Photosystem I pp 223-244 | Cite as

Optical Measurements of Secondary Electron Transfer in Photosystem I

  • Fabrice Rappaport
  • Bruce A. Diner
  • Kevin Redding
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 24)


All known photosynthetic reaction centers have symmetric structures, using two similar or identical integral membrane subunits to form a dimeric core, which binds the cofactors through which electrons are shuttled across the membrane. This symmetric arrangement gives rise to two similar branches of cofactors, down which light-driven electron transfer could proceed. The first three members of each branch are chlorins, while the third is a quinone. It is known that the initial electron transfer occurs almost exclusively along one of the two branches in the wellcharacterized Type 2 reaction centers, although the origins of this strong asymmetry are still debated. Photosystem I is the best characterized representative of the Type 1 reaction centers, but many aspects of electron transfer directionality remain unresolved. Recent time-resolved absorption studies suggest that electron transfer can make use of both cofactor branches of Photosystem I at room temperature. Here, we will present the results that led to this proposal and discuss this model in the light of the recent studies aimed at testing its validity.


Slow Phase Charge Recombination Fast Phase Rhodobacter Sphaeroides Sulfur Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agalarov R and Brettel K (2003) Temperature dependence of biphasic forward electron transfer from the phylloquinone(s) A1 in photosystem I: only the slower phase is activated. Biochim Biophys Acta 1604: 7–12PubMedCrossRefGoogle Scholar
  2. Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R–26: the cofactors. Proc Natl Acad Sci USA 84: 5730–5734PubMedCrossRefGoogle Scholar
  3. Bautista JA, Rappaport F, Guergova-Kuras M, Cohen RO, Golbeck JH, Wang JY, Beal D and Diner BA (2005) Biochemical and biophysical characterization of photosystem I from phytoene desaturase and zeta-carotene desaturase deletion mutants of Synechocystis sp. PCC 6803: Evidence for PsaA- and PsaB-side electron transport in cyanobacteria. J Biol Chem 280: 20030–20041PubMedCrossRefGoogle Scholar
  4. Béal D, Rappaport F and Joliot P (1999) A new high-sensitivity 10-ns time-resolution spectrophotometric technique adapted to in vivo analysis of the photosynthetic apparatus. Rev Sci Instrum 70: 202–207CrossRefGoogle Scholar
  5. Boudreaux B, MacMillan F, Teutloff C, Agalarov R, Gu F, Grimaldi S, Bittl R, Brettel K and Redding K (2001) Mutations in both sides of the photosystem I reaction center identify the phylloquinone observed by electron paramagnetic resonance spectroscopy. J Biol Chem 276: 37299–37306PubMedCrossRefGoogle Scholar
  6. Breton J, Burie JR, Berthomieu C, Berger G and Nabedryk E (1994) The binding sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy: assignment of the Q(A) vibrations in Rhodobacter sphaeroides using O-18 or C-13 labeled ubiquinone and vitamin K. Biochemistry 33: 4953–4965PubMedCrossRefGoogle Scholar
  7. Breton J, Boullais C, Berger G, Mioskowski C and Nabedryk E (1995) Binding sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy: symmetry of the carbonyl interactions and close equivalence of the QB vibrations in Rhodobacter sphaeroides and Rhodopseudomonas viridis probed by isotope labeling. Biochemistry 34: 11606–11616PubMedCrossRefGoogle Scholar
  8. Breton J, Nabedryk E and Leibl W (1999) FTIR study of the primary electron donor of photosystem I (P700) revealing delocalization of the charge in P700+ and localization of the triplet character in 3P700. Biochemistry 38: 11585–11592PubMedCrossRefGoogle Scholar
