Advertisement

Photosystem I pp 595-610 | Cite as

Modeling of Optical Spectra and Light Harvesting in Photosystem I

  • Thomas Renger
  • Eberhard Schlodder
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 24)

Abstract

In this chapter, structure-based modeling of excitation energy transfer and trapping in Photosystem I (PS I) core complexes will be addressed. The prerequisite for modeling is the knowledge of the spatial arrangement of the pigments (distances between pigments, orientation of their transition dipole moments) and the understanding of the spectral properties of the core antenna and the reaction center. The former is provided by the X-ray structure of trimeric photosystem I core complexes from Thermosynechococcus elongatus (formerly Synechococcus elongatus) at 2.5 Å resolution (Jordan et al., 2001). The spectral properties are determined by the local transition energies of the pigments, the pigment–pigment interactions and the coupling of the electronic pigment transitions with pigment and protein vibrations. The simultaneous description of the dynamics of excitation energy transfer and of the spectral properties of PS I is a major challenge for the theory. In this chapter, recent theoretical attempts in the literature and our own work are described. The focus is put on the question of how the different approaches relate to experimental data.

Keywords

Exciton State Excitation Energy Transfer Site Energy Linear Dichroism Dipole Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beddard GS (1998) Excitations and excitons in photosystem I. Phil Trans R Soc Lond A 356: 421–448CrossRefGoogle Scholar
  2. Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635PubMedCrossRefGoogle Scholar
  3. Brüggemann B, Sznee K, Novoderezhkin V, van Grondelle R and May V (2004) From structure to dynamics: Modeling excition dynamics in the photosynthetic antenna PS I. J Phys Chem B 108: 13536–13546CrossRefGoogle Scholar
  4. Byrdin M, Rimke I, Schlodder E, Stehlik D and Roelofs TA (2000) Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: are the kinetics of excited state decay trap-limited or transfer-limited? Biophys J 79: 992–1007PubMedGoogle Scholar
  5. Byrdin M, Jordan P, Krauß N, Fromme P, Stehlik D and Schlodder E (2002) Light harvesting in photosystem I –modeling based on the 2.5 Å structure of photosystem I from Synechococcus elongatus. Biophys J 83: 433–457PubMedGoogle Scholar
  6. Chang JC (1977) Monopole effects on electronic excitation interactions between large molecules. I. Application to energy transfer in chlorophylls. J Chem Phys 67: 3901–3909CrossRefGoogle Scholar
  7. Damjanovic A, Vaswani HM, Fromme P and Flemming GR (2002) Chlorophyll excitations in Photosystem I of Synechococcus elongatus. J Phys Chem B 106: 10251–10262CrossRefGoogle Scholar
  8. Dempster S, Jang S and Silbey R (2001) Single molecule spectroscopy of disordered circular aggregates: A perturbation analysis. J Chem Phys 114: 10015–10023CrossRefGoogle Scholar
  9. Dorra D, Fromme P, Karapetyan NV and Holzwarth AR (1998) Fluorescence kinetics of photosystem I: multiple fluorescence components. In: Garab G (ed) Proceedings of the XIth International Photosynthesis Congress, pp 587–590. Kluwer Academic Publishers, DordrechtGoogle Scholar
  10. Du M, Xie X, Jia Y, Mets L and Fleming GR (1993) Direct observation of ultrafast energy transfer in PS I core antenna. Chem Phys Lett 201: 535–542CrossRefGoogle Scholar
  11. Eccles J and Honig B (1983) Charges amino acids as spectroscopic determinants for chlorophyll in vivo. Proc Natl Acad Sci USA 80: 4959–4962PubMedCrossRefGoogle Scholar
  12. Fetisova Z, Freiberg A, Mauring K, Novoderezhkin V, Taisova A and Timpmann K (1996) Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies. Biophys J 71: 995–1010PubMedGoogle Scholar
  13. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys (Leipzig) 2: 47–54Google Scholar
  14. Förster T (1965) Delocalized excitation and excitation transfer. In: Sinnanoğlu O (ed) Modern Quantum Chemistry, Vol IIIB, pp 93–137. Academic Press, New YorkGoogle Scholar
  15. Gillie JK, Lyle PA, Small GJ and Golbeck JH (1989) Spectral holeburning of the primary electron donor state of Photosystem I. Photosynth Res 22: 233–246CrossRefGoogle Scholar
  16. Gobets B, Dekker JP and van Grondelle R (1998) Transfer-to-the-trap limited model of energy transfer in photosystem I. In: Garab G (ed) Proceedings of the XIth International Photosynthesis Congress, pp 503–508. Kluwer Academic Publishers, DordrechtGoogle Scholar
  17. Gobets B, van Stokkum IHM, Rögner M, Kruip J, Schlodder E, Karapetyan NV, Dekker JP and van Grondelle R (2001) Time resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: a unified compartmental model. Biophys J 81: 407–424PubMedGoogle Scholar
  18. Gobets B, van Stokkum IHM, van Mourik F, Rögner M, Kruip J, Dekker JP and van Grondelle R (2003) Excitation wavelength dependence of the fluorescence kinetics in photosystem I particles from Synechocystis sp. PCC 6803 and Synechococcus elongatus. Biophys J 85: 3883–3898PubMedCrossRefGoogle Scholar
  19. Gudowska-Nowak E, Newton MD and Fajer J (1990) Conformational and environmental effects on bacteriochlorophyll optical spectra: correlations of calculated spectra with structural results. J Phys Chem 94: 5795–5801CrossRefGoogle Scholar
  20. Hastings G, Reed LJ, Lin S and Blankenship B (1995) Excited state dynamics in photosystem I: effects of detergent and excitation wavelength. Biophys J 69: 2044–2055PubMedGoogle Scholar
  21. Holzwarth AR, Schatz G, Brock H and Bittersmann E (1993) Energy transfer and charge separation kinetics in photosystem I. Part I: picosecond transient absorption and fluorescence study of cyanobacterial photosystem I particles. Biophys J 64: 1813–1826PubMedGoogle Scholar
  22. Jordan P, Fromme P, Klukas O, Witt HT, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  23. Käß H, Fromme P, Witt HT and Lubitz W (2001) Orientation and electronic structure of the primary electron donor radical cation in photosystem I: a single crystal EPR and ENDOR Study. J Phys Chem B 105: 1225–1239CrossRefGoogle Scholar
  24. Kennis JTM, Gobets B, van Stokkum IHM, Dekker JP, van Grondelle R and Flemming GR (2001) Light harvesting by chlorophylls and carotenoids in the photosystem I core complex of Synechococcus elongatus: a fluorescence upconversion study. J Phys Chem 105: 4485–4494Google Scholar
  25. Knapp EW (1984) Lineshape of molecular aggregates. Exchange narrowing and intersite correlation. Chem Phys 85: 73–82Google Scholar
  26. Krauß N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT and Saenger W (1993) 3-Dimensional structure of system-I of photosynthesis at 6 Å resolution. Nature 361: 326–331CrossRefGoogle Scholar
  27. Krawczyk S (1991) Electrochromism of chlorophyll a monomer and special pair dimer. Biochim Biophys Acta 1056: 64–70CrossRefGoogle Scholar
  28. Krueger BP, Scholes GD and Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem 102: 5378–5386Google Scholar
  29. Lax E (1952) The Franck–Condon principle and its application to crystals. J Chem Phys 20: 1752–1760CrossRefGoogle Scholar
  30. May V and Kühn O (2000) Charge and Energy Transfer Dynamics in Molecular Systems. Wiley-VCH, Berlin, GermanyGoogle Scholar
  31. Mukai K, Abe S and Sumi H (1999) Theory of rapid excitation-energy transfer from B800 to optically forbidden exciton states of B850 in the antenna system LH2 of photosynthetic purple bacteria. J Phys Chem B 103: 6096–6102CrossRefGoogle Scholar
  32. Pålsson LO, Flemming C, Gobets B, van Grondelle R, Dekker JP and Schlodder E (1998) Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys J 74: 2611–2622PubMedGoogle Scholar
  33. Renger T and Marcus RA (2002) On the relation of protein dynamics and exciton relaxation in pigment–protein complexes: an estimation of the spectral density and a theory for the calculation of optical spectra. J Chem Phys 116: 9997–10019CrossRefGoogle Scholar
  34. Renger T and Marcus RA (2003) Variable range hopping electron transfer through disordered bridge states: application to DNA. J Phys Chem A 107: 8404–8419CrossRefGoogle Scholar
  35. Renger T, May V and Kühn O (2001) Ultrafast excitation energy transfer dynamics in photosynthetic pigment–protein complexes. Phys Rep 343: 138–254CrossRefGoogle Scholar
  36. Rutherford AW and Sétif P (1990) Orientation of P700, the primary electron donor of photosystem I. Biochim Biophys Acta 1019: 128–132CrossRefGoogle Scholar
  37. Scherz A and Parson WW (1984) Exciton interactions in dimers of bacteriochlorophyll and related molecules. Biochim Biophys Acta 766: 666–678CrossRefGoogle Scholar
  38. Schubert WD, Klukas O, Krauß N, Saenger W, Witt HT, Fromme P and Witt HT (1997) Photosystem I of Synechococcus elongatus at 4 Å resolution: comprehensive structure analysis. J Mol Biol 272: 741–769PubMedCrossRefGoogle Scholar
  39. Sener MK, Lu DY, Ritz T, Park S, Fromme P and Schulten K (2002) Robustness and optimality of light harvesting in cyanobacterial Photosystem I. J Phys Chem B 106: 7948–7960CrossRefGoogle Scholar
  40. Sumi H (1999) Theory on rates of excitation-energy transfer between molecular aggregates through distributed dipoles with application to the antenna system in bacterial photosynthesis. J Phys Chem B 103: 252–260CrossRefGoogle Scholar
  41. van Amerongen H, Valkunal L and van Grondelle R (2000) Photosynthetic Excitons. World Scientific, London, U.K.Google Scholar
  42. White NTH, Beddard GS, Thorne JRG, Feehan TM, Keyes TE and Heathcote P (1996) Primary charge separation and energy transfer in the photosystem I reaction center of higher plants. J Phys Chem 100: 12086–12099CrossRefGoogle Scholar
  43. Witt H, Schlodder E, Teutloff C, Niklas J, Bordignon E, Carbonera D, Kohler S, Labahn A and Lubitz W (2002) Hydrogen bonding to P700 –site-directed mutagenesis of threonine A739 of photosystem I in Chlamydomonas reinhardtii. Biochemistry 41: 8557–8569PubMedCrossRefGoogle Scholar
  44. Yang M and Fleming GR (2002) Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations. Chem Phys 282: 163–180CrossRefGoogle Scholar
  45. Yang M, Damjanovic A, Vaswani HM and Fleming GR (2003) Energy transfer in Photosystem I of cyanobacteria Synechococcus elongatus: model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys J 85: 140–158PubMedGoogle Scholar
  46. Zazubovich V, Matsuzaki S, Johnson TW, Hayes JM, Chitnis PR and Small GJ (2002) Red antenna states of Photosystem I from cyanobacterium Synechococcus elongatus: a spectral hole burning study. Chem Phys 275: 47–59CrossRefGoogle Scholar
  47. Zhang WM, Meier T, Chernyak V and Mukamel S (1998) Exciton migration and three pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J Chem Phys 108: 7763–7774CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Thomas Renger
    • 1
  • Eberhard Schlodder
    • 2
  1. 1.Institut für Chemie (Kristallographie)Freie Universit ät BerlinBerlinGermany
  2. 2.Max-Volmer-Laboratorium für Biophysikalische Chemie, Fakult ät IITechnische Universit ät BerlinBerlinGermany

Personalised recommendations