics of managing the spread of exotic pest species with barrier zones. Ecological Applications 8(3):833-845.

    Google Scholar 

  • Sharov, A. A., and A. M. Liebhold. 1998b. Model of slowing the spread of gypsy moth (Lepidoptera: Lymantriidae) with a barrier zone. Ecological Applications 8:1170-1179.

    Article  Google Scholar 

  • Sharov, A. A., and A. M. Liebhold. 1998c. Quantitative analysis of gypsy moth spread in the Central Appalachians. In: Population and Community Ecology for Insect Management and Conservation, J. Braumgartner, P. Brandmayer and B. F. J. Manly (eds. ). Balkema, Rotterdam. p. 99-110.

    Google Scholar 

  • Sharov, A. A., A. M. Liebhold, and E. A. Roberts. 1998. Optimizing the use of barrier zones to slow the spread of gypsy moth (Lepidoptera: Lymantriidae) in North America. Journal of Economic Entomology 91:165-174.

    Google Scholar 

  • Shogren, J. 1991. Endogenous risk and protection premiums. Theory and Decision 31(2/3):241-256.

    Article  Google Scholar 

  • Shogren, J., and T. Crocker. 1991. Risk, self-protection, and ex ante economic value. Journal of Environmental Economics and Management 20:1-15.

    Article  Google Scholar 

  • Sparhawk, W. N. 1925. The use of liability ratings in planning forest fire protection. Journal of Agricultural Research 30:693-762.

    Google Scholar 

  • Strauss, D., L. Bednar, and R. Mees. 1989. Do one percent of forest fires cause ninety-nine percent of the damage? Forest Science 35(2):319-328.

    Google Scholar 

  • Vega Garcia, C., P. M. Woodard, S. J. Titus, W. L. Adamowicz, and B. S. Lee. 1995. A logit model for predicting the daily occurrence of human caused forest fires. International Journal of Wildland Fire 5:101-111.

    Article  Google Scholar 

  • Westerling, A. J., A. Gershunov, D. R. Cayan, and T. P. Barnett. 2002. Long lead statistical forecasts of area burned in western U. S. wildfires by ecosystem province. International Journal of Wildland Fire 11:257-266.

    Article  Google Scholar 

  • Williamson, M. 1996. Biological Invasions. Chapman & Hall, London, UK. Woodall, C. W., P. L. Gramsch, and W. Thomas. 2005. Applying survival analysis to a large-scale forest inventory for assessment of tree mortality in Minnesota. Ecological Modelling 189:199-208.

    Google Scholar 

  • Yin, R., and D. H. Newman. 1996. The effect of catastrophic risk on forest investment decisions. Journal of Environmental Economics and Management 31(3):186-197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Prestemon, J.P., Mercer, D.E., Pye, J.M. (2008). Natural Disturbance Production Functions. In: Holmes, T.P., Prestemon, J.P., Abt, K.L. (eds) The Economics of Forest Disturbances. Forestry Sciences, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4370-3_3

Download citation

Publish with us

Policies and ethics