Advertisement

Photosystem I pp 413-437 | Cite as

The Directionality of Electron Transport in Photosystem I

  • Kevin Redding
  • Art van der Est
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 24)

Abstract

Photosynthetic reaction centers are the membrane–protein complexes responsible for the capture and storage of light energy in photosynthetic organisms. These proteins contain a large number of cofactors, mostly chlorophylls, which absorb light and transfer the energy to the core of the complex, where it is used to drive a transmembrane electron transfer reaction. Since the discovery that these complexes are dimeric structures with two virtually identical branches of cofactors extending across the membrane from the primary donor, the focus of a large body of research has been directed toward understanding to what extent electron transfer occurs in the two branches.

Keywords

Electron Transfer Charge Separation Slow Component Fast Component Axial Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agalarov R and Brettel K (2003) Temperature dependence of biphasic forward electron transfer from the phylloquinone(s) A1 in photosystem I: only the slower phase is activated. Biochim Biophys Acta 1604: 7–12PubMedCrossRefGoogle Scholar
  2. Bautista JA, Rappaport F, Guergova-Kuras M, Cohen RO, Golbeck JH, Wang JY, Beal D and Diner BA (2005) Biochemical and biophysical characterization of photosystem I from phytoene desaturase and zeta-carotene desaturase deletion mutants of Synechocystis sp. PCC 6803: evidence for PsaA- and PsaB-side electron transport in cyanobacteria. J Biol Chem 280: 20030–20041PubMedCrossRefGoogle Scholar
  3. Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635PubMedCrossRefGoogle Scholar
  4. Biggins J and Mathis P (1988) Functional role of vitamin K in photosystem I of the cyanobacterium Synechocystis 6803. Biochemistry 27: 1494–1500PubMedCrossRefGoogle Scholar
  5. Bittl R and Zech SG (2001) Pulsed EPR spectroscopy on short-lived intermediates in photosystem I. Biochim Biophys Act 1507: 194–211CrossRefGoogle Scholar
  6. Boudreaux B, MacMillan F, Teutloff C, Agalarov R, Gu F, Grimaldi S, Bittl R, Brettel K and Redding K (2001) Mutations in both sides of the photosystem I reaction center identify the phylloquinone observed by electron paramagnetic resonance spectroscopy. J Biol Chem 276: 37299–37306PubMedCrossRefGoogle Scholar
  7. Breton J (2001) Fourier transform infra-red spectroscopy of primary electron donors in type I photosynthetic reaction centers. Biochim Biophys Acta 1507: 180–193PubMedCrossRefGoogle Scholar
  8. Breton J, Nabedryk E and Leibl W (1999) FTIR study of the primary electron donor of photosystem I (P700) revealing delocalization of the charge in P700+ and localization of the triplet character in 3P700. Biochemistry 38: 11585–11592PubMedCrossRefGoogle Scholar
  9. Brettel K (1988) Electron transfer from A1 to an iron–sulfur center with t1/2 = 200 ns at room temperature in photosystem I. Characterization by flash absorption spectroscopy. FEBS Lett 239: 93–98CrossRefGoogle Scholar
  10. Brettel K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta 1318: 322–373CrossRefGoogle Scholar
  11. Brettel K (1998) Electron transfer from acceptor A1 to the iron–sulfur clusters in photosystem I measured with a time resolution of 2 ns. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Proceedings of 11th International Congress on Photosynthesis, Vol 1, pp 611–614. Kluwer Academic Publishers, DordrechtGoogle Scholar
  12. Brettel K and Golbeck JH (1995) Spectral and kinetic characterization of electron acceptor A1 in a Photosystem I core devoid of iron–sulfur centers FX, FB and FA. Photosynth Res 45: 183–193CrossRefGoogle Scholar
  13. Brettel K and Leibl W (2001) Electron transfer in Photosystem I. Biochim Biophys Acta 1507: 100–114PubMedCrossRefGoogle Scholar
  14. Büttner M, Xie DL, Nelson H, Pinther W, Hauska G and Nelson N (1992) The photosystem I-like P840-reaction center of green S-bacteria is a homodimer. Biochim Biophys Acta 1101: 154–156PubMedGoogle Scholar
  15. Byrdin M, Cohen R, Fairclough W, Gu F, Golbeck J, Heathcote P, Redding K and Rappaport F (2005) Secondary electron transfer in photosystem I: what transient absorption can tell. In: van der Est A and Bruce D (eds) Photosynthesis: Fundamental Aspects to Global Perspectives, pp 36–38. Allen Press, Lawrence, KansasGoogle Scholar
  16. Cohen RO, Shen G, Golbeck JH, Xu W, Chitnis PR, Valieva AI, van der Est A, Pushkar YN and Stehlik D (2004) Evidence for asymmetric electron transfer in cyanobacterial Photosystem I: analysis of a methionine to leucine mutation of the ligand to the primary electron acceptor A0. Biochemistry 43: 4741–4754PubMedCrossRefGoogle Scholar
  17. Dashdorj N, Xu W, Cohen R, Golbeck J and Savikhin S (2005) Asymmetric electron transfer in cyanobacterial Photosystem I: charge separation and secondary electron transfer dynamics of mutations near the primary electron acceptor A0. Biophys J 88: 1238–1249PubMedCrossRefGoogle Scholar
  18. Diner BA and Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53: 551–580PubMedCrossRefGoogle Scholar
  19. Fairclough WV, Forsyth A, Evans MCW, Rigby SEJ, Purton S and Heathcote P (2003) Bidirectional electron transfer in Photosystem I: electron transfer on the PsaA side is not essential for phototrophic growth in Chlamydomonas. Biochim Biophys Acta 1606: 43–55PubMedCrossRefGoogle Scholar
  20. Fromme P, Jordan P and Krauß N (2001) Structure of Photosystem I. Biochim Biophys Acta 1507: 5–31PubMedCrossRefGoogle Scholar
  21. Gibasiewicz K, Ramesh VM, Lin S, Redding K, Woodbury NW and Webber AN (2003) Excitonic interactions in wild-type and mutant PSI reaction centers. Biophys J 85: 2547–2559PubMedGoogle Scholar
  22. Gu F, Byrdin M, Rappaport F, van der Est A, MacMillan F and Redding K (2005) Mutational analysis of the two phylloquinones in Photosystem I. In: van der Est A and Bruce D (eds) Photosynthesis: Fundamental Aspects to Global Perspectives, pp 101–103. Allen Press, Lawrence, KansasGoogle Scholar
  23. Guergova-Kuras M, Boudreaux B, Joliot A, Joliot P and Redding K (2001) Evidence for two active branches for electron transfer in photosystem I. Proc Natl Acad Sci USA 98: 4437–4442PubMedCrossRefGoogle Scholar
  24. Gulotty RJ, Mets L, Alberte RS and Fleming GR (1985) Picosecond fluorescence study of photosynthetic mutants of Chlamydomonas-reinhardtii –origin of the fluorescence decay kinetics of chloroplasts. Photochem Photobiol 41: 487–496PubMedGoogle Scholar
  25. Hanley JA, Kear J, Bredenkamp G, Li G, Heathcote P and Evans MCW (1992) Biochemical evidence for the role of bound iron–sulfur Center A and Center B in NADP+ reduction by Photosystem I. Biochim Biophys Acta 10899: 152–156Google Scholar
  26. Hastings G and Sivakumar V (2001) A Fourier transform infrared absorption difference spectrum associated with the reduction of A1 in photosystem I: are both phylloquinones involved in electron transfer? Biochemistry 40: 3681–3689PubMedCrossRefGoogle Scholar
  27. Hastings G, Kleinherenbrink FA, Lin S, McHugh TJ and Blankenship RE (1994) Observation of the reduction and reoxidation of the primary electron acceptor in photosystem I. Biochemistry 33: 3193–3200PubMedCrossRefGoogle Scholar
  28. Hastings G, Hoshina S, Webber AN and Blankenship RE (1995) Universality of energy and electron transfer processes in photosystem I. Biochemistry 34: 15512–15522PubMedCrossRefGoogle Scholar
  29. Hastings G, Ramesh V, Wang R, Sivakumar V and Webber A (2001) Primary donor photo-oxidation in Photosystem I: a re-evaluation of (P 700 +-P700) Fourier transform infrared difference spectra. Biochemistry 40: 12943–12949PubMedCrossRefGoogle Scholar
  30. Heathcote P, Hanley JA and Evans MCW (1993) Double-reduction of A1 abolishes the EPR signal attributed to A1 : evidence for C2 symmetry in the Photosystem I reaction center. Biochim Biophys Acta 1144: 54–61CrossRefGoogle Scholar
  31. Hecks B, Wulf K, Breton J, Leibl W and Trissl H-W (1994) Primary charge separation in Photosystem I: a two-step electrogenic charge separation connected with P700 + A0 and P700 + A0 formation. Biochemistry 33: 8619–8624PubMedCrossRefGoogle Scholar
  32. Ishikita H and Knapp EW (2003) Redox potential of quinones in both electron transfer branches of photosystem I. J Biol Chem 278: 52002–52011PubMedCrossRefGoogle Scholar
  33. Itoh S, Iwaki M and Ikegami I (1987) Extraction of vitamin K1 from photosystem I particles by treatment with diethyl ether and its effects on the A1 -EPR signal and system I photochemistry. Biochim Biophys Acta 893: 508–516CrossRefGoogle Scholar
  34. Itoh S, Iwaki M and Ikegami I (2001) Modification of photosystem I reaction center by the extraction and exchange of chlorophylls and quinones. Biochim Biophys Acta 1507: 115–138PubMedCrossRefGoogle Scholar
  35. Ivashin N and Larsson S (2003) Electron transfer pathways in photosystem I reaction centers. Chem Phys Lett 375: 383–387CrossRefGoogle Scholar
  36. Jeschke G, Pannier M and Spiess H (2000) Double electron–electron resonance. In: Berliner L, Eaton S and Eaton G (eds) Biological Magnetic Resonance, Vol 19, pp 493–512. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  37. Johnson TW, Shen GZ, Zybailov B, Kolling D, Reategui R, Beauparlant S, Vassiliev IR, Bryant DA, Jones AD, Golbeck JH and Chitnis PR (2000) Recruitment of a foreign quinone into the A1 site of photosystem I –I. Genetic and physiological characterization of phylloquinone biosynthetic pathway mutants in Synechocystis sp PCC 6803. J Biol Chem 275: 8523–8530PubMedCrossRefGoogle Scholar
  38. Joliot P and Joliot A (1999) In vivo analysis of the electron transfer within photosystem I: are the two phylloquinones involved? Biochemistry 38: 11130–11136PubMedCrossRefGoogle Scholar
  39. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  40. Kandrashkin Y and van der Est A (2002) Electron spin polarization in photosynthetic reaction centres: strategies for extracting structural and functional information. RIKEN Rev. 44: 124–127Google Scholar
  41. Kandrashkin YE, Vollmann W, Stehlik D, Salikhov K and Van der Est A (2002) The magnetic field dependence of the electron spin polarization in consecutive spin correlated radical pairs in type I photosynthetic reaction centres. Mol Phys 100: 1431–1443CrossRefGoogle Scholar
  42. Klukas O, Schubert WD, Jordan P, Krauß N, Fromme P, Witt HT and Saenger W (1999) Localization of two phylloquinones, QK and QK′, in an improved electron density map of photosystem I at 4-Å resolution. J Biol Chem 274: 7361–7367PubMedCrossRefGoogle Scholar
  43. Krabben L, Schlodder E, Jordan R, Carbonera D, Giacometti G, Lee H, Webber AN and Lubitz W (2000) Influence of the axial ligands on the spectral properties of P700 of photosystem I: a study of site-directed mutants. Biochemistry 39: 13012–13025PubMedCrossRefGoogle Scholar
  44. Kumazaki S, Ikegami I, Furusawa H, Yasuda S and Yoshihara K (2001) Observation of the excited state of the primary electron donor chlorophyll (P700) and the ultrafast charge separation in the spinach photosystem I reaction center. J Phys Chem B 105: 1093–1099CrossRefGoogle Scholar
  45. Li Y, Lucas MG, Konovalova T, Abbott B, MacMillan F, Petrenko A, Sivakumar V, Wang RL, Hastings G, Gu F, van Tol J, Brunel LC, Timkovich R, Rappaport F and Redding K (2004) Mutation of the putative hydrogen-bond donor to P-700 of photosystem I. Biochemistry 43: 12634–12647PubMedCrossRefGoogle Scholar
  46. Li Y, van der Est A, Lucas MG, Ramesh VM, Gu F, Petrenko A, Lin S, Webber AN, Rappaport F and Redding K (2006) Directing electron transfer within Photosystem I by breaking H-bonds in the cofactor branches. Proc Natl Acad Sci USA 103: 2144–2149PubMedCrossRefGoogle Scholar
  47. Liebl U, Mockensturm-Wilson M, Trost J, Brune D, Blankenship R and Vermaas W (1993) Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillus mobilis: structural implications and relations to other photosystems. Proc Natl Acad Sci USA 90: 7124–7128PubMedCrossRefGoogle Scholar
  48. Lin S, Katilius E, Haffa ALM, Taguchi AKW and Woodbury NW (2001) Blue light drives B-side electron transfer in bacterial photosynthetic reaction centers. Biochemistry 40: 13767–13773PubMedCrossRefGoogle Scholar
  49. Lüneberg J, Fromme P, Jekow P and Schlodder E (1994) Spectroscopic characterization of PS I core complexes from thermophilic Synechococcus sp.: identical reoxidation kinetics of A1 before and after removal of the iron sulfur clusters FA and FB. FEBS Lett 338: 197–202PubMedCrossRefGoogle Scholar
  50. MacMillan F, Hanley J, van der Weerd L, Knüpling M, Un S and Rutherford AW (1997) Orientation of the phylloquinone electron acceptor anion radical in Photosystem I. Biochemistry 36: 9297–9303PubMedCrossRefGoogle Scholar
  51. Mathis P and Sétif P (1988) Kinetic studies on the function of A1 in the photosystem I reaction center. FEBS Lett 237: 65–68CrossRefGoogle Scholar
  52. McConnell MD, Wyndhamn I, Brown SAE, Ramesh VM, van der Est A and Webber AN (2005) Directionality of electron transfer in Photosystem I of Chlamydomonas reinhardtii probed by electron paramagnetic resonance. In: van der Est A and Bruce D (eds) Photosynthesis: Fundamental Aspects to Global Perspectives, pp 68–70. Allen Press, Lawrence, KansasGoogle Scholar
  53. Melkozernov AN, Su H, Lin S, Bingham S, Webber AN and Blankenship RE (1997) Specific mutation near the primary donor in photosystem I from Chlamydomonas reinhardtii alters the trapping time and spectroscopic properties of P-700. Biochemistry 36: 2898–2907PubMedCrossRefGoogle Scholar
  54. Mi DH, Lin S and Blankenship RE (1999) Picosecond transient absorption spectroscopy in the blue spectral region of Photosystem I. Biochemistry 38: 15231–15237PubMedCrossRefGoogle Scholar
  55. Muhiuddin IP, Heathcote P, Carter S, Purton S, Rigby SEJ and Evans MCW (2001) Evidence from time resolved studies of the P700 + A1 radical pair for photosynthetic electron transfer on both the PsaA and PsaB branches of the Photosystem I reaction centre. FEBS Lett 503: 56–60PubMedCrossRefGoogle Scholar
  56. Müller MG, Niklas J, Lubitz W and Holzwarth AR (2003) Ultrafast transient absorption studies on Photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in Photosystem I. Biophys J 85: 3899–3922PubMedGoogle Scholar
  57. Ostafin AE and Weber S (1997) Quinone exchange at the A1 site in Photosystem I in spinach and cyanobacteria. Biochim Biophys Acta 1320: 195–207CrossRefGoogle Scholar
  58. Pälsson LO, Tjus SE, Andersson B and Gillbro T (1995) Ultrafast energy-transfer dynamics resolved in isolated spinach light-harvesting complex-I and the LHC-I-730 subpopulation. Biochim Biophys Acta 1230: 1–9CrossRefGoogle Scholar
  59. Parrett KG, Mehari T, Warren PG and Golbeck JH (1989) Purification and properties of the intact P-700 and FX-containing Photosystem-I core protein. Biochim Biophys Acta 973: 324–332PubMedGoogle Scholar
  60. Petrenko A and Redding K (2004) Intermolecular electron transfer and exchange integrals in photosystem I. Chem Phys Lett 400: 98–103CrossRefGoogle Scholar
  61. Petrenko A, Maniero AL, van Tol J, MacMillan F, Li YJ, Brunel LC and Redding K (2004) A high-field EPR study of P-700+ in wild-type and mutant photosystem I from Chlamydomonas reinhardtii. Biochemistry 43: 1781–1786PubMedCrossRefGoogle Scholar
  62. Polm M and Brettel K (1998) Secondary pair charge recombination in photosystem I under strongly reducing conditions: temperature dependence and suggested mechanism. Biophys J 74: 3173–3181PubMedGoogle Scholar
  63. Prokhorenko VI and Holzwarth AR (2000) Primary processes and structure of the photosystem II reaction center: a photon echo study. J Phys Chem B 104: 11563–11578CrossRefGoogle Scholar
  64. Purton S, Stevens DR, Muhiuddin IP, Evans MC, Carter S, Rigby SE and Heathcote P (2001) Site-directed mutagenesis of psaA residue W693 affects phylloquinone binding and function in the photosystem I reaction center of Chlamydomonas reinhardtii. Biochemistry 40: 2167–2175PubMedCrossRefGoogle Scholar
  65. Pushkar YN, Zech SG, Stehlik D, Brown S, van der Est A and Zimmermann H (2002) Orientation and protein–cofactor interactions of monosubstituted n-alkyl naphthoquinones in the A1 binding site of photosystem I. J Phys Chem B 106: 12052–12058CrossRefGoogle Scholar
  66. Pushkar YN, Golbeck JH, Stehlik D and Zimmermann H (2004) Asymmetric hydrogen-bonding of the quinone cofactor in photosystem I probed by C13-labeled naphthoquinones. J Phys Chem B 108: 9439–9448CrossRefGoogle Scholar
  67. Ramesh VM, Gibasiewicz K, Lin S, Bingham SE and Webber AN (2004) Bidirectional electron transfer in photosystem I: accumulation of A0 in A-side or B-side mutants of the axial ligand to chlorophyll A0. Biochemistry 43: 1369–1375PubMedCrossRefGoogle Scholar
  68. Ramesh V, Gibasiewicz K, Lin S, Bingham SE and Webber AN (2005) Evidence for bi-directional electron transfer in Chlamydomonas PS I: analysis of mutants of the axial ligands to Chl A0. In: van der Est A and Bruce D (eds) Photosynthesis: Fundamental Aspects to Global Perspectives, pp 79–83. Allen Press, Lawrence, KansasGoogle Scholar
  69. Redding K, MacMillan F, Leibl W, Brettel K, Hanley J, Rutherford AW, Breton J and Rochaix JD (1998) A systematic survey of conserved histidines in the core subunits of Photosystem I by site-directed mutagenesis reveals the likely axial ligands of P700. EMBO J 17: 50–60PubMedCrossRefGoogle Scholar
  70. Rigby SEJ, Evans MCW and Heathcote P (2001) Electron nuclear double resonance (ENDOR) spectroscopy of radicals in photosystem I and related Type 1 photosynthetic reaction centres. Biochim Biophys Acta 1507: 247–259PubMedCrossRefGoogle Scholar
  71. Rigby SEJ, Muhiuddin IP, Evans MCW, Purton S and Heathcote P (2002) Photoaccumulation of the PsaB phyllosemiquinone in Photosystem I of Chlamydomonas reinhardtii. Biochim Biophys Acta 1556: 13–20PubMedCrossRefGoogle Scholar
  72. Sakuragi Y, Zybailov B, Shen GZ, Jones AD, Chitnis PR, van der Est A, Bittl R, Zech S, Stehlik D, Golbeck JH and Bryant DA (2002) Insertional inactivation of the menG gene, encoding 2-phytyl-1,4-naphthoquinone methyltransferase of Synechocystis sp PCC 6803, results in the incorporation of 2-phytyl-1,4-naphthoquinone into the A1 site and alteration of the equilibrium constant between A1 and Fx in Photosystem I. Biochemistry 41: 394–405PubMedCrossRefGoogle Scholar
  73. Savikhin S, Xu W, Soukoulis V, Chitnis PR and Struve WS (1999) Ultrafast primary processes in photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. Biophys J 76: 3278–3288PubMedCrossRefGoogle Scholar
  74. Savikhin S, Xu W, Martinsson P, Chitnis PR and Struve WS (2001) Kinetics of charge separation and A0 → A1 electron transfer in photosystem reaction centers. Biochemistry 40: 9282–9290PubMedCrossRefGoogle Scholar
  75. Schlodder E, Falkenberg K, Gergeleit M and Brettel K (1998) Temperature dependence of forward and reverse electron transfer from A1 , the reduced secondary electron acceptor in photosystem I. Biochemistry 37: 9466–9476PubMedCrossRefGoogle Scholar
  76. Sétif P and Brettel K (1990) Photosystem-I photochemistry under highly reducing conditions –study of the P700 triplet-state formation from the secondary radical pair (P700+ − A1 ). Biochim Biophys Acta 1020: 232–238CrossRefGoogle Scholar
  77. Sétif P and Brettel K (1993) Forward electron transfer from phylloquinone A1 to iron–sulfur centers in spinach Photosystem I. Biochemistry 32: 7846–7854PubMedCrossRefGoogle Scholar
  78. Shen GZ, Antonkine ML, van der Est A, Vassiliev IR, Brettel K, Bittl R, Zech SG, Zhao JD, Stehlik D, Bryant DA and Golbeck JH (2002a) Assembly of photosystem I. II. Rubredoxin is required for the in vivo assembly of Fx in Synechococcus sp. PCC 7002 as shown by optical and EPR spectroscopy. J Biol Chem 277: 20355–20366CrossRefGoogle Scholar
  79. Shen GZ, Zhao JD, Reimer SK, Antonkine ML, Cai Q, Weiland SM, Golbeck JH and Bryant DA (2002b) Assembly of photosystem I. I. Inactivation of the rubA gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of Photosystem I activity. J Biol Chem 277: 20343–20354CrossRefGoogle Scholar
  80. Sivakumar V, Wang R and Hastings G (2005) A1 reduction in intact cyanobacterial photosystem I particles studied by time-resolved step-scan Fourier transform infrared difference spectroscopy and isotope labeling. Biochemistry 44: 1880–1893PubMedCrossRefGoogle Scholar
  81. Takahashi Y, Goldschmidt-Clermont M, Soen SY, Franzen LG and Rochaix JD (1991) Directed chloroplast transformation in Chlamydomonas reinhardtii: insertional inactivation of the psaC gene encoding the iron sulfur protein destabilizes photosystem I. EMBO J 10: 2033–2040PubMedGoogle Scholar
  82. van der Est A (2001) Light-induced spin polarization in type I photosynthetic reaction centres. Biochim Biophys Acta 1507: 212–225PubMedCrossRefGoogle Scholar
  83. van der Est A, Bock C, Golbeck J, Brettel K, Sétif P and Stehlik D (1994) Electron transfer from the acceptor A1 to the iron–sulfur centers in Photosystem I as studied by transient EPR spectroscopy. Biochemistry 33: 11789–11797PubMedCrossRefGoogle Scholar
  84. van der Est A, Valieva AI, Kandrashkin YE, Shen GZ, Bryant DA and Golbeck JH (2004) Removal of PsaF alters forward electron transfer in photosystem I: evidence for fast reoxidation of QK-A in subunit deletion mutants of Synechococcus sp. PCC 7002. Biochemistry 43: 1264–1275CrossRefGoogle Scholar
  85. Vassiliev IR, Yu JP, Jung YS, Schulz R, Ganago AO, McIntosh L and Golbeck JH (1999) The cysteine-proximal aspartates in the FX-binding niche of photosystem I –effect of alanine and lysine replacements on photoautotrophic growth, electron transfer rates, single-turnover flash efficiency, and EPR spectral properties. J Biol Chem 274: 9993–10001PubMedCrossRefGoogle Scholar
  86. Wang R, Sivakumar V, Johnson TW and Hastings G (2004) FTIR difference spectroscopy in combination with isotope labeling for identification of the carbonyl modes of P700 and P700+ in photosystem I. Biophys J 86: 1061–1073PubMedGoogle Scholar
  87. Warren PV, Parrett KG, Warden JT and Golbeck JH (1990) Characterization of a Photosystem-I core containing P700 and intermediate electron acceptor-A1. Biochemistry 29: 6545–6550PubMedCrossRefGoogle Scholar
  88. Webber A and Lubitz W (2001) P700: the primary electron donor of Photosystem I. Biochim Biophys Acta 1507: 61–79PubMedCrossRefGoogle Scholar
  89. Webber AN, Su H, Bingham SE, Käss H, Krabben L, Kuhn M, Jordan R, Schlodder E and Lubitz W (1996) Site-directed mutations affecting the spectroscopic characteristics and midpoint potential of the primary donor in photosystem I. Biochemistry 35: 12857–12863PubMedCrossRefGoogle Scholar
  90. White NTH, Beddard GS, Thorne JRG, Feehan TM, Keyes TE and Heathcote P (1996) Primary charge separation and energy transfer in the photosystem I reaction center of higher plants. J Phys Chem 100: 12086–12099CrossRefGoogle Scholar
  91. Witt H, Schlodder E, Teutloff C, Niklas J, Bordignon E, Carbonera D, Kohler S, Labahn A and Lubitz W (2002) Hydrogen bonding to P700: site-directed mutagenesis of threonine A739 of photosystem I in Chlamydomonas reinhardtii. Biochemistry 41: 8557–8569PubMedCrossRefGoogle Scholar
  92. Woodbury NW and Allen JP (1995) The pathway, kinetics and thermodynamics of electron transfer in wild type and mutant reaction centers of purple non-sulfur bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 527–557. Kluwer Academic Press, Dordrecht, the NetherlandsGoogle Scholar
  93. Xu W, Chitnis P, Valieva A, van der Est A, Pushkar YN, Krzystyniak M, Teutloff C, Zech SG, Bittl R, Stehlik D, Zybailov B, Shen G and Golbeck JH (2003a) Electron transfer in cyanobacterial photosystem I: I. Physiological and spectroscopic characterization of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J Biol Chem 278: 27864–27875CrossRefGoogle Scholar
  94. Xu W, Chitnis PR, Valieva A, van der Est A, Brettel K, Guergova-Kuras M, Pushkar YN, Zech SG, Stehlik D, Shen G, Zybailov B and Golbeck JH (2003b) Electron transfer in cyanobacterial photosystem I: II. Determination of forward electron transfer rates of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J Biol Chem 278: 27876–27887CrossRefGoogle Scholar
  95. Yang F, Shen GZ, Schluchter WM, Zybailov BL, Ganago AO, Vassiliev IR, Bryant DA and Golbeck JH (1998) Deletion of the PsaF polypeptide modifies the environment of the redox-active phylloquinone (A1) evidence for unidirectionality of electron transfer in photosystem I. J Phys Chem B 102: 8288–8299CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Kevin Redding
    • 1
  • Art van der Est
    • 2
  1. 1.Departments of Chemistry and Biological SciencesThe University of AlabamaTuscaloosaUSA
  2. 2.Department of ChemistryBrock UniversityOntarioCanada

Personalised recommendations