Skip to main content

Modeling of Optical Spectra and Light Harvesting in Photosystem I

  • Chapter
Photosystem I

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 24))

Abstract

In this chapter, structure-based modeling of excitation energy transfer and trapping in Photosystem I (PS I) core complexes will be addressed. The prerequisite for modeling is the knowledge of the spatial arrangement of the pigments (distances between pigments, orientation of their transition dipole moments) and the understanding of the spectral properties of the core antenna and the reaction center. The former is provided by the X-ray structure of trimeric photosystem I core complexes from Thermosynechococcus elongatus (formerly Synechococcus elongatus) at 2.5 Å resolution (Jordan et al., 2001). The spectral properties are determined by the local transition energies of the pigments, the pigment–pigment interactions and the coupling of the electronic pigment transitions with pigment and protein vibrations. The simultaneous description of the dynamics of excitation energy transfer and of the spectral properties of PS I is a major challenge for the theory. In this chapter, recent theoretical attempts in the literature and our own work are described. The focus is put on the question of how the different approaches relate to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beddard GS (1998) Excitations and excitons in photosystem I. Phil Trans R Soc Lond A 356: 421–448

    Article  CAS  Google Scholar 

  • Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635

    Article  PubMed  CAS  Google Scholar 

  • Brüggemann B, Sznee K, Novoderezhkin V, van Grondelle R and May V (2004) From structure to dynamics: Modeling excition dynamics in the photosynthetic antenna PS I. J Phys Chem B 108: 13536–13546

    Article  CAS  Google Scholar 

  • Byrdin M, Rimke I, Schlodder E, Stehlik D and Roelofs TA (2000) Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: are the kinetics of excited state decay trap-limited or transfer-limited? Biophys J 79: 992–1007

    PubMed  CAS  Google Scholar 

  • Byrdin M, Jordan P, Krauß N, Fromme P, Stehlik D and Schlodder E (2002) Light harvesting in photosystem I –modeling based on the 2.5 Å structure of photosystem I from Synechococcus elongatus. Biophys J 83: 433–457

    PubMed  CAS  Google Scholar 

  • Chang JC (1977) Monopole effects on electronic excitation interactions between large molecules. I. Application to energy transfer in chlorophylls. J Chem Phys 67: 3901–3909

    Article  CAS  Google Scholar 

  • Damjanovic A, Vaswani HM, Fromme P and Flemming GR (2002) Chlorophyll excitations in Photosystem I of Synechococcus elongatus. J Phys Chem B 106: 10251–10262

    Article  CAS  Google Scholar 

  • Dempster S, Jang S and Silbey R (2001) Single molecule spectroscopy of disordered circular aggregates: A perturbation analysis. J Chem Phys 114: 10015–10023

    Article  CAS  Google Scholar 

  • Dorra D, Fromme P, Karapetyan NV and Holzwarth AR (1998) Fluorescence kinetics of photosystem I: multiple fluorescence components. In: Garab G (ed) Proceedings of the XIth International Photosynthesis Congress, pp 587–590. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Du M, Xie X, Jia Y, Mets L and Fleming GR (1993) Direct observation of ultrafast energy transfer in PS I core antenna. Chem Phys Lett 201: 535–542

    Article  CAS  Google Scholar 

  • Eccles J and Honig B (1983) Charges amino acids as spectroscopic determinants for chlorophyll in vivo. Proc Natl Acad Sci USA 80: 4959–4962

    Article  PubMed  CAS  Google Scholar 

  • Fetisova Z, Freiberg A, Mauring K, Novoderezhkin V, Taisova A and Timpmann K (1996) Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies. Biophys J 71: 995–1010

    PubMed  CAS  Google Scholar 

  • Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys (Leipzig) 2: 47–54

    Google Scholar 

  • Förster T (1965) Delocalized excitation and excitation transfer. In: Sinnanoğlu O (ed) Modern Quantum Chemistry, Vol IIIB, pp 93–137. Academic Press, New York

