Skip to main content

The Nature of Discovery in Physics

  • Chapter

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 149))

By their very nature, those discoveries which most change the way we perceive our physical universe are difficult to anticipate. How then, are such discoveries made, and what experimental approaches are most likely to lead to discoveries? In this article I will describe four experiments in which I have participated that have yielded unexpected new physics, and attempt to explain how they came about.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Goodstein and J. Goodstein, “Richard Feynman and the History of Superconductivity” in History of Original Ideas and Basic Discoveries in Particle Physics, ed. H.B. Newman and T. Ypsilantis, Plenum, N.Y. (1996), pp. 773–779.

    Google Scholar 

  2. J. Bardeen, L.N. Cooper, and J.R. Schrieffer, “Theory of Superconductivity”, Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. R.W. Wilson, The Cosmic Microwave Background Radiation Les Prix Nobel 1978, eds. Siegbahn, K., et al., Almqvist & Wiksell, Stockholm, (1979) pp. 113–133.

    Google Scholar 

  4. G. Gamow, “The Evolution of the Universe”, Nature 162, 680–682 (1948).

    Article  ADS  Google Scholar 

  5. D. Wilkinson, private communication.

    Google Scholar 

  6. I. Pomeranchuk, “On the theory of liquid 3He”, Zh. Eksperim. i Theor. Fiz. 20, 919–926 (1950).

    Google Scholar 

  7. Y.D. Anufriyev, “Use of the Pomeranchuk effect to obtain infralow temperature”, JETP Lett. 1, 155–157 (1965).

    ADS  Google Scholar 

  8. W.E. Keller, Helium-3 and Helium-4, Plenum, N.Y. (1969).

    Google Scholar 

  9. R.T. Johnson, R.E. Rapp and J.C. Wheatley, “Effect of a magnetic field on the melting curve of 3He”, J. Low Temp. Phys. 6, 445–453 (1971).

    Article  ADS  Google Scholar 

  10. D.D. Osheroff, Superfluidity in 3 He: Discovery and Understanding, Les Prix Nobel 1996, eds. T. Frngsmyr and Brigitta Lundeberg, Norstedts Tryckeri AB, Stockholm (1997) pp. 103–133. Also: Rev. Mod. Phys. 69, 667–681 (1997), and available from World Scientific Publishers (Singapore) on CD ROM.

    Google Scholar 

  11. D.D. Osheroff, “Nuclear magnetic order in Solid 3He”, J. Low Temp. Phys. 87, 297–342 (1992).

    Article  ADS  Google Scholar 

  12. N. Bernardes and H. Primakoff, “Theory of Solid 3He”, Phys. Rev. Lett. 2, 290–292 (1960).

    Article  ADS  Google Scholar 

  13. J.R. Sites, D.D. Osheroff, R.C. Richardson and D.M. Lee, “Nuclear magnetic susceptibility of solid 3He cooled by compression from the liquid phase”, Phys. Rev. Letts. 23, 836–839 (1969).

    Article  ADS  Google Scholar 

  14. W.P. Halperin, C.N. Archie, F.B. Rasmussen, R.A. Buhrman and R.C. Richardson, “Observation of nuclear magnetic order in solid 3He”, Phys. Rev. Lett. 32, 927–930 (1974).

    Article  ADS  Google Scholar 

  15. M. Roger, J.M. Delrieu and A. Landesman, “Nuclear spin ordering with four spin exchange in solid bcc 3He”, Phys. Lett. A 62, 449–452 (1977).

    Article  ADS  Google Scholar 

  16. D.D. Osheroff, M.C. Cross and D.S. Fisher, “Nuclear Antiferromagnetic Resonance in Solid 3He”, Phys. Rev. Lett. 44, 792–795 (1980).

    Article  ADS  Google Scholar 

  17. A. Benoit, J. Bossy, J. Flouquet and J. Schweizer, Magnetic diffraction in solid 3He”, J. de Physique Letters, 46, L923–L927 (1985).

    Article  Google Scholar 

  18. E.D. Adams, E.A. Schubert, G.E. Haas, and D.M. Bakalyar, “NMR in magnetically ordered solid 3He”, Phys. Rev. Lett. 44, 789–792 (1980).

    Article  ADS  Google Scholar 

  19. D. Thouless, “Maximum metallic resistance in thin wires”, Phys. Rev. Lett. 39, 1167–1170 (1977).

    Article  ADS  Google Scholar 

  20. P.W. Anderson, E. Abrahams, and T.V. Ramakrishnan, “Possible explanation of nonlinear conductivity in thin-film metal wires”, Phys. Rev. Lett. 43, 717–720 (1979) and G.R. Dolan and D.D. Osheroff, “Non-metallic conduction in thin metal films at low temperatures”, Phys. Rev. Lett. 43, 721–724 (1979).

    ADS  Google Scholar 

  21. R.C. Zeller and R.O. Pohl, “Thermal conductivity and specific heat of non-crystalline solids”, Phys. Rev. B 4, 2029–2041 (1971).

    Article  ADS  Google Scholar 

  22. Tunnelling Systems in Solids, ed. P. Esquinazi, Springer (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Osheroff, D.D. (2008). The Nature of Discovery in Physics. In: Sidharth, B.G. (eds) A Century of Ideas. Fundamental Theories of Physics, vol 149. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4360-4_14

Download citation

Publish with us

Policies and ethics