Skip to main content

Is the Future Given? Changes in Our Description of Nature

  • Chapter
A Century of Ideas

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 149))

According to the classical point of view, nature would be an automaton. However, today we discover everywhere instabilities, bifurcations, evolution. This demands a different formulation of the laws of nature to include probability and time symmetry breaking. We have shown that the difficulties in the classical formulation come from too narrow a point of view concerning the fundamental laws of dynamics (classical or quantum). The classical model has been a model of integrable systems (in the sense of Poincare). It is this model, which leads to determinism and time reversibility. We have shown that when we leave this model and consider a class of non-integrable systems, the difficulties are overcome. We show that our approach unifies dynamics, thermodynamics and probability theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Prigogine Non-Equilibrium Statistical Mechanics, Wiley, New York (1962).

    MATH  Google Scholar 

  2. I. Prigogine From Being to Becoming, Freeman, New York (1980).

    Google Scholar 

  3. T. Petrosky, I. Prigogine and S. Tasaki, “Quantum theory of nonintegrable systems”, Physica A 173, 175–242 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  4. I. Antoniou and S. Tasaki, “Generalized spectral decomposition of mixing dynamical systems”, Int. J. Quantum Chem. 46, 425–474 (1993).

    Article  Google Scholar 

  5. I. Antoniou and I. Prigogine, “Intrinsic irreversibility and integrability of dynamics”, Physica A 192, 443–464 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Petrosky and I. Prigogine, “Poincare resonances and the extension of classical dynamics”, Chaos, Solitons and Fractals 7, 441–497 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. T. Petrosky and I. Prigogine, “The Liouville space extension of quantum mechanics”, Adv. Chem. Phys. 99, 1–120, ed. I. Prigogine and S. Rice, Wiley (1997).

    Google Scholar 

  8. G. Ordonez, T. Petrosky and I. Prigogine, “Space-time formulation of quantum transitions”, Phys. Rev. A 63, 052106 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  9. T. Petrosky, G. Ordonez and I. Prigogine, “Space-time formulation of quantum transitions”, Phys. Rev. A 64, 062101 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Karpov, G. Ordonez, T. Petrosky and I. Prigogine, “Quantum transitions in interacting fields”, Phys. Rev. A 66, 012109 (2002).

    Article  ADS  Google Scholar 

  11. I. Prigogine, S. Kim, G. Ordonez and T. Petrosky, Stochasticity and time symmetry breaking in Hamiltonian dynamics, submitted to Proc. Solvay conference in Delphi, Greece (2001).

    Google Scholar 

  12. G. Ordonez, T. Petrosky and I. Prigogine, Microscopic entropy flow and entropy production in resonance scattering, submitted to Proc. Solvay conference in Delphi, Greece (2001).

    Google Scholar 

  13. E. Karpov, G. Ordonez, T. Petrosky and I. Prigogine, Microscopic Entropy and Nonlocality, Proc. Workshop on Quantum Physics and Communication (QPC 2002) Dubna, Russia (2002), Particles and Nuclei, Letters. No. 1 [116], 8–15 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Prigogine, I. (2008). Is the Future Given? Changes in Our Description of Nature. In: Sidharth, B.G. (eds) A Century of Ideas. Fundamental Theories of Physics, vol 149. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4360-4_7

Download citation

Publish with us

Policies and ethics