Advertisement

Accessory Chlorophyll Proteins in Cyanobacterial Photosystem I

  • James Barber
  • Jon Nield
  • James Duncan
  • Thomas S. Bibby
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 24)

Abstract

The IsiA protein accumulates in many cyanobacteria under conditions of iron starvation. It is a Chl a-binding protein, which is closely related to the six-transmembrane α-helical antenna family typified by CP43 of PS II. One of its functions is to provide an efficient accessory light harvesting system for Photosystem I (PS I) by forming a ring of 18 IsiA subunits around the trimeric reaction center core. This response is probably to compensate for a drop in the PS I level relative to Photosystem II (PS II) and, the level of phycobiliproteins, in response to iron deficiency. A similar accessory light harvesting system for PS I has been shown to occur in cyanobacteria that do not contain phycobiliproteins, often termed prochlorophytes. This light harvesting system is composed of Pcb proteins that are closely related to IsiA but bind Chl b as well as Chl a. Unlike IsiA, Pcb proteins can also provide accessory light harvesting systems for PS II. Some cyanobacteria contain phycobiliproteins and Pcb proteins, where both are able to function as light harvesting systems. In one case the Pcb protein seems to bind only Chl a (Fischerella muscicola) while in another they bind Chl a (Acaryochloris marina). Sequence analysis indicates that the IsiA/Pcb proteins have very similar pigment binding sites to those of CP43 and to a lesser extent to the other reaction center proteins of this family and have the capacity to accommodate several different forms of Chl. The six-transmembrane α-helical Chl-binding proteins, of which IsiA and Pcb are members, seem to have evolved from a basic evolutionary building block providing both internal and accessory light harvesting systems for a wide range of photosynthetic organisms.

Keywords

Antenna Ring isiA Gene Prochlorococcus Marinus pcbC Gene Accessory Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrizhiyevskaya EG, Schwabe TM, Germano M, D’Haene S, Kruip J, van Grondelle R and Dekker JP (2002) Spectroscopic properties of PS I–IsiA supercomplexes from the cyanobacterium Synechococcus PCC 7942. Biochim Biophys Acta 1556: 265–272PubMedCrossRefGoogle Scholar
  2. Andrizhiyevskaya EG, Frolov D, Van Grondelle R and Dekker JP (2004) Energy transfer and trapping in the Photosystem I complex of Synechococcus PCC 7942 and in its supercomplex with IsiA. Biochim Biophys Acta 1656: 104–113PubMedCrossRefGoogle Scholar
  3. Arnon DI (1995) Unconventional pathways of photosynthetic electron transport: the autonomous oxygenic and anoxygenic photosystems. In Barber J, Medrano H and Guerrero MC (eds) Trends in Photosynthesis Research, pp 47–71. Intercept Limited, UKGoogle Scholar
  4. Aspinwall CL, Duncan J, Bibby T, Mullineaux CW and Barber J (2004) The trimeric organisation of photosystem I is not necessary for the iron-stress induced CP43′ protein to functionally associate with this reaction centre. FEBS Lett 574: 126–130PubMedCrossRefGoogle Scholar
  5. Behrenfeld MJ and Kolber SZ (1999) Widespread iron limitation of phytoplankton in the South Pacific Ocean. Science 283: 840–843PubMedCrossRefGoogle Scholar
  6. Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635PubMedCrossRefGoogle Scholar
  7. Ben-Shem A, Frolow F and Nelson N (2004) Evolution of photosystem I –from symmetry through pseudo-symmetry to asymmetry. FEBS Lett 564: 274–280PubMedCrossRefGoogle Scholar
  8. Bibby TS, Nield J and Barber J (2001a) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412: 743–745CrossRefGoogle Scholar
  9. Bibby TS, Nield J and Barber J (2001b) Three-dimensional model and characterization of the iron stress-induced CP43′–photosystem I supercomplex isolated from the cyanobacterium Synechocystis PCC 6803. J Biol Chem 276: 43246–43252CrossRefGoogle Scholar
  10. Bibby TS, Nield J, Partensky F and Barber J (2001c) Oxyphotobacteria. Antenna ring around photosystem I. Nature 413: 590CrossRefGoogle Scholar
  11. Bibby TS, Mary I, Nield J, Partensky F and Barber J (2003a) Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424: 1051–1054CrossRefGoogle Scholar
  12. Bibby TS, Nield J, Chen M, Larkum AW and Barber J (2003b) Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc Natl Acad Sci USA 100: 9050–9054CrossRefGoogle Scholar
  13. Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel KP, Pistorius EK and Kruip J (2001) A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745–748PubMedCrossRefGoogle Scholar
  14. Bullerjahn GS, Matthijs HC, Mur LR and Sherman LA (1987) Chlorophyll–protein composition of the thylakoid membrane from Prochlorothrix hollandica, a prokaryote containing chlorophyll b. Eur J Biochem 168: 295–300PubMedCrossRefGoogle Scholar
  15. Bullerjahn GS, Jensen TC, Sherman DM and Sherman LA (1990) Immunological characterization of the Prochlorothrix hollandica and Prochloron sp. chlorophyll a/b antenna proteins. FEMS Microbiol Lett 55: 99–105PubMedCrossRefGoogle Scholar
  16. Burger-Wiersma T and Post AF (1989) Functional analysis of the photosynthetic apparatus of Prochlorothrix hollandica (Prochlorales), a chlorophyll b containing prokaryote. Plant Physiol 91: 770–774PubMedGoogle Scholar
  17. Burger-Wiersma T, Veenhuis M, Korthals HJ, van der Weil CCM and Mur LR (1986) A new prokaryote containing chlorophylls a and b. Nature 320: 262–264CrossRefGoogle Scholar
  18. Burnap RL, Troyan T and Sherman LA (1993) The highly abundant chlorophyll–protein complex of iron-deficient Synechococcus sp. PCC 7942 (CP43′) is encoded by the isiA gene. Plant Physiol 103: 893–902PubMedCrossRefGoogle Scholar
  19. Byrdin M, Jordan P, Krauß N, Fromme P, Stehlik D and Schlodder E (2002) Light harvesting in photosystem I: modeling based on the 2.5Å structure of photosystem I from Synechococcus elongatus. Biophys J 83: 433–457PubMedGoogle Scholar
  20. Chen M, Bibby TS, Nield J, Larkum AW and Barber J (2005a) Iron deficiency induces a chlorophyll d-binding Pcb antenna around photosystem I in Acaryochloris marina. Biochim Biophys Acta 1708: 367–374CrossRefGoogle Scholar
  21. Chen M, Bibby TS, Nield J, Larkum AW and Barber J (2005b) Structure of a large photosystem II supercomplex from Acaryochloris marina. FEBS Lett 579: 1306–1310CrossRefGoogle Scholar
  22. Chen M, Quinnell RG and Larkum AW (2002). The major light-harvesting pigment protein of Acaryochloris marina. FEBS Lett 514: 149–152PubMedCrossRefGoogle Scholar
  23. Chen M, Hiller RG, Howe CJ and Larkum AW (2004) Unique origin and lateral transfer of prokaryotic chlorophyll-b and chlorophyll-d light-harvesting systems. Mol Biol Evol, 22: 21–28PubMedCrossRefGoogle Scholar
  24. Chisholm SW, Olsen RJ, Zettler ER, Waterbury JB, Goericke R and Welschmeyer N (1988) A novel free living prochlorophyte abundant in the oceanic euphotic zone. Nature 334: 340–343CrossRefGoogle Scholar
  25. Chitnis VP and Chitnis PR (1993) PsaL subunit is required for the formation of photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 336: 330–334PubMedCrossRefGoogle Scholar
  26. de Baar HJW, de Jong JTM, Bakker DCE, Loscher BM, Veth C, Bathmann UV and Smetacek V (1995) Importance of iron for plankton blooms and carbon dioxide drawdown in the southern ocean. Nature 373: 412–415CrossRefGoogle Scholar
  27. De Las Rivas J and Barber J (2004) Analysis of the structure of the PsbO protein and its implications. Photosynth Res 81: 329–343PubMedCrossRefGoogle Scholar
  28. Duncan J and Barber J (2004) Isolation and structural analysis of the photosynthetic antenna complexes in the cyanobacterium Fischerella muscicola PCC 73103, In: Photosynthesis, Fundamental Aspects to Global Perspectives, Eds. D. Bruce and A. van der Est, Allen Press, Lawrence KS (2005) vol 1, pp. 146–148Google Scholar
  29. Duncan J, Bibby T, Tanaka A and Barber J (2003) Exploring the ability of chlorophyll b to bind to the CP43′ protein induced under iron deprivation in a mutant of Synechocystis PCC 6803 containing the cao gene. FEBS Lett 541: 171–175PubMedCrossRefGoogle Scholar
  30. Ernst A, Becker S, Wollenzien UI and Postius C (2003) Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology 149: 217–228PubMedCrossRefGoogle Scholar
  31. Falkowski PG, Barber RT and Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281: 200–206PubMedCrossRefGoogle Scholar
  32. Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838PubMedCrossRefGoogle Scholar
  33. Fitzgerald MP, Husain A, Hutber GN and Rogers LJ (1977) Studies on the flavodoxins from a cyanobacterium and a red alga. Biochem Soc Trans 5: 1505–1506PubMedGoogle Scholar
  34. Foss P, Lewin RA and Liaaen-Jensen S (1987) The carotenoids of Prochloron sp. (Prochlorophyta). Phycologia 26: 142–144Google Scholar
  35. Garczarek L, van der Staay G, Thomas JC and Partensky F (1998) Isolation and characterisation of photosystem I from two strains of the marine oxychlorobacterium Prochlorococcus. Photosynth Res 56: 131–141CrossRefGoogle Scholar
  36. Geiss U, Vinnemeier J, Schoor A and Hagemann M (2001) The iron-regulated isiA gene of Fischerella muscicola strain PCC 73103 is linked to a likewise regulated gene encoding a Pcb-like chlorophyll-binding protein. FEMS Microbiol Lett 197: 123–129PubMedCrossRefGoogle Scholar
  37. Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 14: 47–77PubMedCrossRefGoogle Scholar
  38. Goericke R and Repeta DL (1992) The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine prokaryote. Limnol Oceanogr 37: 425–433CrossRefGoogle Scholar
  39. Green B and Durnford D (1996) The chlorophyll carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685–714PubMedCrossRefGoogle Scholar
  40. Grossman AR, Bhaya D, Apt KE and Kehoe DM (1995) Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu Rev Genet 29: 231–288PubMedCrossRefGoogle Scholar
  41. Guikema JA and Sherman LA (1983) Organisation and function of chlorophyll in membranes of cyanobacteria during iron starvation. Plant Physiol 73: 250–256PubMedGoogle Scholar
  42. Guikema JA and Sherman LA (1984) Influence of iron deprivation on the membrane composition of Anacystis nidulans. Plant Physiol 74: 90–95PubMedGoogle Scholar
  43. Hess WR, Partensky F, van der Staay GW, Garcia-Fernandez JM, Borner T and Vaulot D (1996) Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proc Natl Acad Sci USA 93: 11126–11130PubMedCrossRefGoogle Scholar
  44. Hiller RG and Larkum AWD (1985) Chlorophyll–protein complexes of Prochloron (Prochlorophyta). Biochim Biophys Acta 806: 107–115CrossRefGoogle Scholar
  45. Hu Q, Miyashita H, Iwasaki II, Kurano N, Miyachi S, Iwaki M and Itoh S (1998a) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95: 13319–13323CrossRefGoogle Scholar
  46. Hu Q, Ishikawa T, Inoue Y, Iwasaki II, Miyashita H, Kurano N, Miyachi S, Iwaki M, Itoh S, Marquardt J and Morschel E (1998b) Heterogeneity of chlorophyll d-binding photosystem I reaction centers from the photosynthetic prochlorophyte Acaryochloris marina. In: Garab G (ed) Photosynthesis: Mechanism and Effects. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  47. Itoh S, Iwaki M, Noguti T, Kamamori A and Mino H (2001) Photosystem I and II reaction centers of a new oxygenic organism Acaryochloris marina that use chlorophyll d. In: PS2001 Proceedings: 12th International Congress on Photosynthesis. CSIRO Publishing, Melbourne, Australia, S6-28-30Google Scholar
  48. Jeanjean R, Zuther E, Yeremenko N, Havaux M, Matthijs HC and Hagemann M (2003) A photosystem 1 psaFJ-null mutant of the cyanobacterium Synechocystis PCC 6803 expresses the isiAB operon under iron replete conditions. FEBS Lett 549: 52–56PubMedCrossRefGoogle Scholar
  49. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  50. Kamiya N and Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7 Å resolution. Proc Natl Acad Sci USA 100: 98–103PubMedCrossRefGoogle Scholar
  51. Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M and Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8: 205–213PubMedCrossRefGoogle Scholar
  52. Kouril R, Yeremenko N, D’Haene S, Yakushevska AE, Keegstra W, Matthijs HC, Dekker JP and Boekema EJ (2003) Photosystem I trimers from Synechocystis PCC 6803 lacking the PsaF and PsaJ subunits bind an IsiA ring of 17 units. Biochim Biophys Acta 1607: 1–4PubMedCrossRefGoogle Scholar
  53. Larkum AW, Scaramuzzi C, Cox GC, Hiller RG and Turner AG (1994) Light-harvesting chlorophyll c-like pigment in Prochloron. Proc Natl Acad Sci USA 91: 679–683PubMedCrossRefGoogle Scholar
  54. La Roche J, van der Staay G, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench P, Larkum AW and Green B (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light harvesting proteins. Proc Natl Acad Sci USA 93: 15244–15248PubMedCrossRefGoogle Scholar
  55. Laudenbach DE, Reith ME and Straus N (1988) Isolation, sequence analysis and transcriptional studies of the flavodoxin gene from Anacystis nidulans R2. J Bacteriol 170: 258–265PubMedGoogle Scholar
  56. Lewin RA (1975) A marine Synechocystis (Cyanophyta, Chlorococcales) epizoic on ascidians. Phycologia 14: 153–169Google Scholar
  57. Lewin RA (1976) Prochlorophyta. A proposed new division of algae. Nature 261: 697–698PubMedCrossRefGoogle Scholar
  58. Lewin RA (1977) Prochloron, type genus of the Prochlorophyta. Phycologia 16: 217Google Scholar
  59. Lewin RA (1984) Prochloron –a status report. Phycologia 23: 203–208PubMedGoogle Scholar
  60. Lewin RA and Withers NW (1975) Extraordinary pigment composition of a prokaryotic alga. Nature 256: 735–737CrossRefGoogle Scholar
  61. Marquardt J and Morschel E (1999) The photosynthetic apparatus of Prochloron-like cyanobacteria. In: Argyroudi-Akoyunoglou JH and Senger H (eds) The Chloroplast: From Molecular Biology to Biotechnology, pp 41–46. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  62. Marquardt J, Senger H, Miyashita H, Miyachi S and Morschel E (1997) Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d. FEBS Lett 410: 428–432PubMedCrossRefGoogle Scholar
  63. Marquardt J, Morschel E, Rhiel E and Westermann M (2000) Ultrastructure of Acaryochloris marina, an oxyphotobacterium containing mainly chlorophyll d. Arch Microbiol 174: 181–188PubMedCrossRefGoogle Scholar
  64. Martin JH, Coale KH, Johnson KS, Fitzwater SE, Gordan RM, Tanner SJ, Hunter CN, Elrod VA, Nowicki JL, Coley TL, Barber RT, Lindley S, Watson CJ, Van Scoy K, Law CA, Liddicoat MI, Ling R, Stanton T, Stockel J, Collings C, Anderson A, Bidigare R, Ondrusek M, Tatasa M, Millero FJ, Lee K, Yao W, Zhang JZ, Friederich G, Sakamoto C, Chavez F, Buck K, Kolber Z, Green R, Falkowski P, Chisholm SW, Hoge F, Swift R, Yungel J, Turner S, Nightingale P, Hatton A, Liss P and Tindale NW (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific. Nature 371: 123CrossRefGoogle Scholar
  65. Matthijs HC, van der Staay G, van Amerongen H, van Grondelle R and Garab G (1989) Structural organization of chlorophyll b in the prochlorophyte Prochlorothrix hollandica: lack of chlorophyll b eximer circular dichroism bands. Biochim Biophys Acta 975: 185–187CrossRefGoogle Scholar
  66. Matthijs HC, van der Staay G and Mar LR (1994) Prochlorophytes: the ‘other’ cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  67. Melkozernov AN, Bibby TS, Lin S, Barber J and Blankenship RE (2003) Time-resolved absorption and emission show that the CP43′ antenna ring of iron-stressed Synechocystis sp. PCC 6803 is efficiently coupled to the photosystem I reaction center core. Biochemistry 42: 3893–3903PubMedCrossRefGoogle Scholar
  68. Michel KP and Pistorius EK (2004) Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: the function of IdiA and IsiA. Physiol Planta 120: 36–50CrossRefGoogle Scholar
  69. Mimuro M, Akimoto S, Yamazaki I, Miyashita H and Miyachi S (1999) Fluorescence properties of chlorophyll d-dominating prokaryotic alga, Acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta 1412: 37–46PubMedCrossRefGoogle Scholar
  70. Mimuro M, Akimoto S, Gotoh T, Yokono M, Akiyama M, Tsuchiya T, Miyashita H, Kobayashi M and Yamazaki I (2004) Identification of the primary electron donor in PSII of the Chl d-dominated cyanobacterium Acaryochloris marina. FEBS Lett 556: 95–98PubMedCrossRefGoogle Scholar
  71. Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M and Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383: 402CrossRefGoogle Scholar
  72. Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M and Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38: 274–281Google Scholar
  73. Mulkidjanian AY and Junge W (1997) On the origin of photosynthesis as inferred from sequence analysis –a primordial UV-protector as common ancestor of reaction centres and antenna proteins. Photosynth Res 51: 27–42CrossRefGoogle Scholar
  74. Mullineaux CW (1994) Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterial mutant lacking photosystem II. Biochim Biophys Acta 1185: 71–77Google Scholar
  75. Murakami A, Miyashita H, Iseki M, Adachi K and Mimuro M (2004) Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303: 1633PubMedCrossRefGoogle Scholar
  76. Newcomb EH and Pugh TD (1975) Blue-green algae associated with ascidians of the Great Barrier Reef. Nature 253: 533–534CrossRefGoogle Scholar
  77. Nield J, Morris EP, Bibby TS and Barber J (2003) Structural analysis of the photosystem I supercomplex of cyanobacteria induced by iron deficiency. Biochemistry 42: 3180–3188PubMedCrossRefGoogle Scholar
  78. Nogi T and Miki K (2001) Structural basis of bacterial photosynthetic reaction centers. J Bacteriol (Tokyo) 130: 319–329Google Scholar
  79. Omata T, Okada M and Murata N (1985) Separation and partial characterization of membranes from Prochloron sp. Plant Cell Physiol. 26: 579–584Google Scholar
  80. Öquist G (1971) Changes in pigment composition and photosynthesis induced by iron-deficiency in the blue-green alga Anacystis nidulans. Physiol Plant 25: 188–191CrossRefGoogle Scholar
  81. Öquist G (1974a) Iron deficiency in the blue-green alga Anacyctis nidulans: changes in pigmentation and photosynthesis. Physiol Plant 30: 30–37CrossRefGoogle Scholar
