Historical Introduction to Photosystem I: The Discovery of the A1 and A2(Fx?) Acceptors by Time-Resolved Optical Spectroscopy

  • Paul Mathis
  • Kenneth Sauer
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 24)


This chapter summarizes some of the results obtained by the authors, in a collaborative work done in 1976–1977, about the Photosystem I electron acceptors. The results are placed in a historical perspective and discussed in the light of the present knowledge on the Photosystem I reaction center.


Electron Acceptor Triplet State Spinach Chloroplast Primary Electron Donor Primary Electron Acceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bearden AJ and Malkin R (1975) Primary photochemical reactions in chloroplast photosynthesis. Quart Rev Biophys 7: 131–177Google Scholar
  2. Bearden AJ and Malkin R (1976) Chloroplast photosynthesis: the RC of Photosystem I. Brookhaven Symp Biol 28: 247–266PubMedGoogle Scholar
  3. Blankenship R, McGuire A and Sauer K (1975) Chemically induced dynamic electron polarization in chloroplasts at room temperature: evidence for triplet state participation in photosynthesis. Proc Natl Acad Sci USA 72: 4943–4947PubMedCrossRefGoogle Scholar
  4. Borg DC, Fajer J, Felton RH and Dolphin D (1970) The π-cation radical of chlorophyll a. Proc Natl Acad Sci USA 67: 813–820PubMedCrossRefGoogle Scholar
  5. Brettel K (1989) New assignment for the 250 μs kinetics in Photosystem I: P-700+ recombines with A1 (not FX ). Biochim Biophys Acta 976: 246–249CrossRefGoogle Scholar
  6. Brettel K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta 1318: 322–373CrossRefGoogle Scholar
  7. Brettel K and Golbeck JH (1995) Spectral and kinetic characterization of electron acceptor A1 in a Photosystem I core devoid of iron–sulfur centers FX, FB and FA. Photosynth Res 45: 183–195CrossRefGoogle Scholar
  8. Brettel K, Sétif P and Mathis P (1986) Flash-induced absorption changes in photosystem I at low temperature: evidence that the electron acceptor A1 is vitamin K1. FEBS Lett 203: 220–224CrossRefGoogle Scholar
  9. Diaz-Quintana A, Leibl W, Bottin H and Sétif P (1998) Electron transfer in Photosystem I RCs follows a linear pathway in which iron–sulfur cluster FB is the immediate electron donor to soluble ferredoxin. Biochemistry 37: 3429–3439PubMedCrossRefGoogle Scholar
  10. Dismukes GC, McGuire A, Blankenship R and Sauer K (1978) Electron spin polarization in photosynthesis and the mechanism of electron transfer in Photosystem I. Biophys J 21: 239–256PubMedGoogle Scholar
  11. Evans MCW, Telfer A and Lord AV (1972) Evidence for the role of a bound ferredoxin as the primary electron acceptor of Photosystem I in spinach chloroplasts. Biochim Biophys Acta 267: 530–537PubMedCrossRefGoogle Scholar
  12. Evans MCW, Reeves SG and Cammack (1974) Determination of the oxidation–reduction potential of the bound iron–sulphur proteins of the primary electron acceptor complex of Photosystem I in spinach chloroplasts. FEBS Lett 49: 111–114PubMedCrossRefGoogle Scholar
  13. Evans MCW, Sihra CK, Bolton JR and Cammack R (1975) Primary electron acceptor complex of photosystem I in spinach chloroplasts. Nature 256: 668–670CrossRefGoogle Scholar
  14. Frank HA, McLean MB and Sauer K (1979) Triplet states in photosystem I of spinach chloroplasts and subchloroplast particles. Proc Natl Acad Sci USA 76: 5124–5128PubMedCrossRefGoogle Scholar
  15. Golbeck JH and Cornelius JM (1986) Photosystem I charge separation in the absence of centers A and B. I. Optical characterization of center “A2” and evidence for its association with a 64-kDa peptide. Biochim Biophys Acta 849: 16–24CrossRefGoogle Scholar
  16. Golbeck J, Velthuys BR and Kok B (1978) Evidence that the intermediate electron acceptor, A2, in Photosystem I is a bound iron–sulfur protein. Biochim Biophys Acta 504: 226–230PubMedCrossRefGoogle Scholar
  17. Guergova-Kuras M, Bourdeaux B, Joliot A, Joliot P and Redding K (2001) Evidence for two active branches for electron transfer in Photosystem I. Proc Natl Acad Sci USA 98: 4437–4442PubMedCrossRefGoogle Scholar
  18. Haveman J and Mathis P (1976) Flash-induced absorption changes of the primary donor of Photosystem II at 820 nm in chloroplasts inhibited by low pH or Tris treatment. Biochim Biophys Acta 440: 346–355PubMedCrossRefGoogle Scholar
  19. Hiyama T and Ke B (1971) A new photosynthetic pigment, “P430”: its possible role as the primary electron acceptor of Photosystem I. Proc Natl Acad Sci USA 68: 1010–1013PubMedCrossRefGoogle Scholar
  20. Hoff AJ (1981) Magnetic field effects on photosynthetic reactions. Q. Rev. Biophys. 14: 599–665PubMedCrossRefGoogle Scholar
  21. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  22. Ke B (1973) The primary electron acceptor of Photosystem I. Biochim Biophys Acta 301: 1–33PubMedGoogle Scholar
  23. Ke B and Beinert H (1973) Evidence for the identity of P430 of Photosystem I and chloroplast-bound iron–sulfur protein. Biochim Biophys Acta 305: 689–693PubMedCrossRefGoogle Scholar
  24. Kelly J and Sauer K (1965) Action spectrum and quantum requirements for the photoreduction of cytochrome c with spinach chloroplasts. Biochemistry 4: 2798–2802PubMedCrossRefGoogle Scholar
  25. Kelly J and Sauer K (1968) Functional photosynthetic unit sizes for each of the two light reactions in spinach chloroplasts. Biochemistry 7: 882–890PubMedCrossRefGoogle Scholar
  26. Malkin R and Bearden AJ (1971) Primary reactions of photosynthesis: photoreduction of a bound chloroplast ferredoxin at low temperature as detected by EPR spectroscopy. Proc Natl Acad Sci USA 68: 16–19PubMedCrossRefGoogle Scholar
  27. Mathis P and Conjeaud H (1979) Rapid reduction of P-700 photooxidized by a flash at low temperature in spinach chloroplasts. Photochem Photobiol 29: 833–837Google Scholar
  28. Mathis P and Vermeglio A (1975) Chlorophyll radical cation in Photosystem II of chloroplasts. Millisecond decay at low temperature. Biochim Biophys Acta 369: 371–381Google Scholar
  29. Mathis P, Sauer K and Rémy R (1978) Rapidly reversible flash-induced electron transfer in a P700 chlorophyll–protein complex isolated with SDS. FEBS Lett 88: 275–278CrossRefGoogle Scholar
  30. McIntosh AR, Chu M and Bolton JR (1975) Flash photolysis electron spin resonance studies of the electron acceptor species at low temperatures in Photosystem I of spinach subchloroplast particles. Biochim Biophys Acta 376: 308–314PubMedCrossRefGoogle Scholar
  31. Norris JR, Uphaus RA, Crespi HL and Katz JJ (1971) Electron spin resonance of chlorophyll and the origin of Signal I in photosynthesis. Proc Natl Acad Sci USA 68: 625–628PubMedCrossRefGoogle Scholar
  32. Parson WW and Monger TG (1976) Interrelationships between excited states in bacterial RCs. Brookhaven Symp Biol 28: 195–212PubMedGoogle Scholar
  33. Parson WW, Clayton RK and Cogdell RJ (1975) Excited states of photosynthetic RCs at low redox potentials. Biochim Biophys Acta 387: 265–278PubMedCrossRefGoogle Scholar
  34. Philipson KD, Sato VL and Sauer K (1972) Exciton interaction in the Photosystem I RC from spinach chloroplasts. Absorption and circular dichroism difference spectra. Biochemistry 11: 4591–4595PubMedCrossRefGoogle Scholar
  35. Polm M and Brettel K (1998) Secondary pair charge recombination in Photosystem I under strongly reducing conditions: temperature dependence and suggested mechanism. Biophys J 74: 3173–3181PubMedGoogle Scholar
  36. Rutherford AW and Mullet JE (1981) RC triplet states in Photosystem I and Photosystem II. Biochim Biophys Acta 635: 225–235PubMedCrossRefGoogle Scholar
  37. Sauer K and Biggins J (1965) Action spectra and quantum yields for nicotinamide adenine dinucleotide phosphate reduction by chloroplasts. Biochim Biophys Acta 102: 55–72PubMedCrossRefGoogle Scholar
  38. Sauer K, Acker S, Mathis P and van Best J (1977) Optical studies of Photosystem I particles: evidence for the presence of multiple electron acceptors. In: Packer L, Papageorgiou GC and Trebst A (eds) Bioenergetics of Membranes, pp 351–359. Elsevier/North Holland Biomedical Press, AmsterdamGoogle Scholar
  39. Sauer K, Mathis P, Acker S and van Best J (1978) Electron acceptors associated with P700 in Triton-solubilized Photosystem I particles from spinach chloroplasts. Biochim Biophys Acta 503: 120–134PubMedCrossRefGoogle Scholar
  40. Sauer K, Mathis P, Acker S and van Best J (1979) Absorption changes of P700 reversible in milliseconds at low temperature in Triton-solubilized Photosystem I particles. Biochim Biophys Acta 545: 466–472PubMedCrossRefGoogle Scholar
  41. Schlodder E, Falkenberg K, Gergeleit M and Brettel K (1998) Temperature dependence of forward and reverse electron transfer from A1 , the reduced secondary electron acceptor in Photosystem I. Biochemistry 37: 9466–9476PubMedCrossRefGoogle Scholar
  42. Sétif P and Bottin H (1989) Identification of electron-transfer reactions involving the acceptor A1 of Photosystem I at room temperature. Biochemistry 28: 2689–2697CrossRefGoogle Scholar
  43. Sétif P and Brettel K (1990) Photosystem I photochemistry under highly reducing conditions: study of the P700 triplet state formation from the secondary radical pair (P700+-A1 . Biochim Biophys Acta 1020: 232–238CrossRefGoogle Scholar
  44. Sétif P, Hervo G and Mathis P (1981) Flash-induced absorption changes in Photosystem I: radical pair or triplet state formation? Biochim Biophys Acta 638: 257–267CrossRefGoogle Scholar
  45. Sétif P, Quaegebeur JP and Mathis P (1982) Primary processes in Photosystem I. Identification and decay kinetics of the P700 triplet state. Biochim Biophys Acta 681: 345–353CrossRefGoogle Scholar
  46. Sétif P, Mathis P, Lagoutte B and Duranton J (1984a) Electron acceptors in PS-I: comparison of A2 and FX. In: Sybesma C (ed) Advances in Photosynthesis Research, Vol I, pp. 589–592, Martinus Nijhoff/Dr W Junk Publishers, The HagueGoogle Scholar
  47. Sétif P, Mathis P and Vänngård T (1984b) Photosystem I photochemistry at low temperature. Heterogeneity in pathways for electron transfer to the secondary acceptors and for recombination processes. Biochim Biophys Acta 767: 404–414CrossRefGoogle Scholar
  48. Shiozawa JA, Alberte RS and Thornber JP (1974) The P700-chlorophyll a–protein. Arch Biochem Biophys 165: 388–397PubMedCrossRefGoogle Scholar
  49. Sun ASK and Sauer K (1971) Pigment systems and electron transport in chloroplasts I. Quantum requirements for the two light reactions in spinach chloroplasts. Biochim Biophys Acta 234: 399–414PubMedCrossRefGoogle Scholar
  50. Van Best J and Mathis P (1978) Kinetics of reduction of the oxidized primary electron donor of Photosystem II in spinach chloroplasts and in Chlorella cells in the microsecond and nanosecond time ranges following flash excitation. Biochim Biophys Acta 503: 178–188PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Paul Mathis
    • 1
  • Kenneth Sauer
    • 2
  1. 1.Service de Bioénergétique, DBJC, CEA/SaclayFrance
  2. 2.Chemistry DepartmentUniversity of California and Calvin LaboratoryBerkeleyUSA

Personalised recommendations