  9. Breton J, Xu W, Diner BA and Chitnis PR (2002) The two histidine axial ligands of the primary electron donor chlorophylls (P700) in photosystem I are similarly perturbed upon P700+ formation. Biochemistry 41: 11200–11210PubMedCrossRefGoogle Scholar
  10. Brettel K (1988) Electron transfer from A-1 to an iron–sulfur center with t1/2 = 200 nsec at room temperature in photosystem I. FEBS Lett 239: 93–98CrossRefGoogle Scholar
  11. Brettel K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta 1318: 322–373CrossRefGoogle Scholar
  12. Brettel K (1998) Electron transfer from acceptors A1 to the iron–sulfur clusters in Photosystem I measured with a time resolution of 2 ns. In: Garab G (ed) Photosynthesis: Mechanism and Effects, Vol I, pp 611–614. Kluwer Academic Publishers Dordrecht, The NetherlandsGoogle Scholar
  13. Brettel K and Golbeck JH (1995) Spectral and kinetic characterization of electron acceptor A1 in a Photosystem 1 core devoid of iron–sulfur centers FX, FA, FB. Photosynth Res 45: 183–193CrossRefGoogle Scholar
  14. Brettel K, Sétif P and Mathis P (1986) Flash-induced absorption changes in photosystem I at low temperature: evidence that the electron acceptor A1 is a vitamin K1. FEBS Lett 203: 220–224CrossRefGoogle Scholar
  15. Brudler R, de Groot HJM, Vanliemt WBS, Steggerda WF, Esmeijer R, Gast P, Hoff AJ, Lugtenburg J and Gerwert K (1994) Asymmetric binding of the 1- and 4-C=0 groups of QA in Rhodobacter sphaeroides R26 reaction centres monitored by Fourier transform infra-red spectroscopy using site-specific isotopically labelled ubiquinone-10. EMBO J 13: 5523–5530PubMedGoogle Scholar
  16. Brudler R, de Groot HJ, van Liemt WB, Gast P, Hoff AJ, Lugtenburg J and Gerwert K (1995) FTIR spectroscopy shows weak symmetric hydrogen bonding of the QB carbonyl groups in Rhodobacter sphaeroides R26 reaction centres. FEBS Lett 370: 88–92PubMedCrossRefGoogle Scholar
  17. Cohen RO, Shen G, Golbeck JH, Xu W, Chitnis PR, Valieva AI, van der Est A, Pushkar Y and Stehlik D. (2004) Evidence for asymmetric electron transfer in cyanobacterial photosystem I: analysis of a methionine-to-leucine mutation of the ligand to the primary electron acceptor A0. Biochemistry 43: 4741–4754PubMedCrossRefGoogle Scholar
  18. Dashdorj N, Xu W, Cohen RO, Golbeck JH and Savikhin S (2005) Asymmetric electron transfer in cyanobacterial Photosystem I: charge separation and secondary electron transfer dynamics of mutations near the primary electron acceptor A0. Biophys J 88: 1238–1249PubMedCrossRefGoogle Scholar
  19. Diaz-Quintana A, Leibl W, Bottin H and Sétif P (1998) Electron transfer in photosystem I reaction centers follows a linear pathway in which iron–sulfur cluster FB is the immediate electron donor to soluble ferredoxin. Biochemistry 37: 3429–3439PubMedCrossRefGoogle Scholar
  20. Diner BA and Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53: 551–580PubMedCrossRefGoogle Scholar
  21. Diner BA, Schlodder E, Nixon PJ, Coleman WJ, Rappaport F, Lavergne J, Vermaas WF and Chisholm DA (2001) Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis sp. PCC 6803: sites of primary charge separation and cation and triplet stabilization. Biochemistry 40: 9265–9281PubMedCrossRefGoogle Scholar
  22. Fairclough WV, Forsyth A, Evans MC, Rigby SE, Purton S and Heathcote P (2003) Bidirectional electron transfer in photosystem I: electron transfer on the PsaA side is not essential for phototrophic growth in Chlamydomonas. Biochim Biophys Acta 1606: 43–55PubMedCrossRefGoogle Scholar
  23. Fischer N, Sétif P and Rochaix JD (1999) Site-directed mutagenesis of the PsaC subunit of photosystem I F(b) is the cluster interacting with soluble ferredoxin. J Biol Chem 274: 23333–23340PubMedCrossRefGoogle Scholar
  24. Fromme P, Jordan P and Krauß N (2001) Structure of photosystem I. Biochim Biophys Acta 1507: 5–31PubMedCrossRefGoogle Scholar
