Skip to main content

SENSING PROTEINS WITH ADAPTIVE METAL NANOSTRUCTURES

  • Chapter
  • 4444 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 131))

Abstract

Raman scattering spectra enable molecular “fingerprinting”, which is of particular interest for molecular sensing and bio-applications. Surface enhanced Raman scattering (SERS) provides greater detection sensitivity than conventional Raman spectroscopy, and it is quickly gaining traction in the study of biological molecules adsorbed on a metal surface. SERS spectroscopy allows for the detection and analysis of minute quantities of analytes because it is possible to obtain high-quality SERS spectra at sub-monolayer molecular coverage as a result of the large scattering enhancements. SERS has also been shown to be sensitive to molecular orientation and the distance of the molecule to the metal surface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Fleischmann, P.J. Hendra, A.J. McQuillan: Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26, 163–166 (1974).

    Article  CAS  Google Scholar 

  2. D.J. Jeanmaire, R.P. Van Duyne: Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem. 84, 1–20 (1977).

    Article  CAS  Google Scholar 

  3. M.G. Albrecht, J.A. Creighton: Anomalously intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc. 99, 5215–5217 (1977).

    Article  CAS  Google Scholar 

  4. T. Vo-Dinh: Surface-enhanced Raman spectroscopy using metallic nanostructures, Trends Anal. Chem. 17, 557–582 (1998).

    Article  CAS  Google Scholar 

  5. G. Bauer, N. Stich, T.G.M. Schalkhammer. In: Methods and Tools in Biosciences and Medicine: Analytical Biotechnology, ed by T.G.M. Schalkhammer (Birkhauser Verlag Basel, Switzerland, 2002).

    Google Scholar 

  6. M.S. Sibbald, G. Chumanov, T.M. Cotton: Reductive properties of iodide-modified silver nanoparticles, J. Electroanal. Chem. 438, 179–185 (1997).

    Article  CAS  Google Scholar 

  7. T. Vo-Dinh, D.L. Stokes, G.D. Griffin, M. Volkan, U.J. Kim, M.I. Simon: Surface-enhanced Raman scattering (SERS) method and instrumentation for genomics and biomedical analysis, J. Raman Spec. 30, 785–793 (1999).

    Article  CAS  Google Scholar 

  8. K.R. Brown, A.P. Fox, M.J. Natan: Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes, J. Am. Chem. Soc. 118, 1154–1157 (1996).

    Article  CAS  Google Scholar 

  9. K.E. Shafer-Peltier, C.L. Haynes, M.R. Glucksberg, R.P. Van Duyne: Toward a glucose biosensor based on surface-enhanced Raman scattering, J. Am. Chem. Soc. 125, 588–593 (2003).

    Article  CAS  Google Scholar 

  10. Y.W.C. Cao, R. Jin, C.A. Mirkin: Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science 297, 1536–1540 (2002).

    Article  CAS  Google Scholar 

  11. Y.C. Cao, R. Jin, J.M. Nam, C.S. Thaxton, C.A. Mirkin: Raman dye-labeled nanoparticle probes for proteins, J. Am. Chem. Soc. 125, 14676–14677 (2003).

    Article  CAS  Google Scholar 

  12. D.S. Grubisha, R.J. Lipert, H.Y. Park, J. Driskell, M.D. Porter: Femtomolar detection of prostate-specific antigen: An immunoassay based on surface-enhanced Raman scattering and immunogold labels, Anal. Chem. 75, 5936–5943 (2003).

    Article  CAS  Google Scholar 

  13. M. Moskovits: Surface-enhanced spectroscopy, Rev. Mod. Phys. 57, 783–826 (1985).

    Article  CAS  Google Scholar 

  14. M. Moskovits: Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals, J. Chem. Phys. 69, 4159–4161 (1978).

    Article  CAS  Google Scholar 

  15. C.Y. Chen, E. Burstein, S. Lundquist: Giant Raman scattering by pyridine and Cn-adsorbed on silver, Solid State Commun. 32, 63–66 (1979).

    Article  CAS  Google Scholar 

  16. S.L. McCall, P.M. Platzman, P.A. Wolff: Surface enhanced Raman scattering, Phys. Lett. 77A, 381–383 (1980).

    CAS  Google Scholar 

  17. C.Y. Chen, E. Burstein: Giant Raman scattering by molecules at metal island films, Phys. Rev. Lett. 45, 1287–1291 (1980).

    Article  CAS  Google Scholar 

  18. J.G. Bergman, D.S. Chemla, P.F. Liao, A.M. Glass, A. Pinczuk, R.M. Hart, D.H. Olson: Relationship between surface-enhanced Raman scattering and the dielectric properties of aggregated silver films, Opt. Lett. 6, 33–35 (1981).

    CAS  Google Scholar 

  19. D.A. Weitz, S. Garoff, T.J. Gramila: Excitation spectra of surface-enhanced Raman scattering on silver island films, Opt. Lett. 7, 168–170 (1982).

    CAS  Google Scholar 

  20. G. Ritchie, C.Y. Chen. In: Surface Enhanced Raman Scattering, ed by P.K. Chang, T.E. Furtak (Plenum, New York, 1982), p. 361.

    Google Scholar 

  21. G.C. Schatz. In: Fundamentals and Applications of Surface Raman Spectroscopy, ed by R.L. Garrell, J.E. Pemberton, T.M. Cotton (VCH Publishers, Deerfield Beach, FL, 1993).

    Google Scholar 

  22. M.I. Stockman, V.M. Shalaev, M. Moskovits, R. Botet, T.F. George: Enahnced Raman scattering by fractal clusters—scale invariant theory, Phys. Rev. B 46, 2821–2830 (1992).

    Article  Google Scholar 

  23. A. Otto: Raman-spectra of (CN)- adsorbed at a silver surface, Surf. Sci. 75, L392–L396 (1978).

    Article  CAS  Google Scholar 

  24. I. Pockrand, A. Otto: Coverage dependence of Raman scattering from pyridine adsorbed to silver-vacuum interfaces, Solid State Commun. 35, 861–865 (1980).

    Article  CAS  Google Scholar 

  25. B.N.J. Persson: On the theory of surface-enhanced Raman scattering, Chem. Phys. Lett. 82, 561–565 (1981).

    Article  CAS  Google Scholar 

  26. F.J. Adrian: Charge transfer effects in surface-enhanced Raman scattering, J. Chem. Phys. 77, 5302–5314 (1982).

    Article  CAS  Google Scholar 

  27. P.K.K. Pandey, G.C. Schatz: A detailed analysis of the Raman enhancement mechanisms associated with the interaction of a Raman scatterer with a resonant metal cluster: results for Lin–H2, J. Chem. Phys. 80, 2959–2972 (1984).

    Article  CAS  Google Scholar 

  28. J.R. Lombardi, R.L. Birke, T. Lu, J. Xu: Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions, J. Chem. Phys. 84, 4174–4180 (1986).

    Article  CAS  Google Scholar 

  29. A. Campion, P. Kambhampati: Surface-enhanced Raman scattering, Chem. Soc. Rev. 27, 241–250 (1998).

    Article  CAS  Google Scholar 

  30. S. Nie, S.R. Emory: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275, 1102–1106 (1997); Screening and enrichment of metal nanoparticles with novel optical properties, J. Phys. Chem. B 102, 493–497 (1998).

    Article  CAS  Google Scholar 

  31. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M. Feld: Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  CAS  Google Scholar 

  32. G.C. Schatz, R.P. Van Duyne. In: Handbook of Vibrational Spectroscopy, ed by J.M. Chalmers, R.P. Griffiths (Wiley, New York, 2002), pp. 759–744.

    Google Scholar 

  33. M.D. Musick, C.D. Keating, M.H. Keefe, M.J. Natan: Stepwise construction of conductive Au colloid multilayers from solution, Chem. Mater. 9, 1499–1501 (1997).

    Article  CAS  Google Scholar 

  34. A.M. Michaels, M. Nirmal, L.E. Brus: Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals, J. Am. Chem. Soc. 121, 9932–9939 (1999).

    Article  CAS  Google Scholar 

  35. C.L. Haynes, R.P. Van Duyne: Plasmon-sampled surface-enhanced Raman excitation spectroscopy, J. Phys. Chem. B 107, 7426–7433 (2003).

    Article  CAS  Google Scholar 

  36. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander: A hybridization model for the plasmon response of complex nanostructures, Science 302, 419–422 (2003).

    Article  CAS  Google Scholar 

  37. P. Gadenne, D. Gagnot, M. Masson: Surface enhanced resonant Raman scattering induced by silver thin films close to the percolation threshold, Physica A 241, 161–165 (1997).

    Article  CAS  Google Scholar 

  38. A.K. Sarychev, V.M. Shalaev: Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites, Phys. Rep. 335, 275–371 (2000).

    Article  CAS  Google Scholar 

  39. V.M. Shalaev: Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films, STMP v.158 (Springer, Heidelberg, 2000).

    Google Scholar 

  40. J.P. Davies, S.J. Pachuta, R.G. Cooks, M. Weaver: Surface-enhanced Raman-scattering from sputter-deposited silver surface, J. Anal. Chem. 58, 1290 (1986).

    Article  CAS  Google Scholar 

  41. V.L. Schlegel, T.M. Cotton: Silver island films as substrates for enhanced Raman-scattering—effect of deposition rate on intensity, Anal. Chem. 63, 241–247 (1991).

    Article  CAS  Google Scholar 

  42. R.P. Van Duyne, J.C. Hulteen, D.A. Treichel: Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass, J. Chem. Phys. 99, 2101–2115 (1993).

    Article  Google Scholar 

  43. E. Vogel, W. Kiefer, V. Deckert, D. Zeisel: Laser-deposited silver island films: an investigation of their structure, optical properties and SERS activity, J. Raman Spec. 29, 693–702 (1998).

    Article  CAS  Google Scholar 

  44. J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles, J. Chem. Phys. 116, 6755–6759 (2002).

    Article  CAS  Google Scholar 

  45. M. Kerker: Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids, Acc. Chem. Res. 17, 271–277 (1984).

    Article  CAS  Google Scholar 

  46. J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, C. Girard: Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles, Phys. Rev. Lett. 82, 2590–2593 (1999).

    Article  CAS  Google Scholar 

  47. E. Hao, G.C. Schatz: Electromagnetic fields around silver nanoparticles and dimmers, J. Chem. Phys. 120, 357–366 (2004).

    Article  CAS  Google Scholar 

  48. D.P. Fromm, A. Sundaramurthy, P.J. Schuck, G. Kino, W.E. Moerner: Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible, Nano Lett., 4, 957–961 (2004).

    Article  CAS  Google Scholar 

  49. V.P. Drachev, M.D. Thoreson, E.N. Khaliullin, V.J. Davisson, V.M. Shalaev: Surface-enhanced Raman difference between human insulin and insulin lispro detected with adaptive nanostructures, J. Phys. Chem. A, 108, 18046–18052 (2004).

    CAS  Google Scholar 

  50. V.P. Drachev, M.D. Thoreson, E.N. Khaliullin, A.K. Sarychev, D. Zhang, D. Ben-Amotz, V.M. Shalaev: Semicontinuous silver films for protein sensing with SERS, SPIE Proc., 5221, 76–81 (2003).

    Article  CAS  Google Scholar 

  51. V.P. Drachev, V.C. Nashine, M.D. Thoreson, D. Ben-Amotz, V.J. Davisson, V.M. Shalaev: Adaptive silver films for detection of antibody-antigen binding, Langmuir, 21(18), 8368–8373 (2005).

    Article  CAS  Google Scholar 

  52. V.P. Drachev, M.D. Thoreson, V.C. Nashine, E.N. Khaliullin, D. Ben-Amotz, V.J. Davisson, V.M. Shalaev: Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules, J. Raman Spectrose, 36(6–7), 648–656 (2005).

    Article  CAS  Google Scholar 

  53. V.P. Drachev, M.L. Narasimhan, H.-K. Yuan, M.D. Thoreson, Y. Xie, V.J. Davisson, V.M. Shalaev: Adaptive silver films towards bio-array applications, SPIE Proc., 5703, 13 (2005).

    Google Scholar 

  54. P.B. Johnson, R.W. Christy: Optical constants of the noble metals, Phys. Rev. B 6, 4370–4379 (1972).

    Article  CAS  Google Scholar 

  55. C. Kittel: Introduction to Solid State Physics (Wiley, New York, 1995).

    Google Scholar 

  56. D.A. Genov, A.K. Sarychev, V.M. Shalaev: Surface plasmons excitation in semicontinuous metal films. In: Progress in Condensed Matter Physics, ed by F. Columbus (Nova Science Publishers, Hauppauge, New York, 2005).

    Google Scholar 

  57. L. Eckertova: Physics of Thin Films (Plenum Press, New York and London, 1977).

    Google Scholar 

  58. V.P. Drachev, S.V. Perminov, S.G. Rautian, V.P. Safonov. In: Optical Properties of Nanostructured Random Media, Topics in Applied Physics v. 82, ed by V.M. Shalaev (Springer Verlag, Berlin, 2001), pp. 113–148.

    Google Scholar 

  59. A.M. Michaels, J.J. Jiang, L.E. Brus: Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules, J. Phys. Chem. B 104, 11965–11971 (2000).

    Article  CAS  Google Scholar 

  60. S. Holzapfel, W. Akemann, D. Schummacher, A. Otto: Variations of dc-resistance and SERS intensity during exposure of cold-deposited silver films, Surf Sci. 227, 123–128 (1990).

    Article  CAS  Google Scholar 

  61. W.R. Holland, D.G. Hall: Frequency shifts of an electric dipole resonance near a conducting surface, Phys. Rev. Lett. 52, 1041–1044 (1984).

    Article  CAS  Google Scholar 

  62. A. Leitner, Z. Zhao, H. Brunner, F.R. Aussenegg, A. Wokaun: Optical properties of a metal island film close to a smooth metal surface, Appl. Opt. 32, 102–110 (1993).

    Article  CAS  Google Scholar 

  63. H.R. Stuart, D.G. Hall: Enhanced dipole–dipole interaction between elementary radiators near a surface, Phys. Rev. Lett. 80, 5663–5666 (1998).

    Article  CAS  Google Scholar 

  64. N.-T. Yu, C.S. Liu: Laser Raman spectra of native and denatured insulin in the solid state, J. Am. Chem. Soc. 94, 3250–3251 (1972.).

    Article  CAS  Google Scholar 

  65. N.-T. Yu, C.S. Liu, D.C O'Shea: Laser Raman spectroscopy and the conformation of insulin and proinsulin, J. Mol. Biol. 70, 117–132 (1972).

    Article  CAS  Google Scholar 

  66. N.-T. Yu, B.H. Jo, R.C.C. Chang, J.D. Huber: Single-crystal Raman spectra of native insulin: structures of insulin fibrils, glucagon fibrils, and intact calf lens, Arch. Biochem. Biophys. 160, 614–622 (1974).

    Article  CAS  Google Scholar 

  67. D. Ferrari, J.R. Diers, D.F. Bocian, N.C. Kaarsholm, M.F. Dunn: Raman signature of ligand binding and allosteric conformation change in hexameric insulin, Biopolymers (Biospectroscopy), 62, 249–260 (2001).

    Article  CAS  Google Scholar 

  68. T.-J. Yu, J.L. Lippert, W.L. Peticolas: Laser Raman studies of conformational variations of poly-l-lysine, Biopolymers 12, 2161–2176 (1973).

    Article  CAS  Google Scholar 

  69. M.C. Chen, R.C. Lord, R. Mendelson: Laser-excited Raman spectroscopy of biomolecules 4: thermal denaturation of aqueous lysozyme, Biochem. Biophys. Acta 328, 252–260 (1973).

    CAS  Google Scholar 

  70. B.G. Frushour, J.L. Koenig: Raman spectroscopy study of tropomyosin denaturation, Biopolymers 13, 1809–1819 (1974).

    Article  CAS  Google Scholar 

  71. M.C. Chen, R.C. Lord, R. Mendelson: Laser-excited Raman spectroscopy of biomolecules 5: conformational changes associated with chemical denaturation of lysozyme, J. Am. Chem. Soc. 96, 3038–3042 (1976).

    Article  Google Scholar 

  72. E. Ciszak, J.M. Beals, B.H. Frank, J.C. Baker, N.D. Carter, G.D. Smith: Role of C-terminal B-chain residues in insulin assembly: the structure of hexameric LysB28ProB29- human insulin, Structure 3, 615–622 (1995).

    Article  CAS  Google Scholar 

  73. R. Callender, H. Deng, R. Gilmanshin: Raman difference studies of protein structure and folding, enzymatic catalysis and ligand binding, J. Raman Spec. 29, 15–21 (1998).

    Article  CAS  Google Scholar 

  74. S. Gutcho, L. Mansbach: Simultaneous radioassay of serum vitamin-B12 and folic acid, Clin. Chem. 23, 1609–1614 (1977).

    CAS  Google Scholar 

  75. F.J. Hayes, H.B. Halsall, W.R. Heineman: Simultaneous immunoassay using electrochemical detection of metal-ion labels, Anal. Chem. 66, 1860–1865 (1994).

    Article  CAS  Google Scholar 

  76. J.E. Butler: Enzyme-linked immunosorbent assay, J. Immunoassay 21, 165–209 (2000).

    Article  CAS  Google Scholar 

  77. J. Vuori, S. Rasi, T. Takala, K. Vaananen: Dual-label time-resolved fluoroimmunoassay for simultaneous detection of myoglobin and carbonic acnhydrase-III in serum, Clin. Chem. 37, 2087–2092 (1991).

    CAS  Google Scholar 

  78. Y.Y. Xu, K. Pettersson, K. Blomberg, I. Hemmila, H. Mikola, T. Lovgren: Simultaneous quadruple-label fluorometric immunoassay of thyroid-stimulating hormone, 17-alpha-hydroxyprogresterone, immunoreactive trypsin, and creatine-kinase MM isoenzyme in dried blood spots, Clin. Chem. 38, 2038–2043 (1992).

    CAS  Google Scholar 

  79. C.R. Brown, K.W. Higgins, K. Frazer, L.K. Schoelz, J.W. Dyminski, V.A. Marinkovich, S.P. Miller, J.F. Burd: Simultaneous determination of total IgE and allergen-specific IgE in serum by the MAST chemi-luminescent assay system, Clin. Chem. 31, 1500–1505 (1985).

    CAS  Google Scholar 

  80. D.A. Genov, A.K. Sarychev, V.M. Shalaev, A. Wei: Resonant field enhancement from metal nanoparticle arrays, Nano Lett., 4, NL-0343710 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mark L. Brongersma Pieter G. Kik

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

DRACHEV, V.P., THORESON, M.D., SHALAEV, V.M. (2007). SENSING PROTEINS WITH ADAPTIVE METAL NANOSTRUCTURES. In: Brongersma, M.L., Kik, P.G. (eds) Surface Plasmon Nanophotonics. Springer Series in Optical Sciences, vol 131. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4333-8_14

Download citation

Publish with us

Policies and ethics