Advertisement

Photosystem I pp 499-513 | Cite as

Electron Transfer Between Photosystem I and Plastocyanin or Cytochrome c6

  • Michael Hippler
  • Friedel Drepper
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 24)

Abstract

Electron transfer between photosystem I (PS I) and its soluble lumenal electron donors plastocyanin (pc) or cytochrome c6 (cyt c6) is an essential reaction in photosynthetic electron transport that is required to reduce the photooxidized primary donor P700+. PS I is an integral light driven plastocyanin (cytochrome c6):ferredoxin oxidoreductase that is embedded in the thylakoid membrane, which uses light energy to transport electrons from a lumenal, soluble electron carrier across the membrane to the stromal, soluble electron acceptor ferredoxin. Two types of interactions between PS I and soluble electron transfer donors can be distinguished, namely interactions that are based on electrostatic attraction and hydrophobic contact.

Keywords

Electron Transfer Donor Side Midpoint Potential Synechococcus Elongatus Redox Midpoint Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong FA, Hill HAO, Oliver N and Whitford D (1985) Direct electrochemistry of the photosynthetic blue copper protein plastocyanin. Electrostatic promotion of rapid charge transfer at an edge-oriented pyrolytic graphite electrode. J Am Chem Soc 107: 1473–1477CrossRefGoogle Scholar
  2. Baymann F, Rappaport F, Joliot P and Kallas T (2001) Rapid electron transfer to photosystem I and unusual spectral features of cytochrome c6 in Synechococcus sp. PCC 7002 in vivo. Biochemistry 40: 10570–15077PubMedCrossRefGoogle Scholar
  3. Beissinger M, Sticht H, Sutter M, Ejchart A, Haehnel W and Rosch P (1998) Solution structure of cytochrome c6 from the thermophilic cyanobacterium Synechococcus elongatus. EMBO J 17: 27–36PubMedCrossRefGoogle Scholar
  4. Bengis C and Nelson N (1977) Subunit structure of chloroplast photosystem I reaction center. J Biol Chem 252: 4564–4569PubMedGoogle Scholar
  5. Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635PubMedCrossRefGoogle Scholar
  6. Bottin H and Mathis P (1985) Interaction of plastocyanin with photosystem I reaction center: a kinetic study by flash absorption spectroscopy. Biochemistry 24: 6453–6460CrossRefGoogle Scholar
  7. Bottin H and Mathis P (1987) Turn-over of electron-donors in Photosystem-I –double-flash experiments with pea-chloroplasts and Photosystem-I particles. Biochim Biophys Acta 892: 91–98CrossRefGoogle Scholar
  8. Chitnis PR, Purvis D and Nelson N (1991) Molecular cloning and targeted mutagenesis of the gene psaF encoding subunit III of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 266: 20146–20151PubMedGoogle Scholar
  9. Chothia C (1975) The nature of the accessible and buried surfaces in proteins. J Mol Biol 105: 1–14CrossRefGoogle Scholar
  10. Danielsen E, Scheller HV, Bauer R, Hemmingsen L, Bjerrum MJ and Hansson O (1999) Plastocyanin binding to photosystem I as a function of the charge state of the metal ion: effect of metal site conformation. Biochemistry 38: 11531–11540PubMedCrossRefGoogle Scholar
  11. De la Cerda B, Diaz-Quintana A, Navarro JA, Hervas M and De la Rosa MA (1999) Site-directed mutagenesis of cytochrome c6 from Synechocystis sp. PCC 6803. The heme protein possesses a negatively charged area that may be isofunctional with the acidic patch of plastocyanin. J Biol Chem 274: 13292–13297PubMedCrossRefGoogle Scholar
  12. Drepper F, Hippler M, Nitschke W, and Haehnel W (1996) Binding dynamics and electron transfer between plastocyanin and photosystem I. Biochemistry 35: 1282–1295PubMedCrossRefGoogle Scholar
  13. Dutton PL and Wilson DF (1974) Redox potentiometry in mitochondrial and photosynthetic bioenergetics. Biochim Biophys Acta 346: 165–212PubMedGoogle Scholar
  14. Farah J, Rappaport F, Choquet Y, Joliot P and Rochaix JD (1995) Isolation of a psaF-deficient mutant of Chlamydomonas reinhardtii: efficient interaction of plastocyanin with the photosystem I reaction center is mediated by the PsaF subunit. EMBO J 14: 4976–4984PubMedGoogle Scholar
  15. Finazzi G, Sommer F and Hippler M (2005) Release of oxidized plastocyanin from photosystem I limits electron transfer between photosystem I and cytochrome b6f complex in vivo. Proc Natl Acad Sci USA 102: 7031–7036PubMedCrossRefGoogle Scholar
  16. Fischer N, Boudreau E, Hippler M, Drepper F, Haehnel W and Rochaix JD (1999) A large fraction of PsaF is nonfunctional in photosystem I complexes lacking the PsaJ subunit. Biochemistry 38: 5546–5552PubMedCrossRefGoogle Scholar
  17. Frazao C, Soares CM, Carrondo MA, Pohl E, Dauter Z, Wilson KS, Hervas M, Navarro JA, De la Rosa MA and Sheldrick GM (1995) Ab initio determination of the crystal structure of cytochrome c6 and comparison with plastocyanin. Structure 3: 1159–1169PubMedCrossRefGoogle Scholar
  18. Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 319–360. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  19. Gupta R, He Z and Luan S (2002) Functional relationship of cytochrome c6 and plastocyanin in Arabidopsis. Nature 417: 567–571PubMedCrossRefGoogle Scholar
  20. Guss JM and Freeman HC (1983) Structure of oxidized poplar plastocyanin at 1.6 Å resolution. J Mol Biol 169: 521–563PubMedCrossRefGoogle Scholar
  21. Guss JM, Harrowell PR, Murata M, Norris VA and Freeman HC (1986) Crystal structure analyses of reduced (CuI) poplar plastocyanin at six pH values. J Mol Biol 192: 361–387PubMedCrossRefGoogle Scholar
  22. Haehnel W (1984) Photosynthetic electron transport in higher plants. Ann Rev Plant Physiol 35: 659–693Google Scholar
  23. Haehnel W, Propper A and Krause H (1980) Evidence for complexed plastocyanin as the immediate electron donor of P-700. Biochim Biophys Acta 593: 384–399PubMedCrossRefGoogle Scholar
  24. Haehnel W, Ratajczak R and Robenek H (1989) Lateral distribution and diffusion of plastocyanin in chloroplast thylakoids. J Cell Biol 108: 1397–1405PubMedCrossRefGoogle Scholar
  25. Haehnel W, Jansen T, Gause K, Klosgen RB, Stahl B, Michl D, Huvermann B, Karas M, and Herrmann RG (1994) Electron transfer from plastocyanin to Photosystem I. EMBO J 13: 1028–1038PubMedGoogle Scholar
  26. Haldrup A, Naver H and Scheller HV (1999) The interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of photosystem I. Plant J 17: 689–698PubMedCrossRefGoogle Scholar
  27. Haldrup A, Simpson DJ and Scheller HV (2000) Down-regulation of the PSI-F subunit of photosystem I (PSI) in Arabidopsis thaliana. The PSI-F subunit is essential for photoautotrophic growth and contributes to antenna function. J Biol Chem 275: 31211–31218PubMedCrossRefGoogle Scholar
  28. Hatanaka H, Sonoike K, Hirano M and Katoh S (1993) Small subunits of Photosystem I reaction center complexes from Synechococcus elongatus. I. Is the psaF gene product required for oxidation of cytochrome c-553? Biochim Biophys Acta 1141: 45–51PubMedCrossRefGoogle Scholar
  29. Hervas M, Navarro JA, Diaz A, Bottin H and De la Rosa MA (1995) Laser-flash kinetic analysis of the fast electron transfer from plastocyanin and cytochrome c6 to photosystem I. Experimental evidence on the evolution of the reaction mechanism. Biochemistry 34: 11321–11326PubMedCrossRefGoogle Scholar
  30. Hervas M, Navarro JA, Diaz A and De la Rosa MA (1996) A comparative thermodynamic analysis by laser-flash absorption spectroscopy of photosystem I reduction by plastocyanin and cytochrome c6 in Anabaena PCC 7119, Synechocystis PCC 6803 and spinach. Biochemistry 35: 2693–2698PubMedCrossRefGoogle Scholar
  31. Hervas M, Navarro JA and De La Rosa MA (2003) Electron transfer between membrane complexes and soluble proteins in photosynthesis. Acc Chem Res 36: 798–805PubMedCrossRefGoogle Scholar
  32. Hippler M, Ratajczak R and Haehnel W (1989) Identification of the plastocyanin binding subunit of photosystem I. FEBS Lett 250: 280–284CrossRefGoogle Scholar
  33. Hippler M, Drepper F and Haehnel W (1995) The oxidizing site of Photosystem I modulates the electron transfer from plastocyanin to P700+. In: Mathis P (ed) From Light to Biosphere, pp 99–102. Kluwer Academic Publishers, Amsterdam, NLGoogle Scholar
  34. Hippler M, Reichert J, Sutter M, Zak E, Altschmied L, Schröer U, Herrmann RG and Haehnel W (1996) The plastocyanin binding domain of photosystem I. EMBO J 15: 6374–6384PubMedGoogle Scholar
  35. Hippler M, Drepper F, Farah J and Rochaix JD (1997) Fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii requires PsaF. Biochemistry 36: 6343–6349PubMedCrossRefGoogle Scholar
  36. Hippler M, Drepper F, Haehnel W and Rochaix JD (1998) The N-terminal domain of PsaF: precise recognition site for binding and fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 95: 7339–7344PubMedCrossRefGoogle Scholar
  37. Hippler M, Drepper F, Rochaix JD and Mühlenhoff U (1999) Insertion of the N-terminal part of PsaF from Chlamydomonas reinhardtii into photosystem I from Synechococcus elongatus enables efficient binding of algal plastocyanin and cytochrome c6. J Biol Chem 274: 4180–4188PubMedCrossRefGoogle Scholar
  38. Hippler M, Biehler K, Krieger-Liszkay A, van Dillewjin J and Rochaix JD (2000) Limitation in electron transfer in photosystem I donor side mutants of Chlamydomonas reinhardtii. Lethal photo-oxidative damage in high light is overcome in a suppressor strain deficient in the assembly of the light harvesting complex. J Biol Chem 275: 5852–5829PubMedCrossRefGoogle Scholar
  39. Ho KK and Krogmann DW (1984) Electron donors to P700 in cyanobacteria and algae: an instance of unusual genetic variability. Biochim Biophys Acta 766: 310–316CrossRefGoogle Scholar
  40. Hope AB (2000) Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. Biochim Biophys Acta 1456: 5–26PubMedCrossRefGoogle Scholar
  41. Inoue T, Sugawara H, Hamanaka S, Tsukui H, Suzuki E, Kohzuma T and Kai Y (1999) Crystal structure determinations of oxidized and reduced plastocyanin from the cyanobacterium Synechococcus sp. PCC 7942. Biochemistry 38: 6063–6069PubMedCrossRefGoogle Scholar
  42. Jansson S, Andersen B and Scheller HV (1996) Nearest-neighbor analysis of higher-plant photosystem I holocomplex. Plant Physiol 112: 409–420PubMedCrossRefGoogle Scholar
  43. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  44. Juensch U and Gräber P (1987) Influence of the redox state and the activation of the chloroplast ATP synthase on proton-transport-coupled ATP synthesis/hydrolysis. Biochim Biophys Acta 893: 275–288CrossRefGoogle Scholar
  45. Katoh S, Shiratori I and Takamiya A (1962) Purification and some properties of spinach plastocyanin. J Biochem 51: 32–40PubMedGoogle Scholar
  46. Kerfeld CA, Anwar HP, Interrante R, Merchant S and Yeates TO (1995) The structure of chloroplast cytochrome c6 at 1.9 Å resolution: evidence for functional oligomerization. J Mol Biol 250: 627–647PubMedCrossRefGoogle Scholar
  47. Lee BH, Hibino T, Takabe T, Weisbeek PJ and Takabe T (1995) Site-directed mutagenetic study on the role of negative patches on silene plastocyanin in the interactions with cytochrome f and photosystem I. J Biochem (Tokyo) 117: 1209–1217Google Scholar
  48. Marcus RA and Suttin N (1985) Electron transfer in chemistry and biology. Biochim Biophys Acta 811: 265–322Google Scholar
  49. Markley JL, Ulrich EL, Berg SP and Krogmann DW (1975) Nuclear magnetic resonance studies of the copper binding sites of blue copper proteins: oxidized, reduced, and apoplastocyanin. Biochemistry 14: 4428–4433PubMedCrossRefGoogle Scholar
  50. Merchant S and Bogorad L (1986) Regulation by copper of expression of plastocyanin and cytochrome c552 in Chlamydomonas reinhardtii. Mol Cell Biol 6: 462–469PubMedGoogle Scholar
  51. Molina-Heredia FP, Diaz-Quintana A, Hervas M, Navarro JA and De La Rosa MA (1999) Site-directed mutagenesis of cytochrome c6 from Anabaena sp. PCC 7119. Identification of surface residues of the hemeprotein involved in photosystem I reduction. J Biol Chem 274: 33565–33570PubMedCrossRefGoogle Scholar
  52. Molina-Heredia FP, Hervas M, Navarro JA and De la Rosa MA (2001) A single arginyl residue in plastocyanin and in cytochrome c6 from the cyanobacterium Anabaena sp. PCC 7119 is required for efficient reduction of photosystem I. J Biol Chem 276: 601–605PubMedCrossRefGoogle Scholar
  53. Molina-Heredia FP, Wastl J, Navarro JA, Bendall DS, Hervas M, Howe CJ and De La Rosa MA (2003) Photosynthesis: a new function for an old cytochrome? Nature 424: 33–34PubMedCrossRefGoogle Scholar
  54. Moser CC and Dutton PL (1992) Engineering protein structure for electron transfer function in photosynthetic reaction centers. Biochim Biophys Acta 1101: 171–176PubMedGoogle Scholar
  55. Navarro JA, Hervas M and DelaRosa MA (1997) Co-evolution of cytochrome c6 and plastocyanin, mobile proteins transferring electrons from cytochrome b6f to photosystem I. J Biol Inorg Chem 2: 11–22CrossRefGoogle Scholar
  56. Nelson JAE, Savereide PB and Lefebvre PA (1994) The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation. Mol Cell Biol 14: 4011–4019PubMedGoogle Scholar
  57. Nordling M, Sigfridsson K, Young S, Lundberg LG and Hansson O (1991) Flash-photolysis studies of the electron transfer form genetically modified spinach plastocyanin to photosystem I. FEBS Lett 291: 327–330PubMedCrossRefGoogle Scholar
  58. Northrup SH, Boles JO and Reynolds JCL (1987) Electrostatic effects in the Brownian dynamics of association and orientation of heme-proteins. J Phys Chem 91: 5991–5998CrossRefGoogle Scholar
  59. Nyhus KJ, Ikeuchi M, Inoue Y, Whitmarsh J and Pakrasi HB (1992) Purification and characterization of the photosystem I complex from the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Biol Chem 267: 12489–12495PubMedGoogle Scholar
  60. Ramesh VM, Guergova-Kuras M, Joliot P and Webber AN (2002) Electron transfer from plastocyanin to the photosystem I reaction center in mutants with increased potential of the primary donor in Chlamydomonas reinhardtii. Biochemistry 41: 14652–14658PubMedCrossRefGoogle Scholar
  61. Redinbo MR, Yeates TO and Merchant S (1994) Plastocyanin: structural and functional analysis. J Bioenerg Biomembr 26: 49–66PubMedCrossRefGoogle Scholar
  62. Renganathan M, Pfündel E and Dilly A (1993) Thylakoid lumenal pH determination using a fluorescent dye: correlation of lumen pH and gating between localized and delocalized energy coupling. Biochim Biophys Acta 1142: 277–292CrossRefGoogle Scholar
  63. Schubert W, Klukas O, Krauß N, Saenger W, Fromme P and Witt H (1997) Photosystem I of Synechococcus elongatus at 4 Å resolution: comprehensive structure analysis. J Mol Biol 272: 741–769PubMedCrossRefGoogle Scholar
  64. Sigfridsson K, Hansson O and Brzezinski P (1995) Electrogenic light reactions in photosystem I: resolution of electron-transfer rates between the iron–sulfur centers. Proc Natl Acad Sci USA 92: 3458–3462PubMedCrossRefGoogle Scholar
  65. Sigfridsson K, Young S and Hansson O (1996) Structural dynamics in the plastocyanin–photosystem 1 electron-transfer complex as revealed by mutant studies. Biochemistry 35: 1249–1257PubMedCrossRefGoogle Scholar
  66. Sinclair-Day JD, Sisley MJ, Sykes AG, King GC and Wright PE (1985) Acid dissociation constants for plastocyanin in the Cu I state. J Chem Soc Chem Commun 1985: 505–507CrossRefGoogle Scholar
  67. Sommer F, Drepper F and Hippler M (2002) The luminal helix l of PsaB is essential for recognition of plastocyanin or cytochrome c6 and fast electron transfer to photosystem I in Chlamydomonas reinhardtii. J Biol Chem 277: 6573–6581PubMedCrossRefGoogle Scholar
  68. Sommer F, Drepper F, Haehnel W and Hippler M (2004) The hydrophobic recognition site formed by residues PsaA-Trp651 and PsaB-Trp627 of photosystem I in Chlamydomonas reinhardtii confers distinct selectivity for binding of plastocyanin and cytochrome c6. J Biol Chem 279: 20009–20017PubMedCrossRefGoogle Scholar
  69. Stevens D, Rochaix JD and Purton S (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet 251: 23–30PubMedGoogle Scholar
  70. Sun J, Xu W, Hervas M, Navarro JA, Rosa MA and Chitnis PR (1999) Oxidizing side of the cyanobacterial photosystem I. Evidence for interaction between the electron donor proteins and a luminal surface helix of the PsaB subunit. J Biol Chem 274: 19048–19054PubMedCrossRefGoogle Scholar
  71. Weigel M, Pesaresi P and Leister D (2003) Tracking the function of the cytochrome c6-like protein in higher plants. Trends Plant Sci 8: 513–517PubMedCrossRefGoogle Scholar
  72. Williams PA, Fulop V, Leung YC, Chan C, Moir JW, Howlett G, Ferguson SJ, Radford SE and Hajdu J (1995) Pseudospecific docking surfaces on electron transfer proteins as illustrated by pseudoazurin, cytochrome c550 and cytochrome cd1 nitrite reductase. Nat Struct Biol 2: 975–982PubMedCrossRefGoogle Scholar
  73. Wood PM (1978) Interchangeable copper and iron proteins in algal photosynthesis. Studies on plastocyanin and cytochrome c552 in Chlamydomonas. Eur J Biochem 87: 9–19PubMedCrossRefGoogle Scholar
  74. Wynn RM and Malkin R (1988) Interaction of plastocyanin with photosystem I: a chemical cross-linking study of the polypeptide that binds plastocyanin. Biochemistry 27: 5863–5869PubMedCrossRefGoogle Scholar
  75. Xu Q, Odom WR, Guikema JA, Chitnis VP and Chitnis PR (1994) Targeted deletion of psaJ from the cyanobacterium Synechocystis sp. PCC 6803 indicates structural interactions between the PsaJ and PsaF subunits of photosystem I. Plant Mol Biol 26: 291–302PubMedCrossRefGoogle Scholar
  76. Ziegler K, Schuetz M, Zimmermann R and Lockau W (1995) EMBL GenBank database Entry Id AVPSAFJGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Michael Hippler
    • 1
  • Friedel Drepper
    • 2
  1. 1.Department of BiologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Biochemie der PflanzenUniversit ät FreiburgSchänzlestrGermany

Personalised recommendations