Skip to main content

LOCALIZED SURFACE PLASMONS FOR OPTICAL DATA STORAGE BEYOND THE DIFFRACTION LIMIT

  • Chapter
Surface Plasmon Nanophotonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 131))

Abstract

Optical data storage technology and its storage capacity have gradually been improved over the last two decades, especially thanks to the development of shorter-wavelength semiconductor laser units and high-precision optical lithography (mastering). Currently the available storage capacity is beyond 5 GB in a 12-cm disc for DVD, and a 25 GB disc drive system with a 405-nm blue laser unit is also available as blu-ray disc or HD-DVD. However, the storage capacity has almost reached the optical limit because of far-field diffraction. At the moment, there is no alternative way to improve the laser spot size to less than 300 nm using far-field optics, even with the most advanced optical disc technology employing a 405-nm wavelength and a lens numerical aperture (NA) of 0.85.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, C.H. Chang: Near-field magneto-optics and high density data storage, Appl. Phys. Lett. 61, 142 (1992).

    Article  CAS  Google Scholar 

  2. E. Betzig, S.G. Grubb, R.J. Chichester, D.J. DiGiovanni, J.S. Weiner: Fiber laser probe for near-field scanning optical microscopy, Appl. Phys. Lett. 63, 3550 (1993).

    Article  CAS  Google Scholar 

  3. B.D. Terris, H.J. Mamin, D. Rugar, W.R. Studenmund, G.S. Kino: Near-field optical data storage using a solid immersion lens, Appl. Phys. Lett. 65, (1994) 388.

    Article  Google Scholar 

  4. H. Ukita, Y. Katagiri, H. Nakada: Flying head read/write characteristics using a monolithically integrated laser diode/photodiode at a wavelength of 1.3 μm, SPIE 1499, 248 (1991).

    Article  CAS  Google Scholar 

  5. S.M. Mansfield, G.S. Kino: Solid immersion microscope, Appl. Phys. Lett. 57, 2615 (1990).

    Article  CAS  Google Scholar 

  6. I. Ichimura, S. Hayashi, G.S. Kino: High-density optical recording using a solid immersion lens, Appl. Opt. 36, 4339 (1997).

    Article  CAS  Google Scholar 

  7. J. Tominaga, T. Nakano, N. Atoda: An approach for recording and readout beyond the diffraction limit with an Sb thin film, Appl. Phys. Lett. 73, 2078 (1998).

    Article  CAS  Google Scholar 

  8. J. Tominaga, D.P. Tsai eds: Optical Nanotechnologies—The Nanipulation of Surface and Local Plasmons (Springer, Berlin, Heidelberg, 2003).

    Google Scholar 

  9. J.H. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, J. Tominaga: Technical Digest of Optical Data Storage 2003 (Vancouver, Canada, May 11–14, 2003), p. 24.

    Google Scholar 

  10. J. Tominaga, T. Nakano: Optical Near-Field Recording—Science and Technology (Springer, Berlin, Heidelberg, 2005).

    Google Scholar 

  11. T. Chattopadhyay et al: Neutron diffraction study on the structural phase transition in GeTe, J. Phys. C: Solid State Phys. 20, 1431 (1987).

    Article  CAS  Google Scholar 

  12. M.E. Lines, A.M. Glass: Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 1977).

    Google Scholar 

  13. T. Matsunaga, Y. Umetani, N. Yamada: Structural study of a Ag3.4ln3.7Sb76.4Te16.5 quadruple compound utilized for phase-change optical disks, Phy. Rev. B 64, 1184116 (2001).

    Google Scholar 

  14. J. Tominaga et al: Ferroelectric catastrophe: beyond nanometre-scale optical resolution, Nanotechnology 15, 411 (2004).

    Article  CAS  Google Scholar 

  15. V.M. Fridkin: Photoferroelectrics (Springer, Berlin, Heidelberg, 1979).

    Google Scholar 

  16. J. Tominaga et al.: The characteristics and the potential of super resolution near-field structure, Jpn. J. Appl. Phys. 39, 957 (2000).

    Article  CAS  Google Scholar 

  17. A. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga: Understanding the phase-change mechanism of rewritable optical media, Nat. Mater. 3, 703 (2004).

    Article  CAS  Google Scholar 

  18. R.E. Peierls: Quantum Theory of Solids (Calarendon Press, Oxford, 1955).

    Google Scholar 

  19. K. Seifert, J. Hafner, J. Furthmuller, G. Kresse: The influence of generalized gradient corrections to the LDA on predictions of structural phase stability: the Peierls distortion in As and Sb, J. Phys. Condens. Matter 7, 3683 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mark L. Brongersma Pieter G. Kik

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

TOMINAGA, J. (2007). LOCALIZED SURFACE PLASMONS FOR OPTICAL DATA STORAGE BEYOND THE DIFFRACTION LIMIT. In: Brongersma, M.L., Kik, P.G. (eds) Surface Plasmon Nanophotonics. Springer Series in Optical Sciences, vol 131. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4333-8_16

Download citation

Publish with us

Policies and ethics