Advertisement

Molecular Interactions of the Stromal Subunit PsaC with the PsaA/PsaB Heterodimer

  • Mikhail L. Antonkine
  • John H. Golbeck
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 24)

Abstract

The X-ray crystal structure of cyanobacterial Photosystem I (PS I) has been solved to atomic resolution (PDB entry 1JB0). It provides a structural model for the subunits PsaC, PsaD, and PsaE that comprise the stromal ridge of PS I. Independently, the three-dimensional solution structures of unbound, recombinant PsaC (PDB entry 1K0T) and PsaE (PDB entries 1PSF, 1QP2, and 1GXI) have been solved using NMR spectroscopy.

Keywords

Sulfur Cluster Clostridium Pasteurianum Helical Secondary Structure Thauera Aromatica Sulfur Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adman ET, Sieker LC and Jensen LH (1973) The structure of a bacterial ferredoxin. J Biol Chem 248: 3987–3996PubMedGoogle Scholar
  2. Adman ET, Siefker LC and Jensen LH (1976) Structure of Peptococcus aerogenes ferredoxin. Refinement at 2 Å resolution. J Biol Chem 251: 3801–3806PubMedGoogle Scholar
  3. Antonkine ML, Bentrop D, Bertini I, Luchinat C, Shen GZ, Bryant DA, Stehlik D and Golbeck JH (2000) Paramagnetic 1H NMR spectroscopy of the reduced, unbound Photosystem I subunit PsaC: sequence-specific assignment of contact-shifted resonances and identification of mixed- and equal-valence Fe-Fe pairs in [4Fe-4S] centers FA and FB . J Biol Inorg Chem 5: 381–392PubMedCrossRefGoogle Scholar
  4. Antonkine ML, Liu GH, Bentrop D, Bryant DA, Bertini I, Luchinat C, Golbeck JH and Stehlik D (2002) Solution structure of the unbound, oxidized Photosystem I subunit PsaC, containing [4Fe-4S] clusters FA and FB: a conformational change occurs upon binding to Photosystem I. J Biol Inorg Chem 7: 461–472PubMedCrossRefGoogle Scholar
  5. Antonkine ML, Jordan P, Fromme P, Krauß N, Golbeck JH and Stehlik D (2003) Assembly of protein subunits within the stromal ridge of Photosystem I. Structural changes between unbound and sequentially PS I-bound polypeptides and correlated changes of the magnetic properties of the terminal iron sulfur clusters. J Mol Biol 327: 671–697PubMedCrossRefGoogle Scholar
  6. Aono S, Bentrop D, Bertini I, Cosenza G and Luchinat C (1998a) Solution structure of an artificial Fe8S8 ferredoxin: the D13C variant of Bacillus schlegelii Fe7S8 ferredoxin. Eur J Biochem 258: 502–514CrossRefGoogle Scholar
  7. Aono S, Bentrop D, Bertini I, Donaire A, Luchinat C, Niikura Y and Rosato A (1998b) Solution structure of the oxidized Fe7S8 ferredoxin from the thermophilic bacterium Bacillus schlegelii by 1H NMR spectroscopy. Biochemistry 37: 9812–9826CrossRefGoogle Scholar
  8. Barth P, Savarin P, Gilquin B, Lagoutte B and Ochsenbein F (2002) Solution NMR structure and backbone dynamics of the PsaE subunit of Photosystem I from Synechocystis sp. PCC 6803. Biochemistry 41: 13902–13914PubMedCrossRefGoogle Scholar
  9. Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant Photosystem I. Nature 426: 630–635PubMedCrossRefGoogle Scholar
  10. Bentrop D, Bertini I, Luchinat C, Nitschke W and Mühlenhoff U (1997) Characterization of the unbound 2[Fe4S4] ferredoxin-like Photosystem I subunit PsaC from the cyanobacterium Synechococcus elongatus. Biochemistry 36: 13629–13637PubMedCrossRefGoogle Scholar
  11. Bentrop D, Capozzi F and Luchinat C (2001) Iron-sulfur proteins. In: Bertini I, Sigel A and Sigel H (eds) Handbook on Metalloproteins, pp 357–460. Marcel Dekker, New YorkGoogle Scholar
  12. Bertini I, Donaire A, Feinberg BA, Luchinat C, Piccioli M and Yuan HP (1995) Solution structure of the oxidized 2[4Fe-4S] ferredoxin from Clostridium pasteurianum. Eur J Biochem 232: 192–205PubMedCrossRefGoogle Scholar
  13. Cantrell A and Bryant DA (1987) Molecular-cloning and nucleotide-sequence of the psaA and psaB genes of the cyanobacterium Synechococcus sp. PCC 7002. Plant Mol Biol 9: 453–468CrossRefGoogle Scholar