  25. Guergova-Kuras M, Boudreaux B, Joliot A, Joliot P and Redding K (2001) Evidence for two active branches for electron transfer in photosystem I. Proc Natl Acad Sci USA 98: 4437–4442PubMedCrossRefGoogle Scholar
  26. Gunner MR and Dutton PL (1988) Temperature and Δ G° dependence of the electron transfer to and from QA in reaction center protein from Rhodobacter sphaeroides. In: Breton J and Verméglio A (eds) The Photosynthetic Bacterial Reaction Center, pp 259–269. Plenum Press, New York, LondonGoogle Scholar
  27. Gunner MR, Nicholls A and Honig B (1996) Electrostatic potentials in Rhodopseudomonas viridis reaction centers: implications for the driving force and directionality of electron transfer. J Phys Chem 100: 4277–4291CrossRefGoogle Scholar
  28. Hanley J, Deligiannakis Y, MacMillan F, Bottin H and Rutherford AW (1997) ESEEM study of the phyllosemiquinone radical A1 in 14N- and 15N-labeled photosystem I. Biochemistry 36: 11543–11549PubMedCrossRefGoogle Scholar
  29. Hastings G and Sivakumar V (2001) A Fourier transform infrared absorption difference spectrum associated with the reduction of A1 in photosystem I: are both phylloquinones involved in electron transfer? Biochemistry 40: 3681–3689PubMedCrossRefGoogle Scholar
  30. Hastings G, Kleinherenbrink FAM, Lin S, McHugh TJ and Blankenship RE (1994) Observation of the reduction and reoxidation of the primary electron acceptor in photosystem I. Biochemistry 33: 3193–3200PubMedCrossRefGoogle Scholar
  31. Hecks B, Breton J, Leibl W, Wulf K and Trissl H-W (1994) Primary charge separation in photosystem I: a picosecond two-step electrogenic charge separation connected with P700+A0 - and P700+A1 formation. Biochemistry 33: 8619–8624PubMedCrossRefGoogle Scholar
  32. Hopfield JJ (1974) Electron transfer between biological molecules by thermally activated tunneling. Proc Natl Acad Sci USA 71: 3640–3644PubMedCrossRefGoogle Scholar
  33. Hou JM, Boichenko VA, Wang YC, Chitnis PR and Mauzerall D (2001) Thermodynamics of electron transfer in oxygenic photosynthetic reaction centers: a pulsed photoacoustic study of electron transfer in photosystem I reveals a similarity to bacterial reaction centers in both volume change and entropy. Biochemistry 40: 7109–7116PubMedCrossRefGoogle Scholar
  34. Ishikita H and Knapp EW (2003) Redox potential of quinones in both electron transfer branches of photosystem I. J Biol Chem 278: 52002–52011PubMedCrossRefGoogle Scholar
  35. Iwaki M and Itoh S (1991) Structure of the phylloquinone-binding (Q phi) site in green plant photosystem-I reaction centers: the affinity of quinones and quinonoid compounds for the Q phi site. Biochemistry 30: 5347–5352PubMedCrossRefGoogle Scholar
  36. Joliot P and Joliot A (1999) In vivo analysis of the electron transfer within photosystem I: are the two phylloquinones involved? Biochemistry 38: 11130–11136PubMedCrossRefGoogle Scholar
  37. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  38. Jortner J (1976) Temperature dependent activation energy for electron transfer between biological molecules. J Chem Phys 64: 4860–4867CrossRefGoogle Scholar
  39. Kandrashkin YE, Salikhov KM, van der Est A and Stehlik D (1998) Electron Spin Polarization in consecutive spin-correlated radical pairs: application to short-lived and long-lived precursors in type 1 photosynthetic reaction centres. Appl Magn Res 15: 417–444CrossRefGoogle Scholar
  40. Kellogg EC, Kolaczkowski S, Wasielewski MR and Tiede DM (1989) Measurement of the extent of electron-transfer to the bacteriopheophytin in the M-subunit in reaction centers of Rhodopseudomonas viridis. Photosynth Res 22: 47–59CrossRefGoogle Scholar
  41. Kirmaier C, Holten D, Bylina EJ and Youvan DC (1988) Electron transfer in a genetically modified bacterial reaction center containing a heterodimer. Proc Natl Acad Sci USA 85: 7562–7566PubMedCrossRefGoogle Scholar