  82. Öquist G (1974b) Iron deficiency in the blue-green alga Anacystis nidulans: fluorescence and absorption spectra recorded at 77 K. Physiol Plant 31: 55–58CrossRefGoogle Scholar
  83. Pakrasi HB, Goldenberg A and Sherman LM (1985a) Membrane development in the cyanobacterium Anacystis nidulans, during recovery from iron-starvation. Plant Physiol 79: 290–295CrossRefGoogle Scholar
  84. Pakrasi HB, Riethman HC and Sherman LA (1985b) Organisation of pigment proteins in the photosystem II complex of the cyanobacterium Anacystis nidulans R2. Proc Natl Acad Sci USA 82: 6903–6907CrossRefGoogle Scholar
  85. Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufrense A, Partensky F, Webb EA and Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424: 1037–1042PubMedCrossRefGoogle Scholar
  86. Park YI, Sandstrom S, Gustafsson P and Oquist G (1999) Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC 7942 by protecting photosystem II from excess light under iron limitation. Mol Microbiol 32: 123–129PubMedCrossRefGoogle Scholar
  87. Partensky F and Garczarek L (2003) The photosynthetic apparatus of Chlorophyll b- and d-containing oxychlorobacteria. In: Larkum AW, Douglas SE and Raven JA (eds) Photosynthesis in Algae, pp 29–62. Kluwer Academic Publisher, The NetherlandsGoogle Scholar
  88. Partensky F, Hess WR and Vaulot D (1999) Prochlorococcus. A marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63: 106–127PubMedGoogle Scholar
  89. Pearl HW, Lewin RA and Cheng L (1984) Variations in chlorophyll and carotenoid pigmentation among Prochloron (Prochlorophyta) symbionts in diverse marine ascidians. Bot Mar 27: 257–264CrossRefGoogle Scholar
  90. Post AF and Bullerjahn GS (1994) The photosynthetic machinery of prochlorophytes: structural properties and ecological significance. FEMS Microbiol Rev 13: 393–414CrossRefGoogle Scholar
  91. Post AF, Ohad I, Milbauer KM and Bullerjahn GS (1993) Energy distribution between PSI and PSII in the photosynthetic prokaryote Prochlorothrix hollandica involves a chlorophyll a/b antenna associated with PSI. Biochim Biophys Acta 1144: 374–384CrossRefGoogle Scholar
  92. Rhee KH, Morris EP, Barber J and Kuhlbrandt W (1998) Three-dimensional structure of the plant photosystem II reaction centre at 8 Å resolution. Nature 396: 283–286PubMedCrossRefGoogle Scholar
  93. Riethman HC and Sherman LA (1988) Purification and characterisation of an iron stressed-induced chlorophyll–protein from the cyanobacterium Anacystis nidulans R2. Biochim Biophys Acta 935: 141–151PubMedCrossRefGoogle Scholar
  94. Ruprecht J and Nield J (2001) Determining the structure of biological macromolecules by transmission electron microscopy, single particle analysis and 3D reconstruction. Prog Biophys Mol Biol 75: 121–164PubMedCrossRefGoogle Scholar
  95. Sandström S, Park YI, Öquist G and Gustafsson P (2001) CP43′, the isiA gene product, functions as an excitation energy dissipator in the cyanobacterium Synechococcus sp. PCC 7942. Photochem Photobiol 74: 431–437PubMedCrossRefGoogle Scholar
  96. Satoh S, Ikeuchi M, Mimuro M and Tanaka A (2001) Chlorophyll b expressed in Cyanobacteria functions as a light-harvesting antenna in photosystem I through flexibility of the proteins. J Biol Chem 276: 4293–4297PubMedCrossRefGoogle Scholar
  97. Schreiber U, Gademann R, Ralph PJ and Larkum AW (1997) Assessment of photosynthetic performance of Prochloron in Lissoclinum patella by in situ and in hospite chlorophyll fluorescence measurements. Plant Cell Physiol 38: 945–951Google Scholar
  98. Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P and Krauß N (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J Mol Biol 280: 297–314PubMedCrossRefGoogle Scholar
  99. Schuster G, Owens CG, Cohen Y and Ohad I (1984) Thylakoid polypeptide composition and light independent phosphorylation of chlorophyll a,b protein in Prochloron, a prochlorophyte exhibiting oxygenic photosynthesis. Biochim Biophys Acta 767: 596–605CrossRefGoogle Scholar
  100. Sétif P (2001) Ferredoxin and flavodoxin reduction by photosystem I. Biochim Biophys Acta 1507: 161–179PubMedCrossRefGoogle Scholar
  101. Sherman DM and Sherman LA (1983) Effect of iron deficiency and iron restoration on ultrastructure of Anacystis nidulans. J Bacteriol 156: 393–401PubMedGoogle Scholar
  102. Steglich C, Mullineaux CW, Teuchner K, Hess WR and Lokstein H (2003) Photophysical properties of Prochlorococcus marinus SS120 divinyl chlorophylls and phycoerythrin in vitro and in vivo. FEBS Lett 553: 79–84PubMedCrossRefGoogle Scholar
  103. Straus N (1994) Iron deprivation: physiology and gene regulation. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 731–750. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  104. Tetenkin VL, Golitsin VM and Gulyaev BA (1998) Stress protein of cyanobacteria CP36: interaction with photoactive complexes and formation of supermolecular structures. Biochemistry (Moscow) 63: 584–591Google Scholar
  105. Turner S, Pryer KM, Miao VPW and Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46: 327–338PubMedCrossRefGoogle Scholar
  106. Ting CS, Rocap G, King J and Chisholm SW (2002). Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol 10: 134–142PubMedCrossRefGoogle Scholar
  107. van der Staay GW (1992) Functional localization and properties of the chlorophyll b-binding prochlorophyte Prochlorothrix hollandica. PhD Thesis. Universiteit van AmsterdamGoogle Scholar
  108. van der Staay GW and Staehelin LA (1994). Biochemical characterization of protein composition and protein phosphorylation patterns in stacked and unstacked thylakoid membranes of the prochlorophyte Prochlorothrix hollandica. J Biol Chem 269: 24834–24844PubMedGoogle Scholar
  109. van der Staay GW, Yorkova N and Green B (1998) The 38 kDa chlorophyll a/b protein of the prochlorophyte Prochlorothrix hollandica is encoded by a divergent pcb gene. Plant Mol Biol 36: 709–716PubMedCrossRefGoogle Scholar
  110. Walsby AE (1986) Prochlorophytes: origin of chloroplasts. Nature 320: 212CrossRefGoogle Scholar
  111. Withers NW, Alberte RS, Lewin RA, Thornber P, Britton G and Goodwin TW (1978) Photosynthetic unit size, carotenoids, and chlorophyll–protein composition of Prochloron sp., a prokaryotic green alga. Proc Natl Acad Sci USA 75: 2301–2305PubMedCrossRefGoogle Scholar
  112. Wolfe GR, Cunningham D, Durnford D, Green B and Gantt E (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367: 566–568CrossRefGoogle Scholar
  113. Yeremenko N, Kouril R, Ihalainen JA, D’Haene S, van Oosterwijk N, Andrizhiyevskaya EG, Keegstra W, Dekker HL, Hagemann M, Boekema EJ, Matthijs HCP and Dekker JP (2004) Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria. Biochemistry 43: 10308–10313PubMedCrossRefGoogle Scholar
  114. Zouni A, Witt HT, Kern J, Fromme P, Krauß N, Saenger W and Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–774PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • James Barber
    • 1
  • Jon Nield
    • 1
  • James Duncan
    • 1
  • Thomas S. Bibby
    • 2
  1. 1.Wolfson Laboratories, Division of Molecular Biosciences, S. Kensington CampusImperial College LondonLondonUK
  2. 2.National Oceanographic CentreUniversity of SouthamptonUK

Personalised recommendations