Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 131))

Abstract

The diffraction limit has long been a fundamental barrier for optical imaging. The ability to improve the resolving power of optical systems has attracted considerable interest. This ever-growing interest is due to the enormous potential benefit it offers in diverse fields such as bio-imaging, data storage, and lithography. Significant efforts have been made to enhance optical resolution. As an earliest effort to improve the resolution, contact mask imaging was proposed and demonstrated. Immersion microscopy improves the resolution by increasing the refractive index of the surrounding medium; this method is limited by the availability of high index materials. Although scanning near-field optical microscopy (NSOM) provides subwavelength resolution, it does not project a whole image like a regular lens does. The optical information is collected by scanning a sharp tip in a point-by-point fashion near the surface which suffers from slow speed of serial scanning. It is often an “invasive” measurement that requires complicated post procedures for imaging reconstruction to remove the artifacts due to the tip-structure interaction. Recently, Pendry proposed an interesting “perfect lens theory” in which a left-handed material (LHM) is used to obtain super-resolution well below the diffraction limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U.C. Fischer, H.P. Zingsheim: Sub-microscopic pattern replication with visible-light, J. Vac. Sci. Technol. 19 (4), 881–885 (1981).

    Article  CAS  Google Scholar 

  2. H.I. Smith: Fabrication techniques for surface-acoustic-wave and thin-film optical devices, Proc. IEEE62(10), 1361–1387 (1974).

    Article  Google Scholar 

  3. J.B. Pendry: Negative refraction makes a perfect lens, Phys. Rev. Lett. 85(18), 3966–3969 (2000).

    Article  CAS  Google Scholar 

  4. V.G. Veselago: Electrodynamics of substances with simultaneously negative values of sigma and mu, Soviet Phys. Uspekhi-USSR 10(4), 509 (1968).

    Article  Google Scholar 

  5. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs: Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76 (25), 4773–4776 (1996).

    Article  CAS  Google Scholar 

  6. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart: Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).

    Article  Google Scholar 

  7. R.A. Shelby, D.R. Smith, S. Schultz: Experimental verification of a negative index of refraction, Science 292(5514), 77–79 (2001).

    Article  CAS  Google Scholar 

  8. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang: Terahertz magnetic response from artificial materials, Science 303(5663), 1494–1496 (2004).

    Article  CAS  Google Scholar 

  9. S. Linden, C. Enkrich, M. Wegener, J.F. Zhou, T. Koschny, C.M. Soukoulis: Magnetic response of metamaterials at 100 terahertz, Science 306(5700), 1351–1353 (2004).

    Article  CAS  Google Scholar 

  10. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire: Metamaterials and negative refractive index, Science 305(5685), 788–792 (2004).

    Article  CAS  Google Scholar 

  11. S. Anantha Ramakrishna: Physics of negative refractive index materials, Rep. Prog. Phys. 68(2), 449–521 (2005).

    Article  Google Scholar 

  12. A. Grbic, G.V. Eleftheriades: Overcoming the diffraction limit with a planar left-handed transmission-line lens, Phys. Rev. Lett. 92(11), 117403 (2004).

    Article  CAS  Google Scholar 

  13. P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar: Photonic crystals—Imaging by flat lens using negative refraction, Nature 426(4965), 404 (2003).

    Article  CAS  Google Scholar 

  14. H. Raether: Surface Plasmons (Springer, Berlin, 1988).

    Google Scholar 

  15. N. Fang, Z.W. Liu, T.J. Yen, X. Zhang, Regenerating evanescent waves from a silver superlens, Opt. Express 11(7), 682–687 (2003).

    Article  CAS  Google Scholar 

  16. N. Fang, X. Zhang: Imaging properties of a metamaterial superlens, Appl. Phys. Lett. 82(2), 161–163 (2003).

    Article  CAS  Google Scholar 

  17. Z. Liu, N. Fang, T.J. Yen, X. Zhang: Rapid growth of evanescent wave by a silver superlens, Appl. Phys. Lett. 83 (25) 5184–5186 (2003).

    Article  CAS  Google Scholar 

  18. N. Fang, Z. Liu, T.J. Yen, X. Zhang: Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation, Appl. Phys. A 80, 1315–1325 (2005).

    Article  CAS  Google Scholar 

  19. S. Heavens: Optical Properties of Thin Solid Films (Dover, Mineola, New York, 1991).

    Google Scholar 

  20. S. Hayashi, T. Kume, T. Amano, K. Yamamoto: A new method of surface plasmon excitation mediated by metallic nanoparticles, Jpn. J. Appl. Phys. 35 L331–L334 (1996).

    Article  CAS  Google Scholar 

  21. E. Kretschmann: Determination of surface-roughness of thin-films using measurement of angular-dependence of scattered light from surface plasma-waves, Opt. Commun. 10(4) 353–356 (1974).

    Article  Google Scholar 

  22. H.J. Simon, J.K. Guha: Directional surface-plasmon scattering from silver films, Opt. Commun. 18(3), 391–394 (1976).

    Article  CAS  Google Scholar 

  23. R.W. Alexander, G.S. Kovener, R.J: Bell: Dispersion curves for surface electromagnetic-waves with damping, Phys. Rev. Lett. 32(4), 154–157 (1974).

    Article  CAS  Google Scholar 

  24. P.B. Johnson, R.W. Christy: Optical-constants of noble-metals, Phys. Rev. B 6(12), 4370–4379 (1972)

    Article  CAS  Google Scholar 

  25. Oriel Instruments: The Book of Photon Tools, Chapt. 15, (2002).

    Google Scholar 

  26. N. Fang, H. Lee, C. Sun, X. Zhang: Sub-diffraction-limited optical imaging with a silver superlens, Science 308(5721), 534–537 (2005).

    Article  CAS  Google Scholar 

  27. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, M. Ambati, C. Sun, X. Zhang: Realization of optical superlens imaging below the diffraction limit, New J. Phys. 7, 1–16 (2005)

    Article  Google Scholar 

  28. D.O.S. Melville, R.J, Blaikie, C.R. Wolf: Submicron imaging with a planar silver lens. Appl. Phys. Lett. 84(22), 4403–4405 (2004).

    Article  CAS  Google Scholar 

  29. D.R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S.A. Ramakrishna, J.B. Pendry: Limitations on subdiffraction imaging with a negative refractive index slab, Appl. Phys. Lett. 82(10), 1506–1508 (2003).

    Article  CAS  Google Scholar 

  30. L.E. Stillwagon, R.G. Larson: Leveling of thin-films over uneven substrates during spin coating, Phys. Fluids A-Fluid Dynam. 2(11), 1937–1944 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mark L. Brongersma Pieter G. Kik

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

ZHANG, X. et al. (2007). OPTICAL SUPERLENS. In: Brongersma, M.L., Kik, P.G. (eds) Surface Plasmon Nanophotonics. Springer Series in Optical Sciences, vol 131. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4333-8_8

Download citation

Publish with us

Policies and ethics