    Google Scholar 

  • Gillie JK, Lyle PA, Small GJ and Golbeck JH (1989) Spectral holeburning of the primary electron donor state of Photosystem I. Photosynth Res 22: 233–246

    Article  CAS  Google Scholar 

  • Gobets B, Dekker JP and van Grondelle R (1998) Transfer-to-the-trap limited model of energy transfer in photosystem I. In: Garab G (ed) Proceedings of the XIth International Photosynthesis Congress, pp 503–508. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gobets B, van Stokkum IHM, Rögner M, Kruip J, Schlodder E, Karapetyan NV, Dekker JP and van Grondelle R (2001) Time resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: a unified compartmental model. Biophys J 81: 407–424

    PubMed  CAS  Google Scholar 

  • Gobets B, van Stokkum IHM, van Mourik F, Rögner M, Kruip J, Dekker JP and van Grondelle R (2003) Excitation wavelength dependence of the fluorescence kinetics in photosystem I particles from Synechocystis sp. PCC 6803 and Synechococcus elongatus. Biophys J 85: 3883–3898

    Article  PubMed  CAS  Google Scholar 

  • Gudowska-Nowak E, Newton MD and Fajer J (1990) Conformational and environmental effects on bacteriochlorophyll optical spectra: correlations of calculated spectra with structural results. J Phys Chem 94: 5795–5801

    Article  CAS  Google Scholar 

  • Hastings G, Reed LJ, Lin S and Blankenship B (1995) Excited state dynamics in photosystem I: effects of detergent and excitation wavelength. Biophys J 69: 2044–2055

    PubMed  CAS  Google Scholar 

  • Holzwarth AR, Schatz G, Brock H and Bittersmann E (1993) Energy transfer and charge separation kinetics in photosystem I. Part I: picosecond transient absorption and fluorescence study of cyanobacterial photosystem I particles. Biophys J 64: 1813–1826

    CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Klukas O, Witt HT, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Käß H, Fromme P, Witt HT and Lubitz W (2001) Orientation and electronic structure of the primary electron donor radical cation in photosystem I: a single crystal EPR and ENDOR Study. J Phys Chem B 105: 1225–1239

    Article  CAS  Google Scholar 

  • Kennis JTM, Gobets B, van Stokkum IHM, Dekker JP, van Grondelle R and Flemming GR (2001) Light harvesting by chlorophylls and carotenoids in the photosystem I core complex of Synechococcus elongatus: a fluorescence upconversion study. J Phys Chem 105: 4485–4494

    Google Scholar 

  • Knapp EW (1984) Lineshape of molecular aggregates. Exchange narrowing and intersite correlation. Chem Phys 85: 73–82

    CAS  Google Scholar 

  • Krauß N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT and Saenger W (1993) 3-Dimensional structure of system-I of photosynthesis at 6 Å resolution. Nature 361: 326–331

    Article  Google Scholar 

  • Krawczyk S (1991) Electrochromism of chlorophyll a monomer and special pair dimer. Biochim Biophys Acta 1056: 64–70

    Article  CAS  Google Scholar 

  • Krueger BP, Scholes GD and Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem 102: 5378–5386

    CAS  Google Scholar 

  • Lax E (1952) The Franck–Condon principle and its application to crystals. J Chem Phys 20: 1752–1760

    Article  CAS  Google Scholar 

  • May V and Kühn O (2000) Charge and Energy Transfer Dynamics in Molecular Systems. Wiley-VCH, Berlin, Germany

    Google Scholar 

  • Mukai K, Abe S and Sumi H (1999) Theory of rapid excitation-energy transfer from B800 to optically forbidden exciton states of B850 in the antenna system LH2 of photosynthetic purple bacteria. J Phys Chem B 103: 6096–6102

    Article  CAS  Google Scholar 

  • Pålsson LO, Flemming C, Gobets B, van Grondelle R, Dekker JP and Schlodder E (1998) Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys J 74: 2611–2622

    PubMed  Google Scholar 

  • Renger T and Marcus RA (2002) On the relation of protein dynamics and exciton relaxation in pigment–protein complexes: an estimation of the spectral density and a theory for the calculation of optical spectra. J Chem Phys 116: 9997–10019

    Article  CAS  Google Scholar 

  • Renger T and Marcus RA (2003) Variable range hopping electron transfer through disordered bridge states: application to DNA. J Phys Chem A 107: 8404–8419

    Article  CAS  Google Scholar 

  • Renger T, May V and Kühn O (2001) Ultrafast excitation energy transfer dynamics in photosynthetic pigment–protein complexes. Phys Rep 343: 138–254

    Article  Google Scholar 

  • Rutherford AW and Sétif P (1990) Orientation of P700, the primary electron donor of photosystem I. Biochim Biophys Acta 1019: 128–132

    Article  CAS  Google Scholar 

  • Scherz A and Parson WW (1984) Exciton interactions in dimers of bacteriochlorophyll and related molecules. Biochim Biophys Acta 766: 666–678

    Article  CAS  Google Scholar 

  • Schubert WD, Klukas O, Krauß N, Saenger W, Witt HT, Fromme P and Witt HT (1997) Photosystem I of Synechococcus elongatus at 4 Å resolution: comprehensive structure analysis. J Mol Biol 272: 741–769

    Article  PubMed  CAS  Google Scholar 

  • Sener MK, Lu DY, Ritz T, Park S, Fromme P and Schulten K (2002) Robustness and optimality of light harvesting in cyanobacterial Photosystem I. J Phys Chem B 106: 7948–7960

    Article  CAS  Google Scholar 

  • Sumi H (1999) Theory on rates of excitation-energy transfer between molecular aggregates through distributed dipoles with application to the antenna system in bacterial photosynthesis. J Phys Chem B 103: 252–260

    Article  CAS  Google Scholar 

  • van Amerongen H, Valkunal L and van Grondelle R (2000) Photosynthetic Excitons. World Scientific, London, U.K.

    Google Scholar 

  • White NTH, Beddard GS, Thorne JRG, Feehan TM, Keyes TE and Heathcote P (1996) Primary charge separation and energy transfer in the photosystem I reaction center of higher plants. J Phys Chem 100: 12086–12099

    Article  CAS  Google Scholar 

  • Witt H, Schlodder E, Teutloff C, Niklas J, Bordignon E, Carbonera D, Kohler S, Labahn A and Lubitz W (2002) Hydrogen bonding to P700 –site-directed mutagenesis of threonine A739 of photosystem I in Chlamydomonas reinhardtii. Biochemistry 41: 8557–8569

    Article  PubMed  CAS  Google Scholar 

  • Yang M and Fleming GR (2002) Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations. Chem Phys 282: 163–180

    Article  CAS  Google Scholar 

  • Yang M, Damjanovic A, Vaswani HM and Fleming GR (2003) Energy transfer in Photosystem I of cyanobacteria Synechococcus elongatus: model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys J 85: 140–158

    PubMed  CAS  Google Scholar 

  • Zazubovich V, Matsuzaki S, Johnson TW, Hayes JM, Chitnis PR and Small GJ (2002) Red antenna states of Photosystem I from cyanobacterium Synechococcus elongatus: a spectral hole burning study. Chem Phys 275: 47–59

    Article  CAS  Google Scholar 

  • Zhang WM, Meier T, Chernyak V and Mukamel S (1998) Exciton migration and three pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J Chem Phys 108: 7763–7774

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Renger, T., Schlodder, E. (2006). Modeling of Optical Spectra and Light Harvesting in Photosystem I. In: Golbeck, J.H. (eds) Photosystem I. Advances in Photosynthesis and Respiration, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4256-0_35

Download citation

Publish with us

Policies and ethics