Advertisement

Photosystem I pp 529-548 | Cite as

Assembly of the Bound Iron–Sulfur Clusters in Photosystem I

  • Gaozhong Shen
  • John H. Golbeck
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 24)

Abstract

The first attempts to elucidate the molecular mechanisms that function in the bioassembly of the bound Fe/S clusters in Photosystem I (PS I) are discussed. Fe/S proteins participate in a wide variety of processes, the most important of which in photosynthetic organisms are light-mediated electron transport and stress-induced regulation of genes. One of the last steps in the biogenesis of PS I involves the assembly of the three bound [4Fe–4S] clusters FX, FA, and FB. It has been shown that the proteins encoded by the suf regulon are involved in the assembly and repair of the bound Fe/S clusters in cyanobacteria. The SUF system of Fe/S cluster assembly is localized in the chloroplasts of plants; however, no homologs of the suf genes have been identified in nonphotosynthetic eukaryotes.

Keywords

Sulfur Cluster Cluster Assembly Oxygenic Photosynthetic Organism Cysteine Desulfurase Guillardia Theta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Ghany SE, Ye H, Garifullina GF, Zhang L, Pilon-Smits EAH and Pilon M (2005) Iron–sulfur cluster biogenesis in chloroplasts. Involvement of the scaffold protein CpIscA. Plant Physiol 138: 161–172PubMedCrossRefGoogle Scholar
  2. Agar JN, Zheng L, Cash VL and Dean DR (2000) Role of the IscU protein in iron–sulfur cluster biosynthesis: IscS-mediated assembly of a [Fe2–S2] cluster in IscU. J Am Chem Soc 122: 2136–2137CrossRefGoogle Scholar
  3. Antonkine ML, Bentrop D, Bertini I, Luchinat C, Shen G, Bryant DA, Stehlik D and Golbeck JH (2000) Paramagnetic H1 NMR spectroscopy of the reduced, unbound Photosystem I subunit PsaC: sequence specific assignment of contact-shifted resonances and identification of mixed- and equal-valence Fe–Fe pairs in [4Fe–4S] centers F- A and F- B. J Biol Inorg Chem 5: 381–392PubMedCrossRefGoogle Scholar
  4. Antonkine ML, Liu G, Bentrop D, Bryant DA, Bertini I, Luchinat C, Golbeck JH and Stehlik D (2002) Solution structure of the bound, oxidized photosystem I subunit PsaC, containing [4Fe–4S] clusters FA and FB: a conformational change occurs upon binding to Photosystem I. J Biol Inorg Chem 7: 461–472PubMedCrossRefGoogle Scholar
  5. Balasubramanian R, Shen G, Bryant DA and Golbeck, JH (2006) Regulatory roles for IscA and SufA in iron homeostasis and redox stress responses in the cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol 188: 3182–3191PubMedCrossRefGoogle Scholar
  6. Behshad E, Parkin SE and Bollinger JM (2004) Mechanism of cysteine desulfurase Slr0387 from Synechocystis sp. PCC 6803: kinetic analysis of cleavage of the persulfide intermediate by chemical reductants. Biochemistry 43: 12220–12226PubMedCrossRefGoogle Scholar
  7. Beinert H and Kiley PJ (1999) Fe/S proteins in sensing and regulatory functions. Curr Opin Chem Biol 3: 152–157PubMedCrossRefGoogle Scholar
  8. Beinert H, Kennedy CD and Stout CD (1996) Aconitase as iron–sulfur protein, enzyme and iron-regulatory protein. Chem Rev 96: 2335–2373PubMedCrossRefGoogle Scholar
  9. Beinert H, Holm RH and Münck E (1997) Iron–sulfur clusters: nature’s modular, multipurpose structures. Science 277: 653–659PubMedCrossRefGoogle Scholar
  10. Bilder PW, Ding H and Newcomer ME (2004) Crystal structure of the ancient, Fe-S scaffold IscA reveals a novel protein fold. Biochemistry 43: 133–139PubMedGoogle Scholar
  11. Brettel K and Leibl W (2001) Electron transfer in photosystem I. Biochim Biophys Acta 1507: 100–114PubMedCrossRefGoogle Scholar
  12. Choudens SO, Nachin L, Sanakis Y, Loiseau L, Barras F and Fontecave M (2003) SufA from Erwinia chrysanthemi. Characterization of a scaffold protein required for iron–sulfur cluster assembly. J Biol Chem 278: 17993–18001CrossRefGoogle Scholar
  13. Clausen T, Kaiser JT, Steegborn C, Huber R and Kessier D (2000) Crystal structure of the cystine C-S lyase from Synechocystis: stabilization of cysteine persulfide for FeS cluster biosynthesis. Proc Natl Acad Sci USA 97: 3856–3861PubMedCrossRefGoogle Scholar
  14. Cupp-Vickery JR, Urbina H and Vickery LE (2003) Crystal structure of IscS, a cysteine desulfurase from Escherichia coli. J Mol Biol 330: 1049–1059PubMedCrossRefGoogle Scholar
  15. Cupp-Vickery JR, Silberg J, Ta DT and Vickery LE (2004a) Crystal structure of IscA, an iron–sulfur cluster assembly protein from Escherichia coli. J Mol Biol 338: 127–137CrossRefGoogle Scholar
  16. Cupp-Vickery JR, Peterson JC, Ta DT and Vickery LE (2004b) Crystal structure of the molecular chaperone HscA substrate binding domain complexed with the IscU recognition peptide ELPPVKIHC. J Mol Biol 342: 1265–1278CrossRefGoogle Scholar
  17. Dean DR, Bolin JT and Zheng L (1993) Nitrogenase metalloclusters: structures, organization, and synthesis. J Bacteriol 175: 6737–6744PubMedGoogle Scholar
  18. Douglas SE and Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48: 236–244PubMedCrossRefGoogle Scholar
  19. Drapier JC (1997) Interplay between NO and [Fe–S] clusters: relevance to biological systems. Methods 11: 319–329PubMedCrossRefGoogle Scholar
  20. Duff JLC, Breton JLJ, Butt JN, Armstrong FA and Thomson AJ (1996) Novel redox chemistry of the [3Fe–4S] clusters: electrochemical characterization of all-Fe(II) form of the [3Fe–4S] cluster generated reversibly in various proteins and its spectroscopic investigation in Sulfolobus acidocaldarius ferredoxin. J Am Chem Soc 118: 8593–8603CrossRefGoogle Scholar
  21. Duin EC, Lafferty ME, Crouse BR, Allen RM, Sanyal I, Flint DH and Johnson MK (1997) [2Fe–2S] to [4Fe–4S] cluster conversion in Escherichia coli biotin synthase. Biochemistry 36: 11811–11820PubMedCrossRefGoogle Scholar
  22. Emanuelsson O and von Heijne G (2001) Prediction of organellar targeting signals. Biochim Biophys Acta 1541: 114–119PubMedCrossRefGoogle Scholar
  23. Flint DH (1996) Escherichia coli contains a protein that is homologous in function and N-terminal sequence to the protein encoded by the nifS gene of Azotobacter vinelandii and that can participate in the synthesis of the Fe/S cluster of dihydroxy-acid dehydratase. J Biol Chem 271: 16068–16074PubMedGoogle Scholar
  24. Frazzon J and Dean DR (2002) Biosynthesis of the nitrogenase iron-molybdenum-cofactor from Azotobacter vinelandii. Met Ions Biol Syst 39: 163–186PubMedGoogle Scholar
  25. Frazzon J and Dean DR (2003) Formation of iron–sulfur clusters in bacteria: an emerging field in biological chemistry. Curr Opin Chem Biol 7: 166–173PubMedCrossRefGoogle Scholar
  26. Frazzon J, Fick JR and Dean DR (2002) Biosynthesis of iron–sulphur clusters is a complex and highly conserved process. Biochem Soc Trans 30: 680–685PubMedCrossRefGoogle Scholar
  27. Fujii T, Maeda M, Mihara H, Kurihara T, Esaki N and Hata Y (2000) Structure of a NifS homologue: X-ray structure analysis of CsdB, an Escherichia coli counterpart of mammalian selenocysteine lyase. Biochemistry 39: 1263–1273PubMedCrossRefGoogle Scholar
  28. Gaudu P and Weiss B (1996) SoxR, a [2Fe–2S] transcription factor, is active only in its oxidized form. Proc Natl Acad Sci USA 93: 10094–10098PubMedCrossRefGoogle Scholar
  29. Gerber J and Lill R (2002) Biogenesis of iron–sulfur proteins in eukaryotes: components, mechanism and pathology. Mitochondria 2: 71–86CrossRefGoogle Scholar
  30. Glockner G, Rosenthal A and Valentin K (2003) The structure and gene repertoire of an ancient red algal plastid genome. J Mol Evol 51: 382–390Google Scholar
  31. Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 319–360. Kluwer Academic Publishers, DordrechtGoogle Scholar
  32. Golbeck JH (1995) Resolution and reconstitution of Photosystem I. In: Song PS and Horspools WM (eds) CRC Handbook of Organic Photochemistry and Photobiology, pp. 1407–1419. CRC Press, Boca RatonGoogle Scholar
  33. Golbeck JH (1999) A comparative analysis of the spin state distribution of in vivo and in vitro mutants of PsaC. A biochemical argument for the sequence of electron transfer in Photosystem I as FX → FA → FB → ferredoxin/flavodoxin. Photosynth Res 61: 107–149CrossRefGoogle Scholar
  34. Goldsmith-Fischman S, Kuzin A, Edstrom WC, Benach J, Shastry R, Xiao R, Acton TB, Honig B, Montelione GT and Hunt JF (2004) The SufE sulfur-acceptor protein contains a conserved core structure that mediates interdomain interactions in a variety of redox protein complexes. J Mol Biol 344: 549–565PubMedCrossRefGoogle Scholar
  35. Hidalgo EH, Ding G and Demple B (1997) Redox signal transduction via iron–sulfur clusters in the SoxR transcription activator. Trends Biochem Sci 22: 207–210PubMedCrossRefGoogle Scholar
  36. Hjorth E, Hadfi K, Zauner S and Maier UG (2005) Unique genetic compartmentalization of the SUF system in cryptophytes and characterization of a SufD mutant in Arabidopsis thaliana. FEBS Lett 579: 1129–1135PubMedCrossRefGoogle Scholar
  37. Hoff KG, Silberg JJ and Vickery LE (2000) Interaction of the iron–sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proc Natl Acad Sci USA 97: 7790–7795PubMedCrossRefGoogle Scholar
  38. Jacobson MR, Cash VL, Weiss MC, Laird NF, Newton WE and Dean DR (1989) Biochemical and genetic analysis of the NifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 219: 49–57PubMedCrossRefGoogle Scholar
  39. Johnson MK (1998) Iron–sulfur proteins: new roles for old clusters. Curr Opin Chem Biol 2: 173–181PubMedCrossRefGoogle Scholar
  40. Johnson D, Dean DR, Smith AD and Johnson MK (2005) Structure, function and formation of biological iron–sulfur clusters. Annu Rev Biochem 74: 247–281PubMedCrossRefGoogle Scholar
  41. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauβ N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  42. Kaiser JT, Clausen T, Bourenkow GP, Bartunik HD, Steinbacher S and Huber R (2000) Crystal structure of a NifS-like protein from Thermotoga maritime: implications for iron sulfur cluster assembly. J Mol Biol 297: 451–464PubMedCrossRefGoogle Scholar
  43. Kato S, Mihara H, Kurihara T, Takahashi Y, Tokumoto U, Yoshimura T and Esaki N (2002) Cys-328 of IscS and Cys-63 of IscU are the sites of disulfite bridge formation in a covalently bound IscS/IscU complex: implications for the mechanism of iron–sulfur cluster assembly. Proc Natl Acad Sci USA 99: 5948–5952PubMedCrossRefGoogle Scholar
  44. Kaut A, Lange H, Diekert K, Kispal G and Lill R (2000) Isa1p is a component of the mitochondrial machinery for maturation of cellular iron–sulfur proteins and requires conserved cysteine residues for function. J Biol Chem 275: 15955–15961PubMedCrossRefGoogle Scholar
  45. Khoroshilova N, Popescu C, Munck E, Beinert H, Kiley PJ (1997) Iron–sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe–4S] to [2Fe–2S] conversion with loss of biological activity. Proc Natl Acad Sci USA 94: 6087–6092PubMedCrossRefGoogle Scholar
  46. Kowallik KV, Stobe B, Schaffran I, Kroth-Pancic P and Freier U (1995) The chloroplast genome of a chlorophyll a + c-containing alga, Odontella sinensis. Plant Mol Biol Rep 13: 336–342Google Scholar
  47. Krebs C, Agar JN, Smith AD, Frazzon J, Dean DR, Huynh BH and Johnson MK (2001) IscA, an alternate scaffold for Fe/S cluster biosynthesis. Biochemistry 40: 14069–14080PubMedCrossRefGoogle Scholar
  48. Kushnir S, Babiyachuk E, Storozhenko S, Davey M, Papenbrock J, De Rycke RR, Engler G, Stephan U, Lange H, Kispal G, Lill R and Montagu MV (2001) A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant Starik. Plant Cell 13: 89–100PubMedCrossRefGoogle Scholar
  49. Lang T and Kesseler D (1999) Evidence for cystine persulfide as reaction product of l-cyst(e)ine C-S-lyase (C-DES) from Synechocystis. Analysis using cystine analogues and recombinant C-DES. J Biol Chem 274: 189–195PubMedCrossRefGoogle Scholar
  50. Léon S, Touraine B, Briat JF and Lobreaux. S (2002) The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. Biochem J 366: 557–564PubMedCrossRefGoogle Scholar
  51. Léon S, Touraine B, Ribot C, Briat JF and Lobreaux S (2003) Iron–sulfur cluster assembly in plants: distinct NFU proteins in mitochondria and plastids from Arabidopsis thaliana. Biochem J 371: 823–830PubMedCrossRefGoogle Scholar
  52. Lezhneva L, Amann K and Meurer J (2004) The universally conserved HCF101 protein is involved in assembly of [4Fe–4S]-cluster-containing complexes in Arabidopsis thaliana chloroplasts. Plant J 37: 174–185PubMedGoogle Scholar
  53. Li H, Theg SM, Bauerle CM and Keegstra K (1990) Metal-ion-center assembly of ferredoxin and plastocyanin in isolated chloroplasts. Pro Natl Acad Sci USA 87: 6748–6752CrossRefGoogle Scholar
  54. Lill R and Kispal G (2000) Maturation of cellular Fe/S proteins: the essential function of mitochondria. Trends Biochem Sci 25: 352–356PubMedCrossRefGoogle Scholar
  55. Lill R and Mühlenhoff U (2005) Iron–sulfur-protein biogenesis in eukaryotes. Trends Biochem Sci 30: 133–141PubMedCrossRefGoogle Scholar
  56. Lima CD (2002) Analysis of the E. coli NifS CsdB protein at 2.0 Å reveals the structure basis for perselenide and persulfide intermediate formation. J Mol Biol 315: 1199–1208PubMedCrossRefGoogle Scholar
  57. Loiseau L, Ollagnier-De-Choudens S, Nachin L, Fonteave M and Barras F (2003) Biogenesis of Fe/S cluster by the bacterial Suf system. SufS and SufE form a new type of cysteine desulfurase. J Biol Chem 278: 38352–38359PubMedCrossRefGoogle Scholar
  58. Malkin R and Rabinowitz J (1966) The reconstitution of Clostridial ferredoxin. Biochem Biophys Res Commun 23: 822–827PubMedCrossRefGoogle Scholar
  59. Martens EC, Gawronski-salerno J, Vokal DL, Pellitteri MC, Menard ML and Goodrich-Blair H (2003) Xenorhabdus nematophila required an intact iscRSUA-hscBA-fdx operon to colonize Steinernema carpocapsae Nematodes. J Bacteriol 185: 3678–3682PubMedCrossRefGoogle Scholar
  60. Masclaux C and Experts D (1995) Signalling potential of iron in plant microbe interactions: the pathogenic switch of iron transport in Erwinia chrysanthemi. Plant J 7: 121–128CrossRefGoogle Scholar
  61. Mehari TK, Parrett G, Warren PV and Golbeck JH (1991) Reconstitution of the iron–sulfur clusters in the isolated FA/FB protein: EPR spectral characterization of same-species and cross-species Photosystem I complexes. Biochim Biophys Acta 1056: 139–148CrossRefGoogle Scholar
  62. Mihara H and Esaki N (2002) Bacterial cysteine desulfurase: their function and mechanisms. Appl Microbiol Biotechnol 60: 12–23PubMedCrossRefGoogle Scholar
  63. Mihara K, Maeda M, Fujii T, Kurihara T, Hata Y and Esaki N (1999) A nifS-like gene, csdB, encodes an Escherichia coli counterpart of mammalian slenocysteine lyase. Gene cloning, purification, characterization and preliminary X-ray crystallographic studies. J Biol Chem 274: 14768–14772PubMedCrossRefGoogle Scholar
  64. Mihara H, Kato S-I, Lacouriere GM, Stadtman TC, Kennedy RA, Kurihara T, Tokumoto U, Takahashi Y and Esaki N (2002) The iscS gene is essential for the biosynthesis of 2-selenouridine in tRNA and selenocysteine-containing formate dehydrogenase H. Proc Natl Acad Sci USA 99: 6679–6683PubMedCrossRefGoogle Scholar
  65. Møller SG, Kunkel T and Chau NH (2001) A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev 15: 90–103PubMedCrossRefGoogle Scholar
  66. Morimoto K, Nishio K and Nakai M (2002) Identification of a novel prokaryotic HEAT-repeats-containing protein which interacts with a cyanobacterial IscA homolog. FEBS Lett 519: 123–127PubMedCrossRefGoogle Scholar
  67. Mühlenhoff U and Lill R (2000) Biogenesis of iron–sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. Biochim Biophys Acta 1459: 370–382PubMedCrossRefGoogle Scholar
  68. Nachin L, Hassouni M, Loiseau L, Expert LD and Barras F (2001) SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase. Mol Microbiol 39: 960–972PubMedCrossRefGoogle Scholar
  69. Nachin L, Loiseau L, Expert LD and Barras F (2003) SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe/S] biogenesis under oxidative stress. EMBO J 22: 427–437PubMedCrossRefGoogle Scholar
  70. Nakamura M, Saeki K and Takahashi Y (1999) Hyperproduction of recombinant ferredoxins in Escherichia coli by coexpression of the ORF1–ORF2–iscS–iscU–iscA–hscB–hscA–fdx--ORF3 gene cluster. J Biochem 126: 10–18PubMedGoogle Scholar
  71. Natarajan K and Cowan JA (1997) Identification of a key intermediate of relevance to iron–sulfur cluster biosynthesis. Mechanism of cluster assembly and implication for protein folding. J Am Chem Soc 119: 4082–4083CrossRefGoogle Scholar
  72. Nishio K and Nakai M (2000) Transfer of iron–sulfur cluster from NifU to apoprotein. J Biol Chem 275: 22615–22618PubMedCrossRefGoogle Scholar
  73. Ohta N, Matsuzaki M, Misumi O, Miyagishima SY, Nozaki H, Tanaka K, Shin-I T, Kohara Y and Kuroiwa T (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10: 67–77PubMedCrossRefGoogle Scholar
  74. Ollagnier-de-Choudens S, Mattioli T, Takahashi Y and Fontecave M (2001) Iron–sulfur cluster assembly. Characterization of IscA and evidence for a specific and functional complex with ferredoxin. J Biol Chem 276: 22604–22607PubMedCrossRefGoogle Scholar
  75. Outten FW, Wood MJ, Munoz FM and Storz G (2003) The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe/S cluster assembly in E. coli. J Biol Chem 278: 45713–45719PubMedCrossRefGoogle Scholar
  76. Patzer SI and Hantke K (1999) SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe–2S] FhuF protein in Escherichia coli. J Bacteriol 181: 3307–3309PubMedGoogle Scholar
  77. Pilon-Smits EA, Garifullina GF, Abdel-Ghany S, Kato S, Mihara H, Hale KL, Burkhead J, Esaki N, Kurihara T and Pilon M (2002) Characterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism. Plant Physiol 130: 1309–1318PubMedCrossRefGoogle Scholar
  78. Pomposiello PJ and Demple B (2001) Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol 19: 109–114PubMedCrossRefGoogle Scholar
  79. Ramelot TA, Cort JR, Goldsmith-Fischman S, Kornhaber GJ, Xiao R, Shastry R, Acton TB, Honig B, Montelione GT and Kennedy MA (2004) Solution NMR structure of the iron–sulfur cluster assembly protein U (IscU) with zinc bound at the active site. J Mol Biol 344: 567–583PubMedCrossRefGoogle Scholar
  80. Rangachari K, Davis CT, Eccleston JF, Hirst EMA, Saldanha JW, Strath M and Wilson RJM (2002) SufC hydrolyzes ATP and interacts with SufB from Thermotoga maritime. FEBS Lett 514: 225–228PubMedCrossRefGoogle Scholar
  81. Reith ME and Munholland J (1995) Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13: 333–335Google Scholar
  82. Sakuragi Y, Zybailov B, Shen G, Bryant DA, Golbeck JH, Diner BA, Karygina I, Pushkar Y and Stehlik D. (2005) Recruitment of a foreign quinone into the A1 site of Photosystem I. Characterization of a menB rubA double deletion mutant in Synechococcus sp. PCC 7002 devoid of FX, FA, and FB and containing plastoquinone or exchanged 9,10-anthraquinone. J. Biol Chem 280: 12371–12381PubMedCrossRefGoogle Scholar
  83. Schilke B, Voisine H and Craig E (1999) Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96: 10206–10211PubMedCrossRefGoogle Scholar
  84. Schubert WD, Klukas O, Krauβ N and Saenger W (1997) Photosystem I of Synechococcus elongatus at 4 Å resolution: comprehensive structure analysis. J Mol Biol 272: 741–769PubMedCrossRefGoogle Scholar
  85. Schürmann P and Buchanan BB (2001) The structure and function of the ferredoxin/thioredoxin system in photosynthesis. In: Aro EM and Andersson B (eds) Regulation of Photosynthesis, pp 331–361. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  86. Schwartz CJ, Djaman O, Imlay JA and Kiley PJ (2000) The cysteine desulfurase, IscS, has a major role in in vivo Fe/S cluster formation in Escherichia coli. Proc Natl Acad Sci USA 97: 9009–9014PubMedCrossRefGoogle Scholar
  87. Schwartz CJ, Giel JL, Patschkowski T, Luther TC, Ruzicka FJ, Beinert H and Kiley PJ (2001) IscR, an Fe/S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe/S cluster assembly proteins. Proc Natl Acad Sci USA 98: 14895–14900PubMedCrossRefGoogle Scholar
  88. Shen G and Bryant DA (1995) Characterization of a Synechococcus sp. strain PCC 7002 mutant lacking Photosystem I. Protein assembly and energy distribution in the absence of the Photosystem I reaction center core complex. Photosynth Res 44: 41–53CrossRefGoogle Scholar
  89. Shen G, Boussiba S and Vermaas WFJ (1993) Synechocystis sp. PCC 6803 strains lacking Photosystem I and phycobilisome function. Plant Cell 5: 1853–1863PubMedCrossRefGoogle Scholar
  90. Shen G, Zhao J, Reimer SK, Antonkine ML, Cai Q, Weiland SM, Golbeck JH and Bryant DA (2002a) Assembly of Photosystem I. I. Inactivation of the rubA gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of photosystem I activity. J Biol Chem 277: 20343–20354CrossRefGoogle Scholar
  91. Shen G, Antonkine ML, van der Est A, Vassiliev IR, Brettel K, Bittl R, Zech SG, Zhao J, Stehlik D, Bryant DA and Golbeck JH (2002b) Assembly of Photosystem I. II. Rubredoxin is required for the in vivo assembly of FX in Synechococcus sp. PCC 7002 as shown by optical and EPR spectroscopy. J Biol Chem 277: 20355–20366CrossRefGoogle Scholar
  92. Shen G, Balasubramanian R, Wang T, Tirupati B, Bollinger JM, Golbeck JH and Bryant DA (2004) Functional genomics of genes for the biogenesis of Fe/S proteins in cyanobacteria. In: van der Est R and Bruce D (eds) Photosynthesis: Fundamental Aspects to Global Perspectives, Vol II, pp 882–884. Alliance Communication Group PublisherGoogle Scholar
  93. Silberg JJ, Hoff KG, Tapley TL and Vickery LE (2001) The Fe/S assembly protein IscU behaves as a substrate for the molecular chaperone Hsc66 from Escherichia coli. J Biol Chem 276: 1696–1700PubMedCrossRefGoogle Scholar
  94. Smith AD, Agar JN, Johnson KA, Frazzon J, Amster IJ, Dean DR, and Johnson MK (2001) Sulfur transfer from IscS to IscU: the first step in iron–sulfur cluster biosynthesis. J Am Chem Soc 123: 11103–11104PubMedCrossRefGoogle Scholar
  95. Stirewalt VL, Michalowski CB, Löffelhardt W, Bohnert HJ and Bryant DA (1995) Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol Biol Rep 13: 327–332Google Scholar
  96. Stöckel J and Oelmöller R (2004) A novel protein for photosystem I biogenesis. J Biol Chem 279: 10243–10251PubMedCrossRefGoogle Scholar
  97. Tachezy J, Sanchez LB and Muller M (2001) Mitochondrial type iron–sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol 18: 1919–1928PubMedGoogle Scholar
  98. Takahashi Y and Nakamura M (1999) Functional assignment of the ORF2–iscR–iscS–iscU–iscA–hscBhscA–fdx–ORF3 gene cluster involved in the assembly of Fe/S clusters in Escherichia coli. J Biochem 126: 917–926PubMedGoogle Scholar
  99. Takahashi Y and Tokumoto U (2002) A third bacterial system for the assembly of iron–sulfur clusters with homologs in archaea and plastids. J Biol Chem 277: 28380–38383PubMedCrossRefGoogle Scholar
  100. Takahashi Y, Mitsui A and Matsubara H (1986) Formation of the iron–sulfur cluster of ferredoxin in isolated chloroplasts. Proc Natl Acad Sci USA 83: 2434–2437PubMedCrossRefGoogle Scholar
  101. Takahashi Y, Mitsui A and Matsubara H (1991a) Formation of the iron–sulfur cluster of ferredoxin in lysed spinach chloroplasts. Plant Physiol 95: 97–103CrossRefGoogle Scholar
  102. Takahashi Y, Mitsui A, Fujita Y and Matsubara H (1991b) Roles of ATP and NADPH in formation of the Fe/S cluster of spinach ferredoxin. Plant Physiol 95: 104–110Google Scholar
  103. Tirupati B, Vey JL, Drennan CL and Bollinger JM (2004) Kinetics and structural characterization of Slr0077/SufS, the essential cysteine desulfurase from Synechocystis sp. PCC 6803. Biochemistry 43: 12210–12219PubMedCrossRefGoogle Scholar
  104. Tokumoto U and Takahashi Y (2001) Genetic analysis of the isc operon in Escherichia coli involved in the biogenesis of cellular iron–sulfur proteins. J Biochem 130: 63–71PubMedGoogle Scholar
  105. Tokumoto U, Nomura S, Minami Y, Mihara H, Kato S, Kurihara T, Esaki N, Kanazawa H, Matsubara H and Takahashi Y (2002) Network of protein–protein interactions among iron–sulfur cluster assembly proteins in Escherichia coli. J Biochem 131: 713–719PubMedGoogle Scholar
  106. Touraine B, Boutin JP, Marion-Poll A, Briat JF, Peltier G and Lobreaux S (2004) Nfu2: a scaffold protein required for [4Fe–4S] and ferredoxin iron–sulfur cluster assembly in Arabidopsis chloroplasts. Plant J 40: 101–111PubMedCrossRefGoogle Scholar
  107. Vassiliev IR, Antonkine ML and Golbeck JH (2001) Iron–sulfur clusters in type I reaction centers. Biochim Biophys Acta 1507: 139–160PubMedCrossRefGoogle Scholar
  108. Vickery IE, Silberg JJ and Ta DT (1997) Hsc66 and Hsc20, a new heat shock cognate molecular chaperone system from Escherichia coli. Protein Sci 6: 1047–1056PubMedGoogle Scholar
  109. Wang T, Shen G, Balasubramanian R, McIntosh L, Bryant DA and Golbeck JH (2004) The sufR gene (sll0088 in Synechocystis sp. PCC 6803) functions as a repressor of the sufBCDS operon in iron–sulfur cluster biogenesis in cyanobacteria. J Bacteriol 186: 956–967PubMedCrossRefGoogle Scholar
  110. Wastl J, Duin EC, Iuzzolino L, Dörner W, Link T, Hoffmann S, Sticht H, Dau H, Lingelbach K and Maier UG (2000) Eukaryotically encoded and chloroplast-located rubredoxin is associated with photosystem II. J Biol Chem 275: 30058–30063PubMedCrossRefGoogle Scholar
  111. Watanabe S, Kita A and Miki K (2005) Crystal structure of atypical cytoplasmic ABC-ATPase SufC from Thermus thermophilius HB8. J Mol Biol 353: 1043–1054PubMedCrossRefGoogle Scholar
  112. Whitney SM and Andrews J (2001) Gene Bank Accession #AAF81679Google Scholar
  113. Wilson RJM, Rangachari K, Saldanha JW, Rickman L, Buxton RS and Eccleston JF (2002) Parasite plastids: maintenance and functions. Phil Trans Res Soc Lond B 358: 155–164CrossRefGoogle Scholar
  114. Wollenberg M, Berndt C, Bill E, Schwenn JD and Seidler A (2003) A dimer of the FeS cluster biosynthesis protein IscA from cyanobacterial binds a [2Fe2S] cluster between two protomers and transfer it to [2Fe–2S] and [4Fe–4S] apo proteins. Eur J Biochem 270: 1662–1671PubMedCrossRefGoogle Scholar
  115. Xu X and Møller SG (2004) AtNAP7 is a plastidic SufC-like ATP-binding cassette/ATPase essential for Arabidopsis embryogenesis. Proc Natl Acad Sci USA 101: 9143–9148PubMedCrossRefGoogle Scholar
  116. Xu XM, Adams S, Chau NH and Møller SG (2005) AtNAP1 represents an atypical SufB protein in Arabidopsis plastids. J Biol Chem 280: 6648–6654PubMedCrossRefGoogle Scholar
  117. Yu J, Shen G, Wang T, Bryant DA, Golbeck JH and McIntosh L (2003) Suppressor mutations in the study of Photosystem I biogenesis: sll0088 is a previously unidentified gene involved in reaction center accumulation in Synechocystis sp. strain PCC 6803. J Bacteriol 185: 3878–3887PubMedCrossRefGoogle Scholar
  118. Yu J, Vassiliev IR, Jung YS, Golbeck JH and McIntosh L (1997) Strains of Synechocystis sp. PCC 6803 with altered PsaC. J Biol Chem 272: 8032–8039PubMedCrossRefGoogle Scholar
  119. Yuvaniyama P, Agar JN, Cash VL, Johnson MK and Dean DR (2000) NifS-directed assembly of a transient [2Fe–2S] cluster within the NifU protein. Proc Natl Acad Sci USA 97: 599–604PubMedCrossRefGoogle Scholar
  120. Zheng L, White RH, Cash VL, Jack RF and Dean DR (1993) Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc Natl Acad Sci USA 90: 2754–2758PubMedCrossRefGoogle Scholar
  121. Zheng L, Cash, VL, Flint DH and Dean DR (1998) Assembly of iron–sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273: 13264–13272PubMedCrossRefGoogle Scholar
  122. Zheng M, Wang X, Temleton LJ, Smulski DR, LaRossa RA and Storz G (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183: 4562–4570PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Gaozhong Shen
    • 1
  • John H. Golbeck
    • 2
  1. 1.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Biochemistry and Molecular Biology, Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations