Advertisement

Photosystem I pp 387-411 | Cite as

Electron Transfer Involving Phylloquinone in Photosystem I

  • Art van der Est
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 24)

Abstract

This chapter focuses on the kinetics of electron transfer through A1 in Photosystem I. The techniques used to study this step are described and their relative advantages and disadvantages are discussed. This is followed by a review of recent results that have been obtained since the publication of the 2.5 Å resolution X-ray structure. Older results are also presented where they are relevant to the new data. However, this chapter is not meant as an exhaustive review of the literature, and interested readers are directed to earlier reviews and other chapters in this volume where appropriate. The main focus of the chapter is the factors such as the energetics and structural arrangement of the cofactors that determine the kinetics of the electron transfer through phylloquinone.

Keywords

Electron Transfer Electron Paramagnetic Resonance Spectrum Sulfur Cluster Photosynthetic Reaction Center ENDOR Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agalarov R and Brettel K (2003) Temperature dependence of biphasic forward electron transfer from the phylloquinone(s) A1 in photosystem I: only the slower phase is activated. Biochim Biophys Acta 1604: 7–12PubMedCrossRefGoogle Scholar
  2. Angerhofer A and Bittl R (1996) Radicals and radical pairs in photosynthesis. Photochem Photobiol 63: 11–38Google Scholar
  3. Béal D, Rappaport F and Joliot P (1999) A new high-sensitivity 10-ns time-resolution spectrophotometric technique adapted to in vivo analysis of the photosynthetic apparatus. Rev Sci Instrum 70: 202–207CrossRefGoogle Scholar
  4. Bengis C and Nelson N (1977) Subunit structure of chloroplast Photosystem-I reaction center. J Biol Chem 252: 4564–4569PubMedGoogle Scholar
  5. Bittl R and Zech SG (2001) Pulsed EPR spectroscopy on short-lived intermediates in photosystem I. Biochim Biophys Acta 1507: 194–211PubMedCrossRefGoogle Scholar
  6. Blankenship RE (2002) Molecular Mechanisms of Photosynthesis. Blackwell Science Inc, OxfordGoogle Scholar
  7. Blankenship R, McGuire A and Sauer K (1975) Chemically-induced dynamic electron polarization in chloroplasts at room-temperature –evidence for triplet-state participation in photosynthesis. Proc Natl Acad Sci USA 72: 4943–4947PubMedCrossRefGoogle Scholar
  8. Bock CH, van der Est AJ, Brettel K and Stehlik D (1989) Nanosecond electron transfer kinetics in Photosystem I as obtained from transient EPR at room temperature. FEBS Lett 247: 91–96CrossRefGoogle Scholar
  9. Bonnerjea J and Evans MCW (1982) Identification of multiple components in the intermediary electron carrier complex of Photosystem-I. FEBS Lett 148: 313–316CrossRefGoogle Scholar
  10. Boudreaux B, MacMillan F, Teutloff C, Agalarov R, Gu FF, Grimaldi S, Bittl R, Brettel K and Redding K (2001) Mutations in both sides of the Photosystem I reaction center identify the phylloquinone observed by electron paramagnetic resonance spectroscopy. J Biol Chem 276: 37299–37306PubMedCrossRefGoogle Scholar
  11. Brettel K (1988) Electron transfer from A1 to an iron–sulfur center with t1 / 2 = 200 ns at room temperature in Photosystem I characterization by flash absorption spectroscopy. FEBS Lett 239: 93–98CrossRefGoogle Scholar
  12. Brettel K (1997) Electron transfer and arrangement of the redox cofactors in Photosystem I. Biochim Biophys Acta 1318: 322–373CrossRefGoogle Scholar
  13. Brettel K (1998) Electron transfer from acceptor A1 to the iron–sulfur clusters in Photosystem I measured with a time resolution of 2 ns. In: Garab G (ed) Photosynthesis Mechanisms and Effects, Vol I, pp 611–614. Kluwer Academic Publishers, Dordrecht/Boston/LondonGoogle Scholar
  14. Brettel K and Golbeck JH (1995) Spectral and kinetic characterization of electron acceptor A1 in a Photosystem I core devoid of iron–sulfur centers FX, FB and FA. Photosynth Res 45: 183–193CrossRefGoogle Scholar
  15. Brettel K and Leibl W (2001) Electron transfer in Photosystem I. Biochim Biophys Acta 1507: 100–114PubMedCrossRefGoogle Scholar
  16. Brettel K and Vos MH (1999) Spectroscopic resolution of the picosecond reduction kinetics of the secondary electron acceptor A1 in Photosystem I. FEBS Lett 447: 315–317PubMedCrossRefGoogle Scholar
  17. Brettel K, Sétif P and Mathis P (1986) Flash-induced absorption changes in Photosystem-I at low-temperature –evidence that the electron acceptor-A1 is vitamin-K1. FEBS Lett 203: 220–224CrossRefGoogle Scholar
  18. Brettel K, Leibl W and Liebl U (1998) Electron transfer in the heliobacterial reaction center: evidence against a quinone-type electron acceptor functioning analogous to A1 in photosystem I. Biochim Biophys Acta 1363: 175–181PubMedCrossRefGoogle Scholar
  19. Byrdin M, Jordan P, Krauβ N, Fromme P, Stehlik D and Schlodder E (2002) Light harvesting in Photosystem I: modeling based on the 2.5-Ångstrom structure of Photosystem I from Synechococcus elongatus. Biophys J 83: 433–457PubMedGoogle Scholar
  20. Calvo R, Hofbauer W, Lendzian F, Lubitz W, Paddock ML, Abresch EC, Isaacson RA, Okamura MY and Feher G (1999) Magnetic coupling between QA and QB in RCs of Rb. Sphaeroides determined by EPR spectroscopy at 95 GHz. Biophys J 76: A392–A392Google Scholar
  21. Calvo R, Abresch EC, Bittl R, Feher G, Hofbauer W, Isaacson RA, Lubitz W, Okamura MY and Paddock ML (2000) EPR study of the molecular and electronic structure of the semiquinone biradical QA −·QB −· in photosynthetic reaction centers from Rhodobacter sphaeroides. J Am Chem Soc 122: 7327–7341CrossRefGoogle Scholar
  22. Cohen R, Shen G, Golbeck J, Xu W, Chitnis P, Valieva A, van der Est A, Pushkar YN and Stehlik D (2003) Evidence for asymmetric electron transfer in cyanobacterial Photosystem I: analysis of a methionine to leucine mutation of the ligand to the primary electron acceptor A0. Biochemistry 43, 4741–4754CrossRefGoogle Scholar
  23. Cramer WA and Knaff DB (1990) Energy Transduction in Biological Membranes. Springer, New YorkGoogle Scholar
  24. Devault D (1980) Quantum-mechanical tunnelling in biological-systems. Q Rev Biophys 13: 387–564PubMedCrossRefGoogle Scholar
  25. Dzuba SA, Hara H, Kawamori A, Iwaki M, Itoh S and Tsvetkov YD (1997) Electron spin echo of spin-polarised radical pairs in intact and quinone-reconstituted plant Photosystem I reaction centers. Chem Phys Lett 264: 238–244CrossRefGoogle Scholar
  26. Evans MCW, Purton S, Patel V, Wright D, Heathcote P and Rigby SEJ (1999) Modification of electron transfer from the quinone electron carrier, A1, of Photosystem 1 in a site directed mutant D576L within the Fe-Sx binding site of PsaA and in second site suppressors of the mutation in Chlamydomonas reinhardtii. Photosynth Res 61: 33–42CrossRefGoogle Scholar
  27. Fairclough WV, Evans MCW, Purton S, Jones S, Rigby SEJ and Heathcote P (2001) Site-directed mutagenesis of PsaA:M684 in Chlamydomonas reinhardtii. In: Critchley C (ed) PS2001: 12th International Congress on Photosynthesis, pp S6–022. CSIRO Publishers, Melbourne Australia.Google Scholar
  28. Fairclough WV, Forsyth A, Evans MCW, Rigby SEJ, Purton S and Heathcote P (2003) Bidirectional electron transfer in Photosystem I: electron transfer on the PsaA side is not essential for phototrophic growth in Chlamydomonas. Biochim Biophys Acta 1606: 43–55PubMedCrossRefGoogle Scholar
  29. Fromme P, Jordan P and Krauβ N (2001) Structure of Photosystem I. Biochim Biophys Acta 1507: 5–31PubMedCrossRefGoogle Scholar
  30. Gast P, Swarthoff T, Ebskamp FCR and Hoff AJ (1983) Evidence for a new early acceptor in Photosystem-I of plants –an electron-spin-resonance investigation of reaction center triplet yield and of the reduced intermediary acceptors. Biochim Biophys Acta 722: 163–175CrossRefGoogle Scholar
  31. Gobets B and van Grondelle R (2001) Energy transfer and trapping in Photosystem I. Biochim Biophys Acta 1507: 80–99PubMedCrossRefGoogle Scholar
  32. Golbeck JH (1989) Structure, function and organization of the Photosystem I reaction center complex. Biochim Biophys Acta 895: 167–204Google Scholar
  33. Golbeck JH (1992) Structure and function of Photosystem I. Annu Rev Plant Physiol Plant Mol Biol 43: 293–324CrossRefGoogle Scholar
  34. Golbeck JH and Bryant DA (1991) Photosystem I. Curr Top Bioenerg 16: 83–177Google Scholar
  35. Golbeck J, Xu W, Zybailov B, van der Est A, Pushkar J, Zech S, Stehlik D and Chitnis P (2001) Electron transfer through the quinone electron acceptor in Photosystem I. In: Critchley C (ed) PS2001: 12th International Congress on Photosynthesis, pp S6–006. CSIRO Publishing, Melbourne, AustraliaGoogle Scholar
  36. Gong XM, Agalarov R, Brettel K and Carmeli C (2003) Control of electron transport in Photosystem I by the iron–sulfur cluster FX in response to intra- and intersubunit interactions. J Biol Chem 278: 19141–19150PubMedCrossRefGoogle Scholar
  37. Guergova-Kuras M, Boudreaux B, Joliot A, Joliot P and Redding K (2001) Evidence for two active branches for electron transfer in Photosystem I. Proc Natl Acad Sci USA 98: 4437–4442PubMedCrossRefGoogle Scholar
  38. Hastings G, Kleinherenbrink FAM, Lin S, McHugh TJ and Blankenship RE (1994) Observation of the reduction and reoxidation of the primary electron acceptor in Photosystem I. Biochemistry 33: 3193–3200PubMedCrossRefGoogle Scholar
  39. Heathcote P, Hanley JA and Evans MCW (1993) Double-reduction of A1 abolishes the EPR signal attributed to A1 : evidence for C2 symmetry in the Photosystem I reaction center. Biochim Biophys Acta 1144: 54–61CrossRefGoogle Scholar
  40. Heathcote P, MoenneLoccoz P, Rigby SEJ and Evans MCW (1996) Photoaccumulation in photosystem I does produce a phylloquinone (A1 · -) radical. Biochemistry 35: 6644–6650PubMedCrossRefGoogle Scholar
  41. Hecks B, Wulf K, Breton J, Leibl W and Trissl HW (1994) Primary charge separation in Photosystem I –a 2-step electrogenic charge separation connected with P700 +A0 and P700 +A1 formation. Biochemistry 33: 8619–8624PubMedCrossRefGoogle Scholar
  42. Hoff A (1993) Time resolved EPR methods. In: Deisenhofer J and Norris JR (eds) The Photosynthetic Reaction Center, Vol II, pp 331–386. Academic Press, San Diego/LondonGoogle Scholar
  43. Hore PJ (1996) Transfer of spin correlation between radical pairs in the initial steps of photosynthetic energy conversion. Mol Phys 89: 1195–1202CrossRefGoogle Scholar
  44. Hulsebosch RJ, Borovykh IV, Paschenko SV, Gast P and Hoff AJ (1999) Radical pair dynamics and interactions in quinone-reconstituted photosynthetic reaction centers of Rb. sphaeroides R26: a multifrequency magnetic resonance study. J Phys Chem B 103: 6815–6823CrossRefGoogle Scholar
  45. Ishikita H and Knapp EW (2003) Redox potential of quinones in both electron transfer branches of photosystem I. J Biol Chem 278: 52002–52011PubMedCrossRefGoogle Scholar
  46. Ivashin N and Larsson S (2003) Electron transfer pathways in photosystem I reaction centers. Chem Phys Lett 375: 383–387CrossRefGoogle Scholar
  47. Johnson TW, Shen GZ, Zybailov B, Kolling D, Reategui R, Beauparlant S, Vassiliev IR, Bryant DA, Jones AD, Golbeck JH and Chitnis PR (2000) Recruitment of a foreign quinone into the A1 site of Photosystem I –I. Genetic and physiological characterization of phylloquinone biosynthetic pathway mutants in Synechocystis sp PCC 6803. J Biol Chem 275: 8523–8530PubMedCrossRefGoogle Scholar
  48. Johnson TW, Zybailov B, Jones AD, Bittl R, Zech S, Stehlik D, Golbeck JH and Chitnis PR (2001) Recruitment of a foreign quinone into the A1 site of Photosystem I –in vivo replacement of plastoquinone-9 by media-supplemented naphthoquinones in phylloquinone biosynthetic pathway mutants of Synechocystis sp. PCC 6803. J Biol Chem 276: 39512–39521PubMedCrossRefGoogle Scholar
  49. Joliot P and Joliot A (1999) In vivo analysis of the electron transfer within Photosystem I: are the two phylloquinones involved? Biochemistry 38: 11130–11136PubMedCrossRefGoogle Scholar
  50. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauβ N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Ångstrom resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  51. Jortner J (1976) Temperature dependent activation energy for electron transfer between biological molecules. J Chem Phys 64: 4860–4867CrossRefGoogle Scholar
  52. Jortner J and Bixon M (eds) (1999a) Electron transfer –from isolated molecules to biomolecules, Part One. Advances in Chemical Physics, Vol 106. John Wiley & Sons, Inc, New YorkGoogle Scholar
  53. Jortner J and Bixon M (eds) (1999b) Electron transfer –from isolated molecules to biomolecules, Part Two. Advances in Chemical Physics, Vol 107. John Wiley & Sons, Inc., New YorkGoogle Scholar
  54. Kandrashkin Y and van der Est A (2002) Electron spin polarization in photosynthetic reaction centers: strategies for extracting structural and functional information. RIKEN Rev 44: 124–127Google Scholar
  55. Kandrashkin YE, Salikhov KM and Stehlik D (1997) Spin dynamics and EPR spectra of consecutive spin-correlated radical pairs. Model calculations. Appl Magn Reson 12: 141–166CrossRefGoogle Scholar
  56. Kandrashkin YE, Vollmann W, Stehlik D, Salikhov K and Van der Est A (2002) The magnetic field dependence of the electron spin polarization in consecutive spin correlated radical pairs in type I photosynthetic reaction centers. Mol Phys 100: 1431–1443CrossRefGoogle Scholar
  57. Käss H, Fromme P, Witt HT and Lubitz W (2001) Orientation and electronic structure of the primary donor radical cation P700 + in Photosystem I: a single crystals EPR and ENDOR study. J Phys Chem B 105: 1225–1239CrossRefGoogle Scholar
  58. Kaupp M (2002) The function of photosystem I. Quantum chemical insight into the role of tryptophan–quinone interactions. Biochemistry 41: 2895–2900PubMedCrossRefGoogle Scholar
  59. Kjaer B, Frigaard NU, Yang F, Zybailov B, Miller M, Golbeck JH and Scheller HV (1998) Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1. Biochemistry 37: 3237–3242PubMedCrossRefGoogle Scholar
  60. Klukas O, Schubert WD, Jordan P, Krauβ N, Fromme P, Witt HT and Saenger W (1999) Localization of two phylloquinones, QK and QK′, in an improved electron density map of Photosystem I at 4 Ångstrom resolution. J Biol Chem 274: 7361–7367PubMedCrossRefGoogle Scholar
  61. Koradi R, Billeter M and Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graphics 14: 51–55, 29–32CrossRefGoogle Scholar
  62. Krauø N, Schubert WD, Klukas O, Fromme P, Witt HT and Saenger W (1996) Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction center and core antenna system. Nat Struct Biol 3: 965–973CrossRefGoogle Scholar
  63. Lagoutte B, Sétif P and Duranton J (1984) Tentative identification of the apoproteins of iron–sulfur centers of Photosystem I. FEBS Lett 174: 24–29CrossRefGoogle Scholar
  64. Leibl W, Toupance B and Breton J (1995) Photoelectric characterization of forward electron transfer to iron–sulfur centers in Photosystem I. Biochemistry 34: 10237–10235PubMedCrossRefGoogle Scholar
  65. Luneberg J, Fromme P, Jekow P and Schlodder E (1994) Spectroscopic characterization of PS I core complexes from thermophilic Synechococcus sp.: identical reoxidation kinetics of A1 before and after removal of the iron–sulfur clusters FA and FB. FEBS Lett 338: 197PubMedCrossRefGoogle Scholar
  66. MacMillan F, Hanley J, van der Weerd L, Knupling M, Un S and Rutherford AW (1997) Orientation of the phylloquinone electron acceptor anion radical in photosystem I. Biochemistry 36: 9297–9303PubMedCrossRefGoogle Scholar
  67. Mamedov MD, Gadzhieva RM, Gourovskaya KN, Drachev LA and Semenov AY (1996) Electrogenicity at the donor acceptor sides of cyanobacterial photosystem I. J Bioenerg Biomembr 28: 517–522PubMedCrossRefGoogle Scholar
  68. Manikowski H, McIntosh AR and Bolton JR (1984) A study of chemically-induced dynamic electron polarization (CIDEP) in Photosystem-I of whole algal cells at ambient-temperatures. Biochim Biophys Acta 765: 68–73CrossRefGoogle Scholar
  69. Marcus RA and Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811: 265–322Google Scholar
  70. McIntosh AR, Manikowski H and Bolton JR (1979a) Observations of chemically-induced dynamic electron polarization in Photosystem-I of green plants and algae. J Phys Chem 83: 3309–3313CrossRefGoogle Scholar
  71. McIntosh AR, Manikowski H, Wong SK, Taylor CPS and Bolton JR (1979b) CIDEP observations in Photosystem-I of green plant and algal photosynthesis. Biochem Biophys Res Commun 87: 605–612CrossRefGoogle Scholar
  72. Mi DH, Lin S and Blankenship RE (1999) Picosecond transient absorption spectroscopy in the blue spectral region of Photosystem I. Biochemistry 38: 15231–15237PubMedCrossRefGoogle Scholar
  73. Möbius K (2000) Primary processes in photosynthesis: what do we learn from high-field EPR spectroscopy? Chem Soc Rev 29: 129–139CrossRefGoogle Scholar
  74. Moenne-Loccoz P, Heathcote P, Maclachlan DJ, Berry MC, Davis IH and Evans MCW (1994) Path of electron transfer in Photosystem 1 –direct evidence of forward electron transfer from A1 to Fe-Sx. Biochemistry 33: 10037–10042PubMedCrossRefGoogle Scholar
  75. Morris AL, Snyder SW, Zhang YN, Tang J, Thurnauer MC, Dutton PL, Robertson DE and Gunner MR (1995) Electron-spin polarization model applied to sequential electron-transfer in iron-containing photosynthetic bacterial reaction centers with different quinones as Q(a). J Phys Chem 99: 3854–3866CrossRefGoogle Scholar
  76. Moser CC and Dutton PL (1992) Engineering protein-structure for electron-transfer function in photosynthetic reaction centers. Biochim Biophys Acta 1101: 171–176PubMedGoogle Scholar
  77. Muhiuddin IP, Rigby SEJ, Evans MCW, Amesz J and Heathcote P (1999) ENDOR and special TRIPLE resonance spectroscopy of photoaccumulated semiquinone electron acceptors in the reaction centers of green sulfur bacteria and heliobacteria. Biochemistry 38: 7159–7167PubMedCrossRefGoogle Scholar
  78. Muhiuddin IP, Heathcote P, Carter S, Purton S, Rigby SEJ and Evans MCW (2001) Evidence from time resolved studies of the P700 +A1 radical pair for photosynthetic electron transfer on both the PsaA and PsaB branches of the Photosystem I reaction center. FEBS Lett 503: 56–60PubMedCrossRefGoogle Scholar
  79. Norris JR, Morris AL, Thurnauer MC and Tang J (1990) A general-model of electron-spin polarization arising from the interactions within radical pairs. J Chem Phys 92: 4239–4249CrossRefGoogle Scholar
  80. Page CC, Moser CC, Chen XX and Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature 402: 47–52PubMedCrossRefGoogle Scholar
  81. Pedersen JB (1979) Determination of the primary reactions of photosynthesis from transient ESR signals. FEBS Lett 97: 305–310CrossRefGoogle Scholar
  82. Purton S, Stevens DR, Muhiuddin IP, Evans MCW, Carter S, Rigby SEJ and Heathcote P (2001) Site-directed mutagenesis of PsaA residue W693 affects phylloquinone binding and function in the photosystem I reaction center of Chlamydomonas reinhardtii. Biochemistry 40: 2167–2175PubMedCrossRefGoogle Scholar
  83. Pushkar YN, Stehlik D, Lubitz W and van Gastel M (2004) An EPR/ENDOR study of the asymmetric hydrogen bond between the quinone electron acceptor and the protein backbone in Photosystem I. J Mol Struct 700: 233–241CrossRefGoogle Scholar
  84. Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA and Lavergne J (2002) Kinetics and pathways of charge recombination in Photosystem II. Biochemistry 41: 8518–8527PubMedCrossRefGoogle Scholar
  85. Redding K, Guergova-Kuras M, MacMillan F, Bittl R, Brettel K, Boudreaux B, Gu FF, Joliot A, Joliot P, Grimaldi S, Teutloff C and Agalarov R (2001) Mutational analysis of the binding sites of the active phylloquinones in PS I. In: Critchley C (ed) PS2001: 12th International Congress on Photosynthesis, pp S6–029. CSIRO Publishers, Melbourne, AustraliaGoogle Scholar
  86. Rigby SEJ, Muhiuddin IP, Evans MCW, Purton S and Heathcote P (2002) Photoaccumulation of the PsaB phyllosemiquinone in Photosystem I of Chlamydomonas reinhardtii. Biochim Biophys Acta 1556: 13–20PubMedCrossRefGoogle Scholar
  87. Rigby SEJ, Muhiuddin IP, Santabarbara S, Evans MCW and Heathcote P (2003) Proton ENDOR spectroscopy of the anion radicals of the chlorophyll primary electron acceptors in type I photosynthetic reaction centers. Chem Phys 294: 319–328CrossRefGoogle Scholar
  88. Sakuragi Y, Zybailov B, Shen GZ, Jones AD, Chitnis PR, van der Est A, Bittl R, Zech S, Stehlik D, Golbeck JH and Bryant DA (2002) Insertional inactivation of the menG gene, encoding 2-phytyl-1,4-naphthoquinone methyltransferase of Synechocystis sp. PCC 6803, results in the incorporation of 2-phytyl-1,4-naphthoquinone into the A1 site and alteration of the equilibrium constant between A1 and Fx in Photosystem I. Biochemistry 41: 394–405PubMedCrossRefGoogle Scholar
  89. Salikhov KM, Zech SG and Stehlik D (2002) Light induced radical pair intermediates in photosynthetic reaction centers in contact with an observer spin label: spin dynamics and effects on transient EPR spectra. Mol Phys 100: 1311–1321CrossRefGoogle Scholar
  90. Savikhin S, Xu W, Martinsson P, Chitnis PR and Struve WS (2001) Kinetics of charge separation and A0 −→>A1 electron transfer in photosystem reaction centers. Biochemistry 40: 9282–9290PubMedCrossRefGoogle Scholar
  91. Schlodder E, Falkenberg K, Gergeleit M and Brettel K (1998) Temperature dependence of forward and reverse electron transfer from A1 , the reduced secondary electron acceptor in Photosystem I. Biochemistry 37: 9466–9476PubMedCrossRefGoogle Scholar
  92. Schubert WD, Klukas O, Krauø N, Saenger W, Fromme P and Witt HT (1997) Photosystem I of Synechococcus elongatus at 4 Ångstrom resolution: comprehensive structure analysis. J Mol Biol 272: 741–769PubMedCrossRefGoogle Scholar
  93. Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P and Krauø N (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J Mol Biol 280: 297–314PubMedCrossRefGoogle Scholar
  94. Semenov AY, Vassiliev IR, van der Est A, Mamedov MD, Zybailov B, Shen GZ, Stehlik D, Diner BA, Chitnis PR and Golbeck JH (2000) Recruitment of a foreign quinone into the A1 site of Photosystem I –altered kinetics of electron transfer in phylloquinone biosynthetic pathway mutants studied by time-resolved optical, EPR, and electrometric techniques. J Biol Chem 275: 23429–23438PubMedCrossRefGoogle Scholar
  95. Sétif P and Brettel K (1993) Forward electron transfer from phylloquinone A1 to iron–sulfur centers in spinach Photosystem I. Biochemistry 32: 7846–7854PubMedCrossRefGoogle Scholar
  96. Shen GZ, Antonkine ML, van der Est A, Vassiliev IR, Brettel K, Bittl R, Zech SG, Zhao JD, Stehlik D, Bryant DA and Golbeck JH (2002a) Assembly of photosystem I. II. Rubredoxin is required for the in vivo assembly of Fx in Synechococcus sp. PCC 7002 as shown by optical and EPR spectroscopy. J Biol Chem 277: 20355–20366CrossRefGoogle Scholar
  97. Shen GZ, Zhao JD, Reimer SK, Antonkine ML, Cai Q, Weiland SM, Golbeck JH and Bryant DA (2002b) Assembly of photosystem I. I. Inactivation of the rubA gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of Photosystem I activity. J Biol Chem 277: 20343–20354CrossRefGoogle Scholar
  98. Shinkarev VP, Vassiliev IR and Golbeck JH (2000) A kinetic assessment of the sequence of electron transfer from FX to FA and further to FB in photosystem I: the value of the equilibrium constant between FX and FA. Biophys J 78: 363–372PubMedGoogle Scholar
  99. Shinkarev VP, Zybailov B, Vassiliev IR and Golbeck JH (2002) Modeling of the P700+ charge recombination kinetics with phylloquinone and plastoquinone-9 in the A1site of photosystem I. Biophys J 83: 2885–2897PubMedGoogle Scholar
  100. Snyder SW and Thurnauer M (1993) Electron spin polarization in photosynthetic reaction centers. In: Deisenhofer J and Norris JR (eds) The Photosynthetic Reaction Center, Vol II, pp 285–330. Academic Press, San Diego/LondonGoogle Scholar
  101. Snyder SW, Morris AL, Bondeson SR, Norris JR and Thurnauer MC (1993) Electron-spin polarization in sequential electron transfer –an example from iron-containing photosynthetic bacterial reaction center proteins. J Am Chem Soc 115: 3774–3775CrossRefGoogle Scholar
  102. Stehlik D and Möbius K (1997) New EPR methods for investigating photoprocesses with paramagnetic intermediates. Annu Rev Phys Chem 48: 745–784PubMedCrossRefGoogle Scholar
  103. Tang J, Bondeson S and Thurnauer MC (1996) Effects of sequential electron transfer on electron spin polarized transient EPR spectra at high fields. Chem Phys Lett 253: 293–298CrossRefGoogle Scholar
  104. Tang J, Utschig LM, Poluektov O and Thurnauer MC (1999) Transient W-band EPR study of sequential electron transfer in photosynthetic bacterial reaction centers. J Phys Chem B 103: 5145–5150CrossRefGoogle Scholar
  105. Teutloff C, MacMillan F, Bittl R, Lendzian F and Lubitz W (1998) A comparative study of A1 in PS I from cyanobacteria, green plants and algae using EPR and ENDOR spectroscopy. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol I, pp 607–610. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  106. Thurnauer MC and Norris JR (1980) An electron-spin echo phase-shift observed in photosynthetic algae –possible evidence for dynamic radical pair interactions. Chem Phys Lett 76: 557–561CrossRefGoogle Scholar
  107. Thurnauer MC, Rutherford AW and Norris JR (1982) The effect of ambient redox potential on the transient electron-spin echo signals observed in chloroplasts and photosynthetic algae. Biochim Biophys Acta 682: 332–338CrossRefGoogle Scholar
  108. Trissl HW and Wulf K (1995) Fast photovoltage measurements in photosynthesis. II. Experimental methods. Biospectroscopy 1: 71–82CrossRefGoogle Scholar
  109. Utschig LM, Greenfield SR, Tang J, Laible PD and Thurnauer MC (1997) Influence of iron-removal procedures on sequential electron transfer in photosynthetic bacterial reaction centers studied by transient EPR spectroscopy. Biochemistry 36: 8548–8558PubMedCrossRefGoogle Scholar
  110. van der Est A (2001) Light-induced spin polarization in type I photosynthetic reaction centers. Biochim Biophys Acta 1507: 212–225PubMedCrossRefGoogle Scholar
  111. van der Est A, Bock C, Golbeck J, Brettel K, Sétif P and Stehlik D (1994) Electron transfer from acceptor A1 to the iron–sulfur centers in Photosystem I as studied by transient EPR spectroscopy. Biochemistry 33: 11789–11797PubMedCrossRefGoogle Scholar
  112. van der Est A, Hager-Braun C, Leibl W, Hauska G and Stehlik D (1998) Transient electron paramagnetic resonance spectroscopy on green-sulfur bacteria and heliobacteria at two microwave frequencies. Biochim Biophys Acta 1409: 87–98PubMedCrossRefGoogle Scholar
  113. van der Est A, Valieva A, Kandrashkin Y, Shen G, Bryant D and Golbeck J (2003) Removal of PsaF alters forward electron transfer in Photosystem I: evidence for fast reoxidation of QK-A in subunit deletion mutants of Synechococcus sp. PCC 7002. Biochemistry 43: 1264–1275Google Scholar
  114. Vassiliev IR, Jung YS, Mamedov MD, Semenov AY and Golbeck JH (1997) Near-IR absorbance changes and electrogenic reactions in the microsecond-to-second time domain in photosystem I. Biophys J 72: 301–315PubMedGoogle Scholar
  115. Vassiliev IR, Antonkine ML and Golbeck JH (2001) Iron–sulfur clusters in type I reaction centers. Biochim Biophys Acta 1507: 139–160PubMedCrossRefGoogle Scholar
  116. Webber AN and Lubitz W (2001) P700: the primary electron donor of Photosystem I. Biochim Biophys Acta 1507: 61–79PubMedCrossRefGoogle Scholar
  117. Xu W, Chitnis P, Valieva A, van der Est A, Pushkar YN, Krzystyniak M, Teutloff C, Zech SG, Bittl R, Stehlik D, Zybailov B, Shen GZ and Golbeck JH (2003a) Electron transfer in cyanobacterial Photosystem I –I. Physiological and spectroscopic characterization of site-directed mutants in a putative electron transfer pathway from A0 through A1 to Fx. J Biol Chem 278: 27864–27875CrossRefGoogle Scholar
  118. Xu W, Chitnis PR, Valieva A, van der Est A, Brettel K, Guergova-Kuras M, Pushkar YN, Zech SG, Stehlik D, Shen GZ, Zybailov B and Golbeck JH (2003b) Electron transfer in cyanobacterial photosystem I –II. Determination of forward electron transfer rates of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J Biol Chem 278: 27876–27887CrossRefGoogle Scholar
  119. Yang F, Shen GZ, Schluchter WM, Zybailov BL, Ganago AO, Vassiliev IR, Bryant DA and Golbeck JH (1998) Deletion of the PsaF polypeptide modifies the environment of the redox-active phylloquinone (A1). Evidence for unidirectionality of electron transfer in photosystem I. J Phys Chem B 102: 8288–8299CrossRefGoogle Scholar
  120. Yang F, Shen GZ, Schluchter WM, Zybailov BL, Ganago AO, Vassiliev IR, Bryant DA and Golbeck JH (1999) Structural and functional analyses of cyanobacterial Photosystem I: the directionality of electron transfer. In: Peschek GA, Loeffelhardt W and Schmetterer G (eds) The Phototrophic Prokaryotes. Plenum Press, New YorkGoogle Scholar
  121. Yang M, Damjanovic A, Vaswani HM and Fleming GR (2003) Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys J 85: 140–158PubMedGoogle Scholar
  122. Yu JP, Smart LB, Jung YS, Golbeck J and McIntosh L (1995) Absence of PsaC subunit allows assembly of the Photosystem-I core but prevents the binding of PsaD and PsaE in Synechocystis sp. PCC 6803. Plant Mol Biol 29: 331–342PubMedCrossRefGoogle Scholar
  123. Zech SG, van der Est AJ and Bittl R (1997) Measurement of cofactor distances between P700 + and A1 in native and quinone-substituted Photosystem I using pulsed electron paramagnetic resonance spectroscopy. Biochemistry 36: 9774–9779PubMedCrossRefGoogle Scholar
  124. Zeng MT, Gong XM, Evans MCW, Nelson N and Carmeli C (2002) Stabilization of iron–sulfur cluster FX by intra-subunit interactions unraveled by suppressor and second site-directed mutations in PsaB of Photosystem I. Biochim Biophys Acta 1556: 254–264PubMedCrossRefGoogle Scholar
  125. Zybailov B, van der Est A, Zech SG, Teutloff C, Johnson TW, Shen GZ, Bittl R, Stehlik D, Chitnis PR and Golbeck JH (2000) Recruitment of a foreign quinone into the A1 site of photosystem I –II. Structural and functional characterization of phylloquinone biosynthetic pathway mutants by electron paramagnetic resonance and electron-nuclear double resonance spectroscopy. J Biol Chem 275: 8531–8539PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Art van der Est
    • 1
  1. 1.Department of ChemistryBrock UniversityOntarioCanada

Personalised recommendations