  14. Chamorovsky SK and Cammack R (1982) Direct determination of the midpoint potential of the acceptor X in chloroplast Photosystem I by electrochemical reduction and ESR spectroscopy. Photobiochem Photobiophys 4: 195–200Google Scholar
  15. Chitnis VP, Jung YS, Albee L, Golbeck JH and Chitnis PR (1996) Mutational analysis of Photosystem I polypeptides –role of PsaD and the Lysyl 106 residue in the reductase activity of photosystem I. J Biol Chem 271: 11772–11780PubMedCrossRefGoogle Scholar
  16. Dauter Z, Wilson KS, Sieker LC, Meyer J and Moulis JM (1997) Atomic resolution (0.94 Å) structure of Clostridium acidi urici ferredoxin. Detailed geometry of [4Fe-4S] clusters in a protein. Biochemistry 36: 16065–16073PubMedCrossRefGoogle Scholar
  17. Diaz-Moreno I, Diaz-Quintana A, Molina-Heredia FP, Nieto PM, Hansson O, De la Rosa MA and Karlsson BG (2005) NMR analysis of the transient complex between membrane Photosystem I and soluble cytochrome c6. J Biol Chem 280: 7925–7931PubMedCrossRefGoogle Scholar
  18. Diaz-Quintana A, Leibl W, Bottin H and Sétif P (1998) Electron transfer in Photosystem I reaction centers follows a linear pathway in which iron-sulfur cluster FB is the immediate electron donor to soluble ferredoxin. Biochemistry 37: 3429–3439PubMedCrossRefGoogle Scholar
  19. Duee ED, Fanchon E, Vicat J, Sieker LC, Meyer J and Moulis JM (1994) Refined crystal structure of the 2[4Fe-4S] ferredoxin from Clostridium acid urici at 1.84 Å resolution. J Mol Biol 243: 683–695PubMedCrossRefGoogle Scholar
  20. Falzone CJ, Kao YH, Zhao JD, Bryant DA and Lecomte JTJ (1994) Three-dimensional solution structure of PsaE from the cyanobacterium Synechococcus sp. strain PCC 7002, a Photosystem I protein that shows structural homology with SH3 domains. Biochemistry 33: 6052–6062PubMedCrossRefGoogle Scholar
  21. Fiaux J, Bertelsen EB, Horwich AL and Wuthrich K (2002) NMR analysis of a 900K GroEL-GroES complex. Nature 418: 207–211PubMedCrossRefGoogle Scholar
  22. Fischer N, Hippler M, Sétif P, Jacquot JP and Rochaix JD (1998) The PsaC subunit of photosystem I provides an essential lysine residue for fast electron transfer to ferredoxin. EMBO J 17: 849–858PubMedCrossRefGoogle Scholar
  23. Fischer N, Sétif P and Rochaix JD (1999) Site-directed mutagenesis of the PsaC subunit of Photosystem I. FB is the cluster interacting with soluble ferredoxin. J Biol Chem 274: 23333–23340PubMedCrossRefGoogle Scholar
  24. Fish L, Kück U and Bogorad L (1985) Two partially adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophyll a protein complex of Photosystem I. J Biol Chem 260: 1413–1421PubMedGoogle Scholar
  25. Fromme P, Jordan P and Krauß N (2001) Structure of Photosystem I. Biochim Biophys Acta 1507: 5–31PubMedCrossRefGoogle Scholar
  26. Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 179–220. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  27. Golbeck JH (1999) A comparative analysis of the spin state distribution of in vitro and in vivo mutants of PsaC –a biochemical argument for the sequence of electron transfer in Photosystem I as FX → FA → FB → ferredoxin/flavodoxin. Photosynth Res 61: 107–144CrossRefGoogle Scholar
  28. Golbeck JH and Bryant DA (1991) Photosystem I. In: Lee CP (ed) Current Topics in Bioenergetics, Vol 16, pp 83–177. Academic Press, Inc., San DiegoGoogle Scholar
  29. Golbeck JH, Parrett KG, Mehari T, Jones KL and Brand JJ (1988) Isolation of the intact Photosystem I reaction center core containing P700 and iron-sulfur center FX. FEBS Lett 228: 268–272CrossRefGoogle Scholar
  30. Heinnickel M, Shen G, Agalarov R and Golbeck J (2005) Resolution and reconstitution of a bound Fe-S protein from the photosynthetic reaction center of Heliobacterium modesticaldum. Biochemistry 44: 9950–9960PubMedCrossRefGoogle Scholar
  31. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  32. Jung YS, Yu L and Golbeck JH (1995) Reconstitution of iron-sulfur center FB results in complete restoration of NADP+ photoreduction in Hg-treated Photosystem I complexes from Synechococcus sp PCC 6301. Photosynth Res 46: 249–255CrossRefGoogle Scholar
  33. Ke B, Dolan E, Sugahara K, Hawkridge FM, Demeter S and Shaw ER (1977) Electrochemical and kinetic evidence for a transient electron acceptor in the photochemical charge separation in Photosystem I. In: Photosynthetic Organelles [Plant Cell Physiol (Special Issue no. 3)] pp 187–199Google Scholar
  34. Klukas O, Schubert WD, Jordan P, Krauß N, Fromme P, Witt HT and Saenger W (1999) Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. J Biol Chem 274: 7351–7360PubMedCrossRefGoogle Scholar
  35. Koradi R, Billeter M and Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14: 29–32, 51–55Google Scholar
  36. Lakshmi KV, Jung YS, Golbeck JH and Brudvig GW (1999) Location of the iron-sulfur clusters FA and FB in Photosystem I: an electron paramagnetic resonance study of spin relaxation enhancement of P700+. Biochemistry 38: 13210–13215PubMedCrossRefGoogle Scholar
  37. Li N, Zhao J, Warren PV, Warden JT, Bryant DA and Golbeck JH (1991a) PsaD is required for the stable binding of PsaC to the Photosystem I core protein of Synechococcus sp. PCC 6301. Biochemistry 30: 7863–7872CrossRefGoogle Scholar
  38. Li N, Warren P, Golbeck J, Frank G, Zuber H and Bryant D (1991b) Polypeptide composition of the Photosystem-I complex and the Photosystem-I core protein from Synechococcus sp. PCC 6301. Biochim Biophys Acta 1059: 215–225CrossRefGoogle Scholar
  39. Locher KP, Hans M, Yeh AP, Schmid B, Buckel W and Rees DC (2001) Crystal structure of the Acidaminococcus fermentans 2-hydroxyglutaryl-CoA dehydratase component A. J Mol Biol 307: 297–308PubMedCrossRefGoogle Scholar
  40. Lovenberg W, Rabinowitz JC and Buchanan BB (1963) Studies on chemical nature of clostridial ferredoxin. J Biol Chem 238: 3899–3913PubMedGoogle Scholar
  41. Mamedov MD, Gourovskaya KN, Vassiliev IR, Golbeck JH and Sememov AY (1998) Electrogenicity accompanies photoreduction of the iron-sulfur clusters FA and FB in Photosystem I. FEBS Lett 431: 219–223PubMedCrossRefGoogle Scholar
  42. Mayer KL, Shen GZ, Bryant DA, Lecomte JTJ and Falzone CJ (1999) The solution structure of Photosystem I accessory protein E from the cyanobacterium Nostoc sp. strain PCC 8009. Biochemistry 38: 13736–13746PubMedCrossRefGoogle Scholar
  43. McDermott AE, Yachandra VK, Guiles RD, Sauer K, Klein MP, Parrett KG and Golbeck JH (1989) EXAFS structural study of FX, the low-potential Fe-S center in Photosystem I. Biochemistry 28: 8056–8059PubMedCrossRefGoogle Scholar
  44. Mehari T, Parrett KG, Warren PV and Golbeck JH (1991) Reconstitution of the iron-sulfur clusters in the isolated FA/FB protein: EPR spectral characterization of same-species and cross-species Photosystem I complexes. Biochim Biophys Acta 1056: 139–148CrossRefGoogle Scholar
  45. Moulis JM, Sieker LC, Wilson KS and Dauter Z (1996) Crystal structure of the 2[4Fe-4S] ferredoxin from Chromatium vinosum: evolutionary and mechanistic inferences for [3/4Fe-4S] ferredoxins. Protein Sci 5: 1765–1775PubMedGoogle Scholar
  46. Parrett KG, Mehari T, Warren PG and Golbeck JH (1989) Purification and properties of the intact P700 and FX-containing Photosystem I core protein. Biochim Biophys Acta 973: 324–332PubMedGoogle Scholar
  47. Pervushin K, Riek R, Wider G and Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94: 12366–12371PubMedCrossRefGoogle Scholar
  48. Petrouleas V, Brand JJ, Parrett KG and Golbeck JH (1989) A Mössbauer analysis of the low-potential iron-sulfur center in Photosystem I –spectroscopic evidence that FX is a 4Fe-4S cluster. Biochemistry 28: 8980–8983PubMedCrossRefGoogle Scholar
  49. Rousseau F, Sétif P and Lagoutte B (1993) Evidence for the involvement of PSI-E subunit in the reduction of ferredoxin by Photosystem I. EMBO J 12: 1755–1765PubMedGoogle Scholar
  50. Saenger W, Jordan P and Krauß N (2002) The assembly of protein subunits and cofactors in Photosystem I. Curr Opin Struct Biol 12: 244–254PubMedCrossRefGoogle Scholar
  51. Schlessman JL, Woo D, Joshua-Tor L, Howard JB and Rees DC (1998) Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum. J Mol Biol 280: 669–685PubMedCrossRefGoogle Scholar
  52. Sétif P (2001) Ferredoxin and flavodoxin reduction by Photosystem I. Biochim Biophys Acta 1507: 161–179PubMedCrossRefGoogle Scholar
  53. Shinkarev VP, Vassiliev IR and Golbeck JH (2000) A kinetic assessment of the sequence of electron transfer from FX to FA and further to FB in Photosystem I: the value of the equilibrium constant between FX and FA. Biophys J 78: 363–372PubMedGoogle Scholar
  54. Sticht H and Rosch P (1998) The structure of iron-sulfur proteins. Prof Phys Mol Biol 70: 95–136Google Scholar
  55. Stout CD (1993) Crystal structures of oxidized and reduced Azotobacter vinelandii ferredoxin at pH 8 and pH 6. J Biol Chem 268: 25920–25927PubMedGoogle Scholar
  56. Tranqui D and Jesior JC (1995) Structure of the ferredoxin from Clostridium acidi urici –model at 1.8 Å resolution. Acta Crystallogr D Biol Crystallogr 51: 155–159PubMedCrossRefGoogle Scholar
  57. Unciuleac M, Boll M, Warkentin E and Ermler U (2004) Crystallization of 4-hydroxybenzoyl-CoA reductase and the structure of its electron donor ferredoxin. Acta Crystallogr D Biol Crystallogr 60: 388–391PubMedCrossRefGoogle Scholar
  58. Vassiliev IR, Jung YS, Yang F and Golbeck JH (1998) PsaC subunit of Photosystem I is oriented with iron-sulfur cluster FB as the immediate electron donor to ferredoxin and flavodoxin. Biophys J 74: 2029–2035PubMedCrossRefGoogle Scholar
  59. Vassiliev IR, Antonkine ML and Golbeck JH (2001) Iron-sulfur clusters in type I reaction centers. Biochim Biophys Acta 1507: 139–160PubMedCrossRefGoogle Scholar
  60. Xia ZC, Broadhurst RW, Laue ED, Bryant DA, Golbeck JH and Bendall DS (1998) Structure and properties in solution of PsaD, an extrinsic polypeptide of Photosystem I. Eur J Biochem 255: 309–316PubMedCrossRefGoogle Scholar
  61. Xu Q, Jung YS, Chitnis VP, Guikema JA, Golbeck JH and Chitnis PR (1994) Mutational analysis of Photosystem I polypeptides in Synechocystis sp. PCC 6803 –subunit requirements for reduction of NADP+ mediated by ferredoxin and flavodoxin. J Biol Chem 269: 21512–21518PubMedGoogle Scholar
  62. Yu JP, Smart LB, Jung YS, Golbeck J and Mcintosh L (1995) Absence of PsaC subunit allows assembly of Photosystem I core but prevents the binding of PsaD and PsaE in Synechocystis sp PCC 6803. Plant Mol Biol 29: 331–342PubMedCrossRefGoogle Scholar
  63. Zhao J, Warren PV, Li N, Bryant DA and Golbeck JH (1990) Reconstitution of electron transport in Photosystem I with PsaC and PsaD proteins expressed in Escherichia coli. FEBS Lett 276: 175–180PubMedCrossRefGoogle Scholar
  64. Zhao J, Li N, Warren P, Golbeck J and Bryant D (1992) Site-directed conversion of a cysteine to aspartate leads to the assembly of a [3Fe-4S] cluster in PsaC of Photosystem I –the photoreduction of FA is independent of FB. Biochemistry 31: 5093–5099PubMedCrossRefGoogle Scholar
  65. Zhao J, Snyder WB, Mühlenhoff U, Rhiel E, Warren PV, Golbeck JH and Bryant DA (1993) Cloning and characterization of the psaE gene of the cyanobacterium Synechococcus sp. PCC 7002 –characterization of a psaE mutant and overproduction of the protein in Escherichia coli. Mol Microbiol 9: 183–194PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Mikhail L. Antonkine
    • 1
  • John H. Golbeck
    • 2
  1. 1.Max-Planck-Institut für Bioanorganische ChemieGermany
  2. 2.Department of Biochemistry and Molecular Biology, Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations