Photosystem I pp 339-360 | Cite as

High-Field EPR Studies of Electron Transfer Intermediates in Photosystem I

  • Marion C. Thurnauer
  • Oleg G. Poluektov
  • Gerd Kothe
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 24)

Abstract

High-field frequency EPR and multifrequency quantum beat studies of the electron transfer intermediates in Photosystem I reveal new details of structure and function that could not be obtained without the enhanced resolution, both spectral and temporal, and sensitivity of these advanced spectroscopic techniques. The results of careful measurements and analyses of the resolved g-tensors of the primary donor cation radical and excited triplet state show that their electronic structures differ from those of monomeric chlorophyll a. Multifrequency time-resolved EPR, which includes high-field EPR, has made it possible to determine the structure of the transient charge-separated state P+ 700A1 and its orientation in the thylakoid membrane. High-field EPR studies are just beginning to have an impact on photosynthesis research, as the technique has only been widely accessible for the last few years. There are several important advantages of high-field EPR spectroscopy. First is the high g-tensor resolution.

Keywords

Microwave Anisotropy Recombination Coherence Fullerene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artz K, Williams JC, Allen JP, Lendzian F, Rautter J and Lubitz W (1997) Relationship between the oxidation potential and electron spin density of the primary electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 94: 13582–13587PubMedCrossRefGoogle Scholar
  2. Bearden AJ and Malkin R (1972a) The bound ferredoxin of chloroplasts: a role as the primary electron acceptor of photosystem I. Biochim Biophys Res Comm 46: 1299–1305CrossRefGoogle Scholar
  3. Bearden AJ and Malkin R (1972b) Quantitative EPR studies of the primary reaction of photosystem I in chloroplasts. Biochim Biophys Acta 283: 456–468CrossRefGoogle Scholar
  4. Berthold T, Bechtold M, Heinen U, Link G, Poluektov O, Utschig L, Tang J, Thurnauer MC and Kothe G (1999) Magnetic field induced orientation of photosynthetic reaction centers as revealed by time-resolved W-band EPR of spin-correlated radical pairs. J Phys Chem B 103: 10733–10736CrossRefGoogle Scholar
  5. Bittl R and Kothe G (1991) Transient EPR of radical pairs in photosynthetic reaction centers: prediction of quantum beats. Chem Phys Lett 177: 547–553CrossRefGoogle Scholar
  6. Bittl R, van der Est A, Kamlowski A, Lubitz W and Stehlik D (1994) Time-resolved EPR of the radical pair P+ 865Q A in bacterial reaction centers. Observation of transient nutations, quantum beats and envelope modulation effects. Chem Phys Lett 226: 349–358CrossRefGoogle Scholar
  7. Blankenship RE (1981) Chemically induced magnetic polarization in photosynthetic systems. Acc Chem Res 14: 163–170CrossRefGoogle Scholar
  8. Bonnerjea J and Evans MCW (1982) Identification of multiple components in the intermediary electron carrier complex of photosystem I. FEBS Lett 148: 313–316CrossRefGoogle Scholar
  9. Borovykh IV, Kulik LV, Dzuba SA and Hoff AJ (2001) Selective excitation in pulsed EPR of spin-correlated radical pairs: electron–electron interactions, zero-, single-, and double-quantum relaxation and spectral diffusion. Chem Phys Lett 338: 173–179CrossRefGoogle Scholar
  10. Bratt PJ, Rohrer JK, Evans MCW, Brunel L-C and Angerhofer A (1997) Submillimeter high-field EPR studies of the primary donor in plant photosystem I P700 +. J Phys Chem B 101: 9686–9689CrossRefGoogle Scholar
  11. Bratt PJ, Poluektov OG, Thurnauer MC, Krzystek J, Brunel L-C, Schrier J, Hsiao Y-W, Zerner M and Angerhofer A (2000) The g-factor anisotropy of plant chlorophyll a+. J Phys Chem B 104: 6973–6977CrossRefGoogle Scholar
  12. Breton J (1974) The state of chlorophyll and carotenoid in vivo. II –a linear dichroism study of pigment orientation in photosynthetic bacteria. Biochim Biophys Res Comm 59: 1011–1017CrossRefGoogle Scholar
  13. Breton J, Nabedryk E and Leibl W (1999) FTIR study of the primary electron donor of photosystem I (P700) revealing delocalization of the charge in P700+ and localization of the triplet character in 3P700. Biochemistry 38: 11585–11592PubMedCrossRefGoogle Scholar
  14. Brettel K (1988) Electron transfer from A 1 to an iron-sulfur center with t1/2 = 200 ns at room temperature in photosystem I. Characterization by flash absorption spectroscopy. FEBS Lett 239: 93–98CrossRefGoogle Scholar
  15. Brettel K and Leibl W (2001) Electron transfer in photosystem I. Biochim Biophys Acta 1507: 100–114PubMedCrossRefGoogle Scholar
  16. Buckley CD, Hunter DA, Hore PJ and McLauchlan KA (1987) ESR of spin-correlated radical pairs. Chem Phys Lett 135: 307–312CrossRefGoogle Scholar
  17. Budil DE and Thurnauer MC (1991) The chlorophyll triplet state as a probe of structure and function in photosynthesis. Biochim Biophys Acta 1057: 1–41PubMedCrossRefGoogle Scholar
  18. Carbonera D, DiValentin M, Corvaja C, Agostini G, Giacometti G, Liddell PA, Kuciauskas D, Moore AL, Moore TA and Gust D (1998) EPR investigation of photoinduced radical pair formation and decay to a triplet state in a carotene-porphyrin-fullerene triad. J Am Chem Soc 120: 4398–4405CrossRefGoogle Scholar
  19. Clayton RK and Straley SC (1972) Photochemical electron transport in photosynthetic reaction centers. IV. Observations related to the reduced photoproducts. Biophys J 12: 1221–1234PubMedGoogle Scholar
  20. Closs GL, Forbes MDE and Norris JR (1987) Spin-polarized electron paramagnetic resonance spectra of radical pairs in micelles. Observation of electron spin–spin interactions. J Phys Chem 91: 3592–3599CrossRefGoogle Scholar
  21. Cohen RO, Shen G, Golbeck JH, Xu W, Chitnis PR, Valieva AI, van der Est A, Pushkar Y, and Stehlik D (2004) Evidence for asymmetric electron transfer in cyanobacterial photosystem I: Analysis of a methionine-to-leucine mutation of the ligand to the primary electron acceptor A0. Biochemistry 43: 4741–4754PubMedCrossRefGoogle Scholar
  22. Commoner B, Townsend J and Pake GE (1954) Free radicals in biological materials. Nature (London) 174: 689–691CrossRefGoogle Scholar
  23. Commoner B, Heise JJ and Townsend J (1956) Light-induced paramagnetism in chloroplasts. Proc Natl Acad Sci USA 42: 710–718PubMedCrossRefGoogle Scholar
  24. Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center of Rhodopseudomonas viridis. J Mol Biol 180: 385–398PubMedCrossRefGoogle Scholar
  25. Dutton PL, Leigh JS and Seibert M (1972) Primary processes in photosynthesis: in situ ESR studies on the light induced oxidized and triplet state of reaction center bacteriochlorophyll. Biochim Biophys Res Comm 46: 406–413CrossRefGoogle Scholar
  26. Dutton PL, Leigh JS and Reed DW (1973) Primary events in the photosynthetic reaction centre from Rhodopseudomonas sphaeroides Strain R26: triplet and oxidized states of bacteriochlorophyll and the identification of the primary electron acceptor. Biochim Biophys Acta 292: 654–664PubMedCrossRefGoogle Scholar
  27. Dzuba SA, Gast P and Hoff AJ (1995) ESEEM study of spin–spin interactions in spin-polarised P+Q A pairs in the photosynthetic purple bacterium Rhodobacter sphaeroides R26. Chem Phys Lett 236: 595–602CrossRefGoogle Scholar
  28. Ermler U, Fritzsch G, Buchanan SK and Michel H (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions. Structure 2: 925–936PubMedCrossRefGoogle Scholar
  29. Evans MCW and Cammack R (1975) The effect of the redox state of the bound iron-sulfur centers in spinach chloroplasts on the reversibility of P700 photooxidation at low temperatures. Biochim Biophys Res Comm 63: 187–193CrossRefGoogle Scholar
  30. Evans MCW, Telfer A and Lord AV (1972) Evidence for the role of a bound ferredoxin as a primary electron acceptor of photosystem I in spinach chloroplasts. Biochim Biophys Acta 267: 530–537PubMedCrossRefGoogle Scholar
  31. Evans MCW, Reeves SG and Cammack R (1974) Determination of the oxidation-reduction potential of the bound iron-sulfur proteins of the primary electron acceptor complex of photosystem I in spinach chloroplasts. FEBS Lett 49: 111–114PubMedCrossRefGoogle Scholar
  32. Evans MCW, Sihra CK, Bolton J and Cammack R (1975) Primary electron acceptor complex of photosystem I in spinach chloroplasts. Nature (London) 256: 668–670CrossRefGoogle Scholar
  33. Feher G, Okamura MY and McElroy JD (1972) Identification of an electron acceptor in reaction centers of Rhodopseudomonas sphaeroides by EPR spectroscopy. Biochim Biophys Acta 267: 222–226PubMedCrossRefGoogle Scholar
  34. Feher G, Hoff AJ, Isaacson RA and Ackerson LC (1975) ENDOR experiments on chlorophyll and bacteriochlorophyll in vitro and in the photosynthetic unit. Ann NY Acad Sci USA 244: 239–259CrossRefGoogle Scholar
  35. Frank HA, McLean MB and Sauer K (1979) Triplet states in photosystem I of spinach chloroplasts and subchloroplast particles. Proc Natl Acad Sci USA 76: 5124–5128PubMedCrossRefGoogle Scholar
  36. Fuechsle G, Bittl R, van der Est A, Lubitz W and Stehlik D (1993) Transient EPR spectroscopy of the charge separated state P+Q in photosynthetic reaction centers. Comparison of Zn-substituted Rhodobacter sphaeroides R-26 and photosystem I. Biochim Biophys Acta 1142: 23–25CrossRefGoogle Scholar
  37. Furrer R and Thurnauer MC (1983) Resolution of signals attributed to photosystem I primary reactants by time-resolved EPR at K band. FEBS Lett 153: 399–403CrossRefGoogle Scholar
  38. Gast P, Swarthoff T, Ebskamp FCR and Hoff AJ (1983) Evidence for a new early acceptor in photosystem I of plants; an ESR investigation of reaction center triplet yield and of the reduced intermediary acceptors. Biochim Biophys Acta 722: 163–175CrossRefGoogle Scholar
  39. Geacintov NE, van Nostrand F, Becker JF and Tinkel JB (1972) Magnetic field induced orientation of photosynthetic systems. Biochim Biophys Acta 267: 65–79PubMedCrossRefGoogle Scholar
  40. Golbeck JH and Bryant DA (1991) Photosystem I. Curr Top Bioenerg 16: 83–177Google Scholar
  41. Grinberg OY, Dubinski AA, Shuvalov VF, Oranskii LG, Kurochkin VI and Lebedev YS (1976) Submillimeter ESR spectroscopy of free-radicals. Dokl Phys Chem (Engl Transl) 230: 923–928Google Scholar
  42. Hasharoni K, Levanon H, Greenfield SR, Gosztola DJ, Svec WA and Wasielewski MR (1995) Mimicry of the radical pair and triplet states in photosynthetic reaction centers with a synthetic model. J Am Chem Soc 30: 8055–8056CrossRefGoogle Scholar
  43. Heinen U, Berthold T, Kothe G, Stavitski E, Galili T, Levanon H, Wiederrecht G and Wasielewski MR (2002) High time resolution Q-band EPR study of sequential electron transfer in a triad oriented in a liquid crystal. J Phys Chem A 106: 1933–1937CrossRefGoogle Scholar
  44. Heinen U, Poluektov O, Stavitski E, Berthold T, Ohmes E, Schlesselman SL, Golecki JR, Moro GJ, Levanon H, Thurnauer MC and Kothe G (2004a) Magnetic field induced orientation of photosynthetic reaction centers as revealed by time-resolved D-band EPR of spin-correlated radical pairs. II. Field dependence of the alignment. J Phys Chem B 108: 9498–9504CrossRefGoogle Scholar
  45. Heinen U, Golecki JR, Poluektov O, Berthold T, Schlesselman SL, Frezzato D, Ohmes E, Moro GJ, Thurnauer MC and Kothe G (2004b) Magnetic field induced orientation of photosynthetic reaction centers as revealed by time-resolved W-band EPR of spin-correlated radical pairs. Development of a molecular model. Appl Magn Reson 26: 99–115Google Scholar
  46. Hoff AJ and Deisenhofer J (1997) Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria. Phys Rep 287: 1–248CrossRefGoogle Scholar
  47. Hore PJ (1989) Analysis of polarized EPR spectra. In: Hoff AJ (ed) Advanced EPR, Application in Biology and Biochemistry, pp 405–440. Elsevier, AmsterdamGoogle Scholar
  48. Jeschke G (1997) Electron-electron-nuclear three-spin mixing in spin-correlated radical pairs. J Chem Phys 106: 10072–10086CrossRefGoogle Scholar
  49. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  50. Kamlowski A, Zech SG, Fromme P, Bittl R, Lubitz W, Witt H-T and Stehlik D (1998) The radical pair state P+ 700 A 1 in photosystem I single crystals: orientation dependence of the transient spin-polarized EPR spectra. J Phys Chem B 102: 8266–8277CrossRefGoogle Scholar
  51. Käss H and Lubitz W (1996) Evaluation of 2D-ESEEM of the 15N-labeled radical cations of the primary donor P700 in photosystem I and chlorophyll a. Chem Phys Lett 251: 193–203CrossRefGoogle Scholar
  52. Käss H, Fromme P, Witt HT and Lubitz W (2001) Orientation and electronic structure of the primary donor radical cation P+ 700 in photosystem I: a single crystals EPR and ENDOR study. J Phys Chem B 105: 1225–1239CrossRefGoogle Scholar
  53. Ke B, Hansen RE and Beinert H (1973) Oxidation-reduction potentials of bound iron-sulfur proteins of photosystem I. Proc Acad Sci USA 70: 2941–2945CrossRefGoogle Scholar
  54. Kiefer AM, Kast SM, Wasielewski MR, Laukenmann K and Kothe G (1999) Exploring the structure of a photosynthetic model by quantum-chemical calculations and time-resolved Q-band electron paramagnetic resonance. J Am Chem Soc 121: 188–198CrossRefGoogle Scholar
  55. Kim SS and Weissman SI (1979) Transient magnetization following photoexcitation, Rev Chem Intermed 3: 10–120Google Scholar
  56. Kothe G, Weber S, Bittl R, Ohmes E, Thurnauer MC and Norris JR (1991) Transient EPR of light-induced radical pairs in plant photosystem I: observation of quantum beats. Chem Phys Lett 186: 474–480CrossRefGoogle Scholar
  57. Kothe G, Weber S, Ohmes E, Thurnauer MC and Norris JR (1994a) Transient EPR of light-induced spin-correlated radical pairs: manifestation of zero quantum coherence. J Phys Chem 98: 2706–2712CrossRefGoogle Scholar
  58. Kothe G, Weber S, Ohmes E, Thurnauer MC and Norris JR (1994b) High time resolution electron paramagnetic resonance of light-induced radical pairs in photosynthetic bacterial reaction centers: observation of quantum beats. J Am Chem Soc 116: 7729–7734CrossRefGoogle Scholar
  59. Kothe G, Bechtold M, Link G, Ohmes E and Weidner J-U (1998) Pulsed EPR detection of light-induced nuclear coherences in photosynthetic reaction centers. Chem Phys Lett 283: 51–60CrossRefGoogle Scholar
  60. Krabben L, Schlodder E, Jordan R, Carbonera D, Giacometti G, Lee H, Webber AN and Lubitz W (2000) Influence of the axial ligands on the spectral properties of P700 of photosystem I: a study of site-directed mutants. Biochemistry 39: 13012–13025PubMedCrossRefGoogle Scholar
  61. Krauß N (2003) Mechanisms for photosytems I and II. Curr Opin Chem Biol 7: 540–550PubMedCrossRefGoogle Scholar
  62. Lakshmi KV, Reifler MJ, Brudvig GW, Poluektov OG, Wagner AM and Thurnauer MC (2000) High-field EPR study of carotenoid and chlorophyll cation radicals in photosystem II. J Phys Chem B 104: 10445–10448CrossRefGoogle Scholar
  63. Lebedev YaS (1990) High-frequency continuous-wave electron spin resonance. In: Kevan L and Bowman MK (eds) Modern Pulsed and Continuous-Wave Electron Spin Resonance, pp 365–404. Wiley, New YorkGoogle Scholar
  64. Leigh JS and Dutton PL (1974) Reaction center bacteriochlorophyll triplet states: redox potential dependence and kinetics. Biochim Biophys Acta 357: 67–77PubMedCrossRefGoogle Scholar
  65. Link G, Berthold T, Bechtold M, Weidner J-U, Ohmes E, Tang J, Poluektov O, Utschig L, Schlesselman SL, Thurnauer MC and Kothe G (2001) Structure of the P700 +A1 radical pair intermediate in photosystem I by high time resolution multifrequency electron paramagnetic resonance: analysis of quantum beat oscillations. J Am Chem Soc 123: 4211–4222PubMedCrossRefGoogle Scholar
  66. Loach PA and Hall RL (1972) The question of the primary electron acceptor in bacterial photosynthesis. Proc Natl Acad Sci USA 69: 786–790PubMedCrossRefGoogle Scholar
  67. Lubitz W (1991) EPR and ENDOR studies of chlorophyll cation and anion radicals. In: Scheer H (ed) Chlorophylls, pp 903–944. CRC Press, Boca Raton, FloridaGoogle Scholar
  68. Mac M, Bowlby NR, Babcock GT and McCracken J (1998) Monomeric spin density distribution in the primary donor of photosystem I as determined by electron magnetic resonance: functional and thermodynamic implications. J Am Chem Soc 120: 13215–13223CrossRefGoogle Scholar
  69. MacMillan F, Rohrer M, Krzystek J and Brunel L-C (1998) A high-field/high-frequency EPR characterisation of the primary donor (P+) in bacterial and plant photosynthetic reaction centres. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol II, pp 715. Kluwer Academic Publishers, DordrechtGoogle Scholar
  70. McIntosh AR and Bolton JR (1979) CIDEP in the photosystems of green plant photosynthesis. Rev Chem Intermed 3: 121–129Google Scholar
  71. McIntosh AR, Chu M and Bolton JR (1975) Flash photolysis electron spin resonance studies of the electron acceptor species at low temperatures in photosystem I of spinach subchloroplast particles. Biochim Biophys Acta 376: 308–314PubMedCrossRefGoogle Scholar
  72. Möbius K (2000) Primary processes in photosynthesis: what do we learn from high-field EPR spectroscopy? Chem Soc Rev 29: 129–139CrossRefGoogle Scholar
  73. Morris AL, Snyder SW, Zhang Y, Tang J, Thurnauer MC, Dutton PL, Robertson DE and Gunner MR (1995) An electron spin polarization model applied to sequential electron transfer in iron-containing photosynthetic bacterial reaction centers with different quinones as QA. J Phys Chem 99: 3854–3866CrossRefGoogle Scholar
  74. Norris JR, Uphaus RA, Crespi HL and Katz JJ (1971) Electron spin resonance of chlorophyll and the origin of signal I in photosynthesis. Proc Natl Acad Sci USA 68: 625–628PubMedCrossRefGoogle Scholar
  75. Norris JR, Uphaus RA and Katz JJ (1975) ESR of triplet states of chlorophylls a, b, c1, c2 and bacteriochlorophyll a. Applications of ZFS and electron spin polarization in photosynthesis. Chem Phys Lett 31: 157–161CrossRefGoogle Scholar
  76. Norris JR, Morris AL, Thurnauer MC and Tang J (1990) A general model of electron spin polarization arising from the interactions within radical pairs. J Chem Phys 92: 4239–4249CrossRefGoogle Scholar
  77. Okamura MY, Isaacson RA and Feher G (1975) Primary acceptor in bacterial photosynthesis: obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 72: 3491–3495PubMedCrossRefGoogle Scholar
  78. Pauling L (1979) Diamagnetic anisotropy of the peptide group. Proc Natl Acad Sci USA 76: 2293–2294PubMedCrossRefGoogle Scholar
  79. Plato M, Krauß N, Fromme P and Lubitz W (2003) Molecular orbital study of the primary electron donor P700 of photosystem I based on a recent x-ray single crystal structure analysis. Chem Phys 294: 483–499CrossRefGoogle Scholar
  80. Poluektov OG, Utschig LM, Schlesselman SL, Lakshmi KV, Brudvig GW, Kothe G and Thurnauer MC (2002) Electronic structure of the P700 special pair from electron paramagnetic resonance spectroscopy. J Phys Chem B 106: 8911–8916CrossRefGoogle Scholar
  81. Poluektov OG, Utschig LM, Dubinskij AA and Thurnauer MC (2004) ENDOR of spin-correlated radical pairs in photosynthesis at high magnetic field: a tool for mapping electron transfer pathways. J Am Chem Soc 126: 1644–1645PubMedGoogle Scholar
  82. Poluektov OG, Paschenko SV, Utschig LM, Lakshmi KV and Thurnauer MC (2005) Bidirectional electron transfer in photosystem I: direct evidence from high-frequency time-resolved EPR spectroscopy. J Am Chem Soc 127: 11910–11911PubMedCrossRefGoogle Scholar
  83. Prisner TF, McDermott AE, Un S, Norris JR, Thurnauer MC and Griffin RG (1993) Measurement of the g-tensor of the P700 + signal from deuterated cyanobacterial photosystem I particles. Proc Natl Acad Sci USA 90: 9485–9488PubMedCrossRefGoogle Scholar
  84. Rustandi RR, Snyder SW, Feezel LL, Michalski TJ, Norris JR, Thurnauer MC and Biggins J (1990) Contribution of vitamin K1 to the electron spin polarized signal in photosystem I. Biochemistry 29: 8030–8032PubMedCrossRefGoogle Scholar
  85. Rustandi RR, Snyder SW, Biggins J, Norris JR and Thurnauer MC (1992) Reconstitution and exchange of quinones at the A1 site in photosystem I. An electron spin polarization electron paramagnetic resonance study. Biochim Biophys Acta 1101: 311–320CrossRefGoogle Scholar
  86. Rutherford AW and Mullet JE (1981) Reaction center triplet states in photosystem I and photosystem II. Biochim Biophys Acta 635: 225–235PubMedCrossRefGoogle Scholar
  87. Rutherford AW and Sétif P (1990) Orientation of P700, the primary electron donor of photosystem I. Biochim Biophys Acta 1019: 128–132CrossRefGoogle Scholar
  88. Rutherford AW, Paterson DR and Mullet JE (1981) A light induced spin-polarized triplet detected by EPR in photosystem II reaction centers. Biochim Biophys Acta 635: 205–214PubMedCrossRefGoogle Scholar
  89. Salikhov KM, Bock CH and Stehlik D (1990) Time development of electron spin polarization in magnetically coupled, spin correlated radical pairs. Appl Magn Reson 1: 195–211Google Scholar
  90. Salikhov KM, Kandrashkin Yu E and Salikhov AK (1992) Peculiarities of free induction and primary spin echo signals for spin-correlated radical pairs. Appl Magn Reson 3: 199–216CrossRefGoogle Scholar
  91. Santabarbara S, Kuprov I, Fairclough WV, Purton S, Hore PJ, Heathcote P and Evans MC (2005) Bidirectional electron transfer in photosystem I: Determination of two distances between P700 + and A1 in spin-correlated radical pairs. Biochemistry 44: 2119–2128PubMedCrossRefGoogle Scholar
  92. Schlodder E, Falkenberg K, Gergeleit M and Brettel K (1998) Temperature dependence of forward and reverse electron transfer from A- 1, the reduced secondary electron acceptor in photosystem I. Biochemistry 37: 9466–9476PubMedCrossRefGoogle Scholar
  93. Scholz F, Boroske E and Helfrich W (1984) Magnetic anisotropy of lecithin membranes. A new anisotropy susceptometer. Biophys J 45: 589–592PubMedCrossRefGoogle Scholar
  94. Sétif P, Mathis P and Vänngard T (1984) Photosystem I photochemistry at low temperature. Heterogeneity in pathways for electron transfer to the secondary acceptors and for recombination processes. Biochim Biophys Acta 767: 404–414CrossRefGoogle Scholar
  95. Shen G, Antonkine ML, van der Est A, Vassiliev IR, Brettel K, Bittl R, Zech SG, Zhao J, Stehlik D, Bryant DA, and Golbeck JH (2002) Assembly of photosystem I. II. Rubredoxin is required for the in vivo assembly of FX in Synechococcus sp. PCC 7002 as shown by optical and EPR spectroscopy. J Biol Chem 277: 20355–20366PubMedCrossRefGoogle Scholar
  96. Sieckmann I, Brettel K, Bock C, van der Est A and Stehlik D (1993) Transient electron paramagnetic resonance of the triplet state of P700 in photosystem I: evidence for triplet delocalization at room temperature. Biochemistry 32: 4842–4847PubMedCrossRefGoogle Scholar
  97. Snyder SW and Thurnauer MC (1993) Electron spin polarization in photosynthetic reaction centers. In: Deisenhofer H and Norris JR (eds) The Photosynthetic Reaction Center, Vol 2, pp 285–329. Academic Press, New YorkGoogle Scholar
  98. Snyder SW, Rustandi RR, Biggins J, Norris JR and Thurnauer MC (1991) Direct assignment of vitamin K1 as the secondary acceptor A1 in photosystem I. Proc Natl Acad Sci USA 88: 9895–9896PubMedCrossRefGoogle Scholar
  99. Sogo P, Jost M and Calvin M (1959) Free radical production in photosynthesizing systems. Radiat Res (Suppl I): 511–518Google Scholar
  100. Stehlik D and Möbius K (1997) New EPR methods for investigating photoprocesses with paramagnetic intermediates. Ann Rev Phys Chem 48: 745–784CrossRefGoogle Scholar
  101. Stehlik D, Bock CH and Petersen J (1989) Anisotropic electron spin polarization in photosynthetic reaction centers. J Phys Chem 93: 1612–1619CrossRefGoogle Scholar
  102. Steinberg-Yfrach G, Rigaud J-L, Durantini EN, Moore AL, Gust D and Moore TA (1998) Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 392: 479–482PubMedCrossRefGoogle Scholar
  103. Stewart DH, Cua A, Chisholm DA, Diner BA, Bocian DF and Brudvig GW (1998) Identification of histidine 118 in the D1 polypeptide of photosystem II as the axial ligand to chlorophyll z. Biochemistry 37: 10040–10046PubMedCrossRefGoogle Scholar
  104. Stone AJ (1963) G-tensors of aromatic hydrocarbons. Mol Phys 7: 311–316CrossRefGoogle Scholar
  105. Svec WA (1978) The isolation, preparation, characterization, and estimation of the chlorophylls and the bacteriochlorophylls. In: Dolphin D (ed) The Porphyrins, Vol V, pp 341–399. Academic Press, New YorkGoogle Scholar
  106. Tang J and Norris JR (1995) Multiple-quantum EPR coherence in a spin-correlated radical pair system. Chem Phys Lett 233: 192–200CrossRefGoogle Scholar
  107. Tang J, Thurnauer MC and Norris JR (1994) Electron spin echo modulation due to exchange and dipolar interactions in a spin-correlated radical pair. Chem Phys Lett 219: 283–290CrossRefGoogle Scholar
  108. Tang J, Utschig LM, Poluektov O and Thurnauer MC (1999) Transient W-band EPR study of sequential electron transfer in photosynthetic bacterial reaction centers. J Phys Chem B 103: 5145–5150CrossRefGoogle Scholar
  109. Thurnauer MC (1979) ESR study of the photoexcited triplet state in photosynthetic bacteria. Rev Chem Intermed 3: 197–230CrossRefGoogle Scholar
  110. Thurnauer MC and Gast P (1985) Q-band (35 GHz) EPR results on the nature of A1 and the electron spin polarization in photosystem I particles. Photobiochem Photobiophys 9: 29–38Google Scholar
  111. Thurnauer MC and Norris JR (1980) An electron spin echo phase shift observed in photosynthetic algae. Possible evidence for dynamic radical pair interactions. Chem Phys Lett 76: 557–561CrossRefGoogle Scholar
  112. Thurnauer MC, Katz JJ and Norris JR (1975) The triplet state in bacterial photosynthesis: possible mechanisms of the primary photo-act. Proc Natl Acad Sci USA 72: 3270–3274PubMedCrossRefGoogle Scholar
  113. Thurnauer MC, Rutherford AW and Norris JR (1982) The effect of ambient redox potential on the transient ESE signals observed in chloroplasts and photosynthetic algae. Biochim Biophys Acta 682: 332–338CrossRefGoogle Scholar
  114. Torrey HC (1949) Transient nutations in nuclear magnetic resonance. Phys Rev 76: 1059–1072CrossRefGoogle Scholar
  115. Trifunac AD and Norris JR (1978) Nanosecond time resolved EPR spectroscopy. EPR time profile via electron spin echo. CIDEP. Chem Phys Lett 59: 140–142CrossRefGoogle Scholar
  116. Trifunac AD and Thurnauer MC (1979) Time-resolved electron spin resonance of transient radicals. In: Kevan L and Schwartz RN (eds) Time Domain Electron Spin Resonance, Chapter 4, pp 107–152. John Wiley & Sons, New YorkGoogle Scholar
  117. Trifunac AD, Thurnauer MC and Norris JR (1978) Submicrosecond time-resolved EPR in laser photolysis. Chem Phys Lett 57: 471–473CrossRefGoogle Scholar
  118. van der Est A, Prisner T, Bittl R, Fromme P, Lubitz W, Möbius K and Stehlik D (1997) Time-resolved X-, K-, and W-band EPR of the radical pair state P+ 700 A- 1 of photosystem I in comparison with P+ 865 Q- A in bacterial reaction centers. J Phys Chem B 101: 1437–1443CrossRefGoogle Scholar
  119. Vrieze J, Gast P and Hoff AJ (1996) Structure of the reaction center of photosystem I of plants. An investigation with linear-dichroic absorbance-detected magnetic resonance. J Phys Chem 100: 9960–9967CrossRefGoogle Scholar
  120. Warden JT (1978) Paramagnetic intermediates in photosynthetic systems. In: Berliner LJ and Reuben J (eds) Biological Magnetic Resonance, Vol 1, pp 239–275. Plenum, New YorkGoogle Scholar
  121. Wasielewski MR (1995) Photogenerated spin-correlated radical ion pair in photosynthetic model systems. Spectrum 8: 8–12Google Scholar
  122. Wasielewski MR, Norris JR, Crespi HL and Harper J (1981a) Photoinduced ESR signals from the primary electron donors in deuterated highly 13C enriched photosynthetic bacteria and algae. J Am Chem Soc 103: 7664–7665CrossRefGoogle Scholar
  123. Wasielewski MR, Norris JR, Shipman LL, Lin C-P and Svec WA (1981b) Monomeric chlorophyll a enol: evidence for its possible role as the primary electron donor in photosystem I of plant photosynthesis. Proc Natl Acad Sci USA 78: 2957–2961CrossRefGoogle Scholar
  124. Wasielewski MR, Gaines III GL, O’Neil MP, Svec WA and Niemczyk MP (1990) Photoinduced spin-polarized radical ion pair formation in a fixed-distance photosynthetic model system at 5K. J Am Chem Soc 112: 4559–4560CrossRefGoogle Scholar
  125. Weber S, Ohmes E, Thurnauer MC, Norris JR and Kothe G (1995) Light-generated nuclear quantum beats: a signature of photosynthesis. Proc Natl Acad Sci USA 92: 7789–7793PubMedCrossRefGoogle Scholar
  126. Weber S, Kothe G and Norris JR (1997) Transient nutation electron spin resonance spectroscopy on spin-correlated racial pairs: a theoretical analysis of hyperfine-induced nuclear modulations. J Chem Phys 106: 6248–6261CrossRefGoogle Scholar
  127. Wiederrecht GP, Svec WA, Wasielewski MR, Galili T and Levanon H (1999) Triplet states with unusual spin polarization resulting from radical ion pair recombination at short distances. J Am Chem Soc 121: 7726–7727CrossRefGoogle Scholar
  128. Worcester DL (1978) Structural origins of diamagnetic anisotropy in proteins. Proc Natl Acad Sci USA 75: 5475–5477PubMedCrossRefGoogle Scholar
  129. Zech SG, Hofbauer W, Kamlowski A, Fromme P, Stehlik D, Lubitz W and Bittl R (2000) A structural model for the charge separated state P+ 700 A- 1 in photosystem I from the orientation of the magnetic interaction tensors. J Phys Chem B 104: 9728–9739CrossRefGoogle Scholar
  130. Zouni A, Witt H-T, Kern J, Fromme P, Krauß N, Saenger W, and Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743PubMedCrossRefGoogle Scholar
  131. Zwanenburg G and Hore PJ (1993) EPR of spin-correlated radical pairs. Analytical treatment of selective excitation including zero quantum coherence. Chem Phys Lett 203: 65–74CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Marion C. Thurnauer
    • 1
  • Oleg G. Poluektov
    • 1
  • Gerd Kothe
    • 2
  1. 1.Chemistry DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Department of Physical ChemistryUniversity of FreiburgFreiburgGermany

Personalised recommendations