Advertisement

Structural Analysis of Cyanobacterial Photosystem I

  • Petra Fromme
  • Ingo Grotjohann
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 24)

Abstract

Photosystem I is a large membrane protein complex that catalyzes the first step of oxygenic photosynthesis. It can be regarded as a solar energy converter that captures the light from the sun through a large core-antenna system of chlorophylls and carotenoids and transfers the energy into the center of the complex, where the energy is used to catalyze the light-driven transmembrane electron transfer from plastocyanin to ferredoxin.

Keywords

Transmembrane Helix Electron Transfer Chain Synechococcus Elongatus Stromal Side Antenna Chlorophyll 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adman ET, Sieker LC and Jensen LH (1973) The structure of a bacterial ferredoxin. J Biol Chem 248: 3987–3996PubMedGoogle Scholar
  2. Akhmatskaya EV, Cooper MD, Burton NA, Masters AJ and Hillier IH (1999) Monte Carlo simulations of water clusters on a parallel computer using an ab initio potential. Int J Quantum Chem 74: 709–719CrossRefGoogle Scholar
  3. Anandan S, Vainstein A and Thornber JP (1989) Correlation of some published amino acid sequences for photosystem I polypeptides to a 17 kDa LHCI pigment–protein and to subunits III and IV of the core complex. FEBS Lett 256: 150–154PubMedCrossRefGoogle Scholar
  4. Andersen B and Scheller HV (eds) (1993) Structure, Function and Assembly of Photosystem I. Academic Press, San DiegoGoogle Scholar
  5. Andersen B, Scheller HV and Moller BL (1992) The PSI-E subunit of photosystem I binds ferredoxin:NADP+ oxidoreductase. FEBS Lett 311: 169–173PubMedCrossRefGoogle Scholar
  6. Antonkine ML, Jordan P, Fromme P, Krauβ N, Golbeck JH and Stehlik D (2003) Assembly of protein subunits within the stromal ridge of photosystem I. Structural changes between unbound and sequentially PS I-bound polypeptides and correlated changes of the magnetic properties of the terminal iron sulfur clusters. J Mol Biol 327: 671–697PubMedCrossRefGoogle Scholar
  7. Armbrust TS, Chitnis PR and Guikema JA (1996) Organization of photosystem I polypeptides examined by chemical crosslinking. Plant Physiol 111: 1307–1312PubMedGoogle Scholar
  8. Barth P, Lagoutte B and Sétif P (1998) Ferredoxin reduction by photosystem I from Synechocystis sp. PCC 6803: toward an understanding of the respective roles of subunits PsaD and PsaE in ferredoxin binding. Biochemistry 37: 16233–16241PubMedCrossRefGoogle Scholar
  9. Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635PubMedCrossRefGoogle Scholar
  10. Ben-Shem A, Frolow F and Nelson N (2004) Evolution of photosystem I –from symmetry through pseudo-symmetry to asymmetry. FEBS Lett 564: 274–280PubMedCrossRefGoogle Scholar
  11. Bibby TS, Nield J and Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412: 743–745PubMedCrossRefGoogle Scholar
  12. Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel KP, Pistorius EK and Kruip J (2001) A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745–748PubMedCrossRefGoogle Scholar
  13. Boudreaux B, MacMillan F, Teutloff C, Agalarov R, Gu F, Grimaldi S, Bittl R, Brettel K and Redding K (2001) Mutations in both sides of the photosystem I reaction center identify the phylloquinone observed by electron paramagnetic resonance spectroscopy. J Biol Chem 276: 37299–37306PubMedCrossRefGoogle Scholar
  14. Byrdin M, Jordan P, Krauβ N, Fromme P, Stehlik D and Schlodder E (2002) Light harvesting in photosystem I: modeling based on the 2.5-Å structure of photosystem I from Synechococcus elongatus. Biophys J 83: 433–457PubMedGoogle Scholar
  15. Chitnis PR, Xu Q, Chitnis VP and Nechustai R (1995) Function and organization of photosystem I polypeptides. Photosynth Res 44: 23–40CrossRefGoogle Scholar
  16. Chitnis VP, Xu Q, Yu L, Golbeck JH, Nakamoto H, Xie D-L and Chitnis PR (1993) Target inactivation of the gene psaL encoding a subunit of photosystem I of the cyanobacterium Synechocystis PCC 6803. J Biol Chem 268: 11678–11684PubMedGoogle Scholar
  17. Chitnis VP, Jungs YS, Albee L, Golbeck JH and Chitnis PR (1996) Mutational analysis of photosystem I polypeptides. Role of PsaD and the lysyl 106 residue in the reductase activity of the photosystem I. J Biol Chem 271: 11772–11780PubMedCrossRefGoogle Scholar
  18. Chitnis VP, Ke A and Chitnis PR (1997) The PsaD subunit of photosystem I. Mutations in the basic domain reduce the level of PsaD in the membranes. Plant Physiol 115: 1699–1705PubMedCrossRefGoogle Scholar
  19. Cohen RO, Shen G, Golbeck JH, Xu W, Chitnis PR, Valieva AI, van der Est A, Pushkar Y and Stehlik D (2004) Evidence for asymmetric electron transfer in cyanobacterial photosystem I: analysis of a methionine-to-leucine mutation of the ligand to the primary electron acceptor A0. Biochemistry 43: 4741–4754PubMedCrossRefGoogle Scholar
  20. Damjanovic A, Vaswani HM, Fromme P and Fleming GR (2002) Chlorophyll excitations in photosystem I of Synechococcus elongatus. J Phys Chem B 106: 10251–10262CrossRefGoogle Scholar
  21. Deisenhofer J, Epp O, Sinning I and Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 246: 429–457PubMedCrossRefGoogle Scholar
  22. Domonkos I, Malec P, Sallai A, Kovacs L, Itoh K, Shen G, Ughy B, Bogos B, Sakurai I, Kis M, Strzalka K, Wada H, Itoh S, Farkas T and Gombos Z (2004) Phosphatidylglycerol is essential for oligomerization of photosystem I reaction center. Plant Physiol 134: 1471–1478PubMedCrossRefGoogle Scholar
  23. Dunn PP, Packman LC, Pappin D and Gray JC (1988) N-terminal amino acid sequence analysis of the subunits of pea photosystem I. FEBS Lett 228: 157–161PubMedCrossRefGoogle Scholar
  24. Evans MCW, Reeves SG and Cammack R (1974) Determination of oxidation–reduction potential of bound iron–sulfur proteins of primary electron-acceptor complex of photosystem-I in spinach-chloroplasts. FEBS Lett 49: 111–114PubMedCrossRefGoogle Scholar
  25. Fairclough WV, Forsyth A, Evans MC, Rigby SE, Purton S and Heathcote P (2003) Bidirectional electron transfer in photosystem I: electron transfer on the PsaA side is not essential for phototrophic growth in Chlamydomonas. Biochim Biophys Acta 1606: 43–55PubMedCrossRefGoogle Scholar
  26. Falzone CJ, Kao YH, Zhao J, Bryant DA and Lecomte JT (1994a) Three-dimensional solution structure of PsaE from the cyanobacterium Synechococcus sp. strain PCC 7002, a photosystem I protein that shows structural homology with SH3 domains. Biochemistry 33: 6052–6062CrossRefGoogle Scholar
  27. Falzone CJ, Kao YH, Zhao J, MacLaughlin KL, Bryant DA and Lecomte JT (1994b) 1H and 15N NMR assignments of PsaE, a photosystem I subunit from the cyanobacterium Synechococcus sp. strain PCC 7002. Biochemistry 33: 6043–6051CrossRefGoogle Scholar
  28. Farah J, Rappaport F, Choquet Y, Joliot P and Rochaix JD (1995) Isolation of a psaF-deficient mutant of Chlamydomonas reinhardtii: efficient interaction of plastocyanin with the photosystem I reaction center is mediated by the PsaF subunit. EMBO J 14: 4976–4984PubMedGoogle Scholar
  29. Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838PubMedCrossRefGoogle Scholar
  30. Fischer N, Boudreau E, Hippler M, Drepper F, Haehnel W and Rochaix JD (1999a) A large fraction of PsaF is nonfunctional in photosystem I complexes lacking the PsaJ subunit. Biochemistry 38: 5546–5552CrossRefGoogle Scholar
  31. Fischer N, Sétif P and Rochaix JD (1999b) Site-directed mutagenesis of the PsaC subunit of photosystem I. F(b) is the cluster interacting with soluble ferredoxin. J Biol Chem 274: 23333–23340CrossRefGoogle Scholar
  32. Fish L, Kück U and Bogorad L (1985) Two partially homologous adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophyll a protein complex of photosystem I. J Biol Chem 260: 1413–1421PubMedGoogle Scholar
  33. Frazao C, Soares CM, Carrondo MA, Pohl E, Dauter Z, Wilson KS, Hervas M, Navarro JA, De la Rosa MA and Sheldrick GM (1995) Ab initio determination of the crystal structure of cytochrome c6 and comparison with plastocyanin. Structure 3: 1159–1169PubMedCrossRefGoogle Scholar
  34. Fromme P (1998) Crystallization of Photosystem I for Structural Analysis. Habilitation. Technical University Berlin, Berlin, GermanyGoogle Scholar
  35. Fromme P, Jordan P and Krauβ N (2001) Structure of photosystem I. Biochim Biophys Acta 1507: 5–31PubMedCrossRefGoogle Scholar
  36. Fromme P, Bottin H, Krauβ N and Sétif P (2002) Crystallization and EPR characterization of a functional complex of photosystem I with its natural electron acceptor ferredoxin. Biophys J 83: 1760–1763PubMedGoogle Scholar
  37. Fromme P, Melkozernov A, Jordan P, Krauβ N (2003) Structure and function of photosystem I. Interaction with its soluble electron carriers and external antenna system. FEBS Lett 555, 40–44PubMedCrossRefGoogle Scholar
  38. Gavel Y, Steppuhn J, Herrmann R and von Heijne G (1991) The “positive inside rule” applies to thylakoid membrane proteins. FEBS Lett 282: 41–46PubMedCrossRefGoogle Scholar
  39. Gibasiewicz K, Ramesh VM, Lin S, Redding K, Woodbury NW and Webber AN (2003) Excitonic interactions in wild-type and mutant PSI reaction centers. Biophys J 85: 2547–2559PubMedGoogle Scholar
  40. Golbeck JH (1993) The structure of photosystem I. Curr Opin Struct Biol 3: 508–514CrossRefGoogle Scholar
  41. Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) Advances in Photosynthesis: The Molecular Biology of Cyanobacteria, Vol 1, pp 319–360. Kluwer Academics, Dordrecht, The NetherlandsGoogle Scholar
  42. Golbeck JH (1999) A comparative analysis of the spin state distribution of in vitro and in vivo mutants of PsaC. Photosynth Res 61: 107–144CrossRefGoogle Scholar
  43. Guergova-Kuras M, Boudreaux B, Joliot A, Joliot P and Redding K (2001) Evidence for two active branches for electron transfer in photosystem I. Proc Natl Acad Sci USA 98: 4437–4442PubMedCrossRefGoogle Scholar
  44. Haehnel W, Jansen T, Gause K, Klosgen RB, Stahl B, Michl D, Huvermann B, Karas M and Herrmann RG (1994) Electron transfer from plastocyanin to photosystem I. EMBO J 13: 1028–1038PubMedGoogle Scholar
  45. Hallahan B, Purton S, Ivison A, Wright D and Evans MCW (1995) Analysis of the proposed FeSx binding region of photosystem I by side directed mutation of PsaA in Chlamydomonas rheinhardtii. Photosynth Res 46: 257–264CrossRefGoogle Scholar
  46. Hastings G, Hoshina S, Webber AN and Blankenship RE (1995) Universality of energy and electron transfer processes in photosystem I. Biochemistry 34: 15512–15522PubMedCrossRefGoogle Scholar
  47. Hippler M, Reichert J, Sutter M, Zak E, Altschmied L, Schroer U, Herrmann RG and Haehnel W (1996) The plastocyanin binding domain of photosystem I. EMBO J 15: 6374–6384PubMedGoogle Scholar
  48. Hippler M, Drepper F, Farah J and Rochaix JD (1997) Fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii requires PsaF. Biochemistry 36: 6343–6349PubMedCrossRefGoogle Scholar
  49. Hippler M, Drepper F, Haehnel W and Rochaix JD (1998) The N-terminal domain of PsaF: precise recognition site for binding and fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 95: 7339–7344PubMedCrossRefGoogle Scholar
  50. Hladik J and Sofrova D (1991) Does the trimeric form of the photosystem-1 reaction center of cyanobacteria in vivo exist. Photosynth Res 29: 171–175Google Scholar
  51. Hugosson M, Nurani G, Glaser E and Franzen LG (1995) Peculiar properties of the PsaF photosystem I protein from the green alga Chlamydomonas reinhardtii: presequence independent import of the PsaF protein into both chloroplasts and mitochondria. Plant Mol Biol 28: 525–535PubMedCrossRefGoogle Scholar
  52. Ikegami I, Itoh S and Iwaki M (2000) Selective extraction of antenna chlorophylls, carotenoids and quinones from photosystem I reaction center. Plant Cell Physiol 41: 1085–1095PubMedCrossRefGoogle Scholar
  53. Ikeuchi M, Nyhus KJ, Inoue Y and Pakrasi HB (1991) Identities of four low-molecular-mass subunits of the photosystem I complex from Anabaena variabilis ATCC 29413. Evidence for the presence of the psaI gene product in a cyanobacterial complex. FEBS Lett 287: 5–9PubMedCrossRefGoogle Scholar
  54. Ishikita H and Knapp EW (2003) Redox potential of quinones in both electron transfer branches of photosystem I. J Biol Chem 278: 52002–52011PubMedCrossRefGoogle Scholar
  55. Janson S, Andersen B and Scheller HV (1996) Nearest-neighbor analysis of higher-plant photosystem I holocomplex. Plant Physiol 112: 409–420CrossRefGoogle Scholar
  56. Jeanjean R, Zuther E, Yeremenko N, Havaux M, Matthijs HC and Hagemann M (2003) A photosystem 1 psaFJ-null mutant of the cyanobacterium Synechocystis PCC 6803 expresses the isiAB operon under iron replete conditions. FEBS Lett 549: 52–56PubMedCrossRefGoogle Scholar
  57. Jordan P, Fromme P, Klukas O, Witt HT, Saenger W and Krauβ N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  58. Kamiya N and Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100: 98–103PubMedCrossRefGoogle Scholar
  59. Karapetyan NV (2004) The dynamics of excitation energy in photosystem I of cyanobacteria: transfer in the antenna, capture by the reaction site, and dissipation. Biofizika 49: 212–226Google Scholar
  60. Karapetyan NV, Shubin VV and Strasser RJ (1999) Energy exchange between the chlorophyll antennae of monomeric subunits within the photosystem I trimeric complex of the cyanobacterium Spirulina. Photosynth Res 61: 291–301CrossRefGoogle Scholar
  61. Karnauchov I, Cai D, Schmidt I, Herrmann RG and Klosgen RB (1994) The thylakoid translocation of subunit 3 of photosystem I, the psaF gene product, depends on a bipartite transit peptide and proceeds along an azide-sensitive pathway. J Biol Chem 269: 32871–32878PubMedGoogle Scholar
  62. Kass H, Bittersmannweidlich E, Andreasson LE, Bonigk B and Lubitz W (1995) ENDOR and ESEEM of the N-15 labeled radical cations of chlorophyll-a and the primary donor P-700 in photosystem-I. Chem Phys 194: 419–432CrossRefGoogle Scholar
  63. Kass H, Fromme P, Witt HT and Lubitz W (2001) Orientation and electronic structure of the primary donor radical cation P-700+ in photosystem I: a single crystals EPR and ENDOR study. J Phys Chem B 105: 1225–1239CrossRefGoogle Scholar
  64. Kjaerulff S, Andersen B, Nielsen VS, Møller BL and Okkels JS (1993) The PSI-K subunit of photosystem I from barley (Hordeum vulgare L.). Evidence for a gene duplication of an ancestral PSI-G/K gene. J Biol Chem 268: 18912–18916PubMedGoogle Scholar
  65. Klukas O, Schubert WD, Jordan P, Krauβ N, Fromme P, Witt HT and Saenger W (1999) Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. J Biol Chem 274: 7351–7360PubMedCrossRefGoogle Scholar
  66. Koike K, Ikeuchi M, Hiyama T and Inoue Y (1989) Identification of photosystem I components from the cyanobacterium Synechococcus vulcanus by N-terminal sequencing. FEBS Lett. 253: 257–263PubMedCrossRefGoogle Scholar
  67. Kouřil R, Yeremenko N, D’Haene S, Yakushevska AE, Keegstra W, Matthijs HC, Dekker JP and Boekema EJ (2003) Photosystem I trimers from Synechocystis PCC 6803 lacking the PsaF and PsaJ subunits bind an IsiA ring of 17 units. Biochim Biophys Acta 1607: 1–4PubMedCrossRefGoogle Scholar
  68. Kruip J, Chitnis PR, Lagoutte B, Rögner M and Boekema EJ (1997) Structural organization of the major subunits in cyanobacterial photosystem 1. Localization of subunits PsaC, -D, -E, -F, and -J. J Biol Chem 272: 17061–17069PubMedCrossRefGoogle Scholar
  69. Lagoutte B, Hanley J and Bottin H (2001) Multiple functions for the C terminus of the PsaD subunit in the cyanobacterial photosystem I complex. Plant Physiol 126: 307–316PubMedCrossRefGoogle Scholar
  70. Lakshmi KV, Jung YS, Golbeck JH and Brudvig GW (1999) Location of the iron–sulfur clusters FA and FB in photosystem I: an electron paramagnetic resonance study of spin relaxation enhancement of P700+. Biochemistry 38: 13210–13215PubMedCrossRefGoogle Scholar
  71. Lelong C, Sétif P, Lagoutte B and Bottin H (1994) Identification of the amino acids involved in the functional interaction between photosystem I and ferredoxin from Synechocystis sp. PCC 6803 by chemical cross-linking. J Biol Chem 269: 10034–10039PubMedGoogle Scholar
  72. Lelong C, Boekema EJ, Kruip J, Bottin H, Rögner M and Sétif P (1996) Characterization of a redox active cross-linked complex between cyanobacterial photosystem I and soluble ferredoxin. EMBO J 15: 2160–2168PubMedGoogle Scholar
  73. Li N, Warren PV, Golbeck JH, Frank G, Zuber H and Bryant DA (1991) Polypeptide composition of the photosystem I complex and the photosystem I core protein from Synechococcus sp. PCC 6301. Biochim Biophys Acta 1059: 215–225PubMedCrossRefGoogle Scholar
  74. Loll B, Raszewski G, Saenger W and Biesiadka J (2003) Functional role of Cα-HλO hydrogen bonds between transmembrane α-helices in photosystem I. J Mol Biol 328: 737–747PubMedCrossRefGoogle Scholar
  75. Lüneberg J, Fromme P, Jekow P and Schlodder E (1994) Spectroscopic characterization of PS I core complexes from thermophilic Synechococcus sp. –Identical reoxidation kinetics of A1- before and after removal of the iron–sulfur clusters FA and FB. FEBS Lett 338: 197–120PubMedCrossRefGoogle Scholar
  76. Lushy A, Verchovsky L and Nechushtai R (2002) The stable assembly of newly synthesized PsaE into the photosystem I complex occurring via the exchange mechanism is facilitated by electrostatic interactions. Biochemistry 41: 11192–11199PubMedCrossRefGoogle Scholar
  77. Maeda H, Watanabe T, Kobayashi M and Ikegami I (1992) Presence of two chorophyll a′ molecules at the core of photosystem I. Biochim Biophys Acta 1099: 74–80CrossRefGoogle Scholar
  78. Mant A, Woolhead CA, Moore M, Henry R and Robinson C (2001) Insertion of PsaK into the thylakoid membrane in a “Horseshoe” conformation occurs in the absence of signal recognition particle, nucleoside triphosphates, or functional albino3. J Biol Chem 276: 36200–36206PubMedCrossRefGoogle Scholar
  79. Maroc J and Tremolieres A (1990) Chlorophyll a′ and pheophytin a, as determined by HPLC, in photosynthesis mutants and double mutants of Chlamydomonas reinhardtii. Biochem Biophys Acta 1018: 67–71CrossRefGoogle Scholar
  80. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal-structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521CrossRefGoogle Scholar
  81. Mehari T, Qiao F, Scott MP, Nellis DF, Zhao J, Bryant DA and Golbeck JH (1995) Modified ligands to FA and FB in photosystem I. I. Structural constraints for the formation of iron–sulfur clusters in free and rebound PsaC. J Biol Chem 270: 28108–28117PubMedCrossRefGoogle Scholar
  82. Meimberg K, Lagoutte B, Bottin H and Mühlenhoff U (1998) The PsaE subunit is required for complex formation between photosystem I and flavodoxin from the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 37: 9759–9767PubMedCrossRefGoogle Scholar
  83. Molina-Heredia FP, Diaz-Quintana A, Hervas M, Navarro JA and De La Rosa MA (1999) Site-directed mutagenesis of cytochrome c(6) from Anabaena species PCC 7119. Identification of surface residues of the hemeprotein involved in photosystem I reduction. J Biol Chem 274: 33565–33570PubMedCrossRefGoogle Scholar
  84. Mühlenhoff U, Haehnel W, Witt H and Herrmann RG (1993) Genes encoding 11 subunits of photosystem-I from the thermophilic cyanobacterium Synechococcus sp. Gene 127: 71–78PubMedCrossRefGoogle Scholar
  85. Mühlenhoff U, Kruip J, Bryant DA, Rögner M, Sétif P and Boekema E (1996a) Characterization of a redox-active cross-linked complex between cyanobacterial photosystem I and its physiological acceptor flavodoxin. EMBO J 15: 488–497Google Scholar
  86. Mühlenhoff U, Zhao J and Bryant DA (1996b) Interaction between photosystem I and flavodoxin from the cyanobacterium Synechococcus sp. PCC 7002 as revealed by chemical cross-linking. Eur J Biochem 235: 324–331CrossRefGoogle Scholar
  87. Muller MG, Niklas J, Lubitz W and Holzwarth AR (2003) Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in photosystem I. Biophys J 85: 3899–3922PubMedGoogle Scholar
  88. Nakamura Y, Kaneko T, Sato S, Ikeuchi M, Katoh H, Sasamoto S, Watanabe A, Iriguchi M, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M and Tabata S (2002) Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res 9: 123–130PubMedCrossRefGoogle Scholar
  89. Nield J, Morris EP, Bibby TS and Barber J (2003) Structural analysis of the photosystem I supercomplex of cyanobacteria induced by iron deficiency. Biochemistry 42: 3180–3188PubMedCrossRefGoogle Scholar
  90. Ohyama K, Fukazawa H, Kohchi T, Shirai H, Tohru S, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota SI, Inokuchi H and Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574CrossRefGoogle Scholar
  91. Pakrasi HB (1995) Genetic analysis of the form and function of photosystem I and photosystem II. Annu Rev Genet 995: 755–756CrossRefGoogle Scholar
  92. Palsson LO, Flemming C, Gobets B, van Grondelle R, Dekker JP and Schlodder E (1998) Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys J 74: 2611–2622PubMedGoogle Scholar
  93. Pandini V, Aliverti A and Zanetti G (1999) Interaction of the soluble recombinant PsaD subunit of spinach photosystem I with ferredoxin I. Biochemistry 38: 10707–10713PubMedCrossRefGoogle Scholar
  94. Plato M, Krauβ N, Fromme P and Lubitz W (2003) Molecular orbital study of the primary electron donor P700 of photosystem I based on a recent X-ray single crystal structure analysis. Chem Phys 294: 483–499CrossRefGoogle Scholar
  95. Ramesh VM, Gibasiewicz K, Lin S, Bingham SE and Webber AN (2004) Bidirectional electron transfer in photosystem I: accumulation of A0- in A-side or B-side mutants of the axial ligand to chlorophyll A0. Biochemistry 43: 1369–1375PubMedCrossRefGoogle Scholar
  96. Romer S, Senger H and Bishop N (1995) Characterization of the carotenoidless strain of Scenedesmus oliquus, mutant C-6E, a living photosystem I model. Bot Acta 108: 80–86Google Scholar
  97. Rousseau F, Sétif P and Lagoutte B (1993) Evidence for the involvement of PSI-E subunit in the reduction of ferredoxin by photosystem I. EMBO J 12: 1755–1765PubMedGoogle Scholar
  98. Scheller HV, Jensen PE, Haldrup A, Lunde C and Knoetzel J (2001) Role of subunits in eukaryotic photosystem I. Biochim Biophys Acta 1507: 41–60PubMedCrossRefGoogle Scholar
  99. Schluchter WM, Shen G, Zhao J and Bryant DA (1996) Characterization of psaI and psaL mutants of Synechococcus sp. strain PCC 7002: a new model for state transitions in cyanobacteria. Photochem Photobiol 64: 53–66PubMedGoogle Scholar
  100. Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P and Krauβ N (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J Mol Biol 280: 297–314PubMedCrossRefGoogle Scholar
  101. Scott MP, Nielsen VS, Knoetzel J, Andersen R and Møller BL (1994) Import of the barley PSI-F subunit into the thylakoid lumen of isolated chloroplasts. Plant Mol Biol 26: 1223–1229PubMedCrossRefGoogle Scholar
  102. Sener M, Park S, Lu DY, Damjanovic A, Ritz T, Fromme P and Schulten K (2004) Excitation migration in trimeric cyanobacterial photosystem I. J Chem Phys 120, 11183–11195PubMedCrossRefGoogle Scholar
  103. Sener MK, Jolley C, Ben-Shem A, Fromme P, Nelson N, Croce R and Schulten K (2005) Comparison of the light-harvesting networks of plant and cyanobacterial photosystem I. Biophys J 8–9, 1630–1642CrossRefGoogle Scholar
  104. Sétif P (2001) Ferredoxin and flavodoxin reduction by photosystem I. Biochim Biophys Acta 1507: 161–179PubMedCrossRefGoogle Scholar
  105. Sétif P, Fischer N, Lagoutte B, Bottin H and Rochaix JD (2002) The ferredoxin docking site of photosystem I. Biochim Biophys Acta 1555: 204–209PubMedCrossRefGoogle Scholar
  106. Shen GZ, Antonkine ML, van der Est A, Vassiliev IR, Brettel K, Bittl R, Zech SG, Zhao JD, Stehlik D, Bryant DA and Golbeck JH (2002) Assembly of photosystem I. II. Rubredoxin is required for the in vivo assembly of FX in Synechococcus sp PCC 7002 as shown by optical and EPR spectroscopy. J Biol Chem 277: 20355–20366PubMedCrossRefGoogle Scholar
  107. Sommer F, Drepper F and Hippler M (2002) The luminal helix l of PsaB is essential for recognition of plastocyanin or cytochrome c6 and fast electron transfer to photosystem I in Chlamydomonas reinhardtii. J Biol Chem 277: 6573–6581PubMedCrossRefGoogle Scholar
  108. Sonoike K, Hatanaka H and Katoh S (1993) Small subunits of photosystem I reaction center complexes from Synechococcus elongatus. II. The psaE gene product has a role to promote interaction between the terminal electron acceptor and ferredoxin. Biochim Biophys Acta 1141: 52–57PubMedCrossRefGoogle Scholar
  109. Strotmann H and Weber N (1993) On the function of PsaE in chloroplast photosystem I. Biochim Biophys Acta 1143: 204–210PubMedCrossRefGoogle Scholar
  110. Van der Est A, Bock C, Golbeck JH, Brettel K, Sétif P and Stehlik D (1994) Electron transfer from the acceptor A1 to the iron–sulfur centers in photosystem I as studied by transient EPR spectroscopy. Biochemistry 33: 11789–11797PubMedCrossRefGoogle Scholar
  111. van Thor JJ, Geerlings TH, Matthijs HC and Hellingwerf KJ (1999) Kinetic evidence for the PsaE-dependent transient ternary complex photosystem I/Ferredoxin/ Ferredoxin:NADP( + ) reductase in a cyanobacterium. Biochemistry 38: 12735–12746PubMedCrossRefGoogle Scholar
  112. Varotto C, Pesaresi P, Jahns P, Lessnick A, Tizzano M, Schiavon F, Salamini F and Leister D (2002) Single and double knockouts of the genes for photosystem I subunits G, K, and H of Arabidopsis. Effects on photosystem I composition, photosynthetic electron flow, and state transitions. Plant Physiol 129: 616–624PubMedCrossRefGoogle Scholar
  113. Vassiliev IR, Jung YS, Smart LB, Schulz R, McIntosh L and Golbeck JH (1995) A mixed-ligand iron–sulfur cluster (C556SPsaB or C565SPsaB) in the FX binding site leads to a decreased quantum efficiency of electron transfer in photosystem I. Biophys J 69: 1544–1553PubMedGoogle Scholar
  114. Watanabe T, Kobayashi M, Hongu A, Nakazato M and Hiyama T (1985) Evidence, that a chlorophyll a′ dimer constitutes the photochemical reaction centre 1 (P700) in photosynthetic apparatus. FEBS Lett 235: 252–256CrossRefGoogle Scholar
  115. Xu Q, Jung YS, Chitnis VP, Guikema JA, Golbeck JH and Chitnis PR (1994a) Mutational analysis of photosystem I polypeptides in Synechocystis sp. PCC 6803. Subunit requirements for reduction of NADP+ mediated by ferredoxin and flavodoxin. J Biol Chem 269: 21512–21518Google Scholar
  116. Xu Q, Odom WR, Guikema JA, Chitnis VP and Chitnis PR (1994b) Targeted deletion of psaJ from the cyanobacterium Synechocystis sp. PCC 6803 indicates structural interactions between the PsaJ and PsaF subunits of photosystem I. Plant Mol Biol 26: 291–302CrossRefGoogle Scholar
  117. Xu Q, Yu L, Chitnis VP and Chitnis PR (1994c) Function and organization of photosystem I in a cyanobacterial mutant strain that lacks PsaF and PsaJ subunits. J Biol Chem 269: 3205–3211Google Scholar
  118. Xu Q, Hoppe D, Chitnis VP, Odom WR, Guikema JA and Chitnis PR (1995) Mutational analysis of photosystem I polypeptides in the cyanobacterium Synechocystis sp. PCC 6803. Targeted inactivation of psaI reveals the function of psaI in the structural organization of psaL. J Biol Chem 270: 16243–16250PubMedCrossRefGoogle Scholar
  119. Yang M, Damjanovic A, Vaswani HM and Fleming GR (2003) Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys J 85: 140–158PubMedGoogle Scholar
  120. Yu L, Zhao J, Mühlenhoff U, Bryant DA and Golbeck JH (1993) PsaE Is required for in vivo cyclic electron flow around photosystem I in the cyanobacterium Synechococcus sp. PCC 7002. Plant Physiol 103: 171–180PubMedGoogle Scholar
  121. Yu L, Bryant DA and Golbeck JH (1995a) Evidence for a mixed-ligand [4Fe–4S] cluster in the C14D mutant of PsaC. Altered reduction potentials and EPR spectral properties of the FA and FB clusters on rebinding to the P700-FX core. Biochemistry 34: 7861–7868CrossRefGoogle Scholar
  122. Yu L, Vassiliev IR, Jung YS, Bryant DA and Golbeck JH (1995b) Modified ligands to FA and FB in photosystem I. II. Characterization of a mixed ligand [4Fe–4S] cluster in the C51D mutant of PsaC upon rebinding to P700-FX cores. J Biol Chem 270: 28118–28125CrossRefGoogle Scholar
  123. Zanetti G and Merati G (1987) Interaction between photosystem I and ferredoxin. Identification by chemical cross-linking of the polypeptide which binds ferredoxin. Eur J Biochem 169: 143–146PubMedCrossRefGoogle Scholar
  124. Zhang SP and Scheller HV (2004) Light-harvesting complex II binds to several small subunits of photosystem I. J Biol Chem 279: 3180–3187PubMedCrossRefGoogle Scholar
  125. Zhao J, Li N, Warren PV, Golbeck JH and Bryant DA (1992) Site-directed conversion of a cysteine to aspartate leads to the assembly of a [3Fe–4S] cluster in PsaC of photosystem I. The photoreduction of FA is independent of FB. Biochemistry 31: 5093–5099PubMedCrossRefGoogle Scholar
  126. Zhao J, Snyder WB, Mühlenhoff U, Rhiel E, Warren PV, Golbeck JH and Bryant DA (1993) Cloning and characterization of the psaE gene of the cyanobacterium Synechococcus sp. PCC 7002: characterization of a psaE mutant and overproduction of the protein in Escherichia coli. Mol Microbiol 9: 183–194PubMedCrossRefGoogle Scholar
  127. Zilber M, Malkin R (1988) Ferredoxin cross-links to a 22 kDa subunit of photosystem I. Plant Physiol 88: 810–814PubMedCrossRefGoogle Scholar
  128. Zouni A, Jordan R, Schlodder E, Fromme P and Witt H (2000) First photosystem II crystals capable of water oxidation. Biochim Biophys Acta 1457: 103–105PubMedCrossRefGoogle Scholar
  129. Zouni A, Witt HT, Kern J, Fromme P, Krauβ N, Saenger W and Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Petra Fromme
    • 1
  • Ingo Grotjohann
    • 1
  1. 1.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA

Personalised recommendations