  42. Kirmaier C, Gaul D, Debey R, Holten D and Schenck CC (1991) Charge separation in a reaction center incorporating bacteriochlorophyll for photoactive bacteriopheophytin. Science 251: 922–927PubMedCrossRefGoogle Scholar
  43. Kleinherenbrink FAM, Hastings G, Wittmershaus BP and Blankenship RE (1994) Delayed fluorescence from Fe–S type photosynthetic reaction centers at low redox potential. Biochemistry 33: 3096–3105PubMedCrossRefGoogle Scholar
  44. Krabben L, Schloddr E, Jordan R, Carbonera D, Giacometti G, Lee H, Webber AN and Lubitz W (2000) Influence of the axial ligands on the spectral properties of P700 of photosystem I: a study of site-directed mutants. Biochemistry 39: 13012–13025PubMedCrossRefGoogle Scholar
  45. Laible PD, Kirmaier C, Udawatte CS, Hofman SJ, Holten D and Hanson DK (2003) Quinone reduction via secondary B-branch electron transfer in mutant bacterial reaction centers. Biochemistry 42: 1718–1730PubMedCrossRefGoogle Scholar
  46. Lakshmi KV, Jung YS, Golbeck JH and Brudvig GW (1999) Location of the iron–sulfur clusters FA and FB in photosystem I: an electron paramagnetic resonance study of spin relaxation enhancement of P700+. Biochemistry 38: 13210–13215PubMedCrossRefGoogle Scholar
  47. Leibl W, Toupance B and Breton J (1995) Photoelectric characterization of forward electron transfer to iron–sulfur centers in photosystem I. Biochemistry 34: 10237–10244PubMedCrossRefGoogle Scholar
  48. Li Y, Lucas MG, Konovalova T, Abbott B, MacMillan F, Petrenko A, Sivakumar V, Wang R, Hastings G, Gu F, van Tol J, Brunel LC, Timkovich R, Rappaport F and Redding K. (2004) Mutation of the putative hydrogen-bond donor to P700 of photosystem I. Biochemistry 43: 12634–12647PubMedCrossRefGoogle Scholar
  49. Li Y, van der Est A, Lucas MG, Ramesh VM, Gu F, Petrenko A, Lin S, Webber AN, Rappaport F and Redding K (2006) Directing electron transfer within Photosystem I by breaking H-bonds in the cofactor branches. Proc Natl Acad Sci USA 103: 2144–2149PubMedCrossRefGoogle Scholar
  50. Lin X, Murchison HA, Nagarajan V, Parson WW, Allen JP and Williams JC (1994) Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91: 10265–10269PubMedCrossRefGoogle Scholar
  51. Lüneberg J, Fromme P, Jekow P and Schlodder E (1994) Spectroscopic characterization of PS I core complexes from thermophilic Synechococcus sp. Identical reoxidation kinetics of A1 before and after removal of the iron–sulfur-clusters FA and FB. FEBS Lett 338: 197–202PubMedCrossRefGoogle Scholar
  52. Marcus RA and Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811: 265–322Google Scholar
  53. Mathis P and Sétif P (1988) Kinetic studies on the function of A1 in the photosystem I reaction center. FEBS Lett 237: 65–68CrossRefGoogle Scholar
  54. Moser CC and Dutton PL (1996) Outline of theory of protein electron transfer. In: Bendall DS (ed) Protein Electron Transfer, pp 1–21. BIOS Scientific Publishers, OxfordGoogle Scholar
  55. Moser CC, Keske JM, Warncke K, Farid RS and Dutton PL (1992) Nature of biological electron transfer. Nature 355: 796–802PubMedCrossRefGoogle Scholar
  56. Muhiuddin IP, Heathcote P, Carter S, Purton S, Rigby SE and Evans MC (2001) Evidence from time resolved studies of the P700+/A1 radical pair for photosynthetic electron transfer on both the PsaA and PsaB branches of the photosystem I reaction centre. FEBS Lett 503: 56–60PubMedCrossRefGoogle Scholar
  57. Parson WW (1996) Photosynthetic bacterial reaction centers. In: Bendall DS (ed) Protein Electron Transfer, pp 125–160. BIOS Scientific Publishers Ltd, OxfordGoogle Scholar
  58. Petrenko A, Maniero AL, van Tol J, MacMillan F, Li Y, Brunel L-C and Redding K (2004) A high-field EPR study of P700 in wild-type and mutant Photosystem I from Chlamydomonas reinhardtii. Biochemistry 43: 1781–1786PubMedCrossRefGoogle Scholar
  59. Purton S, Stevens DR, Muhiuddin IP, Evans MC, Carter S, Rigby SE and Heathcote P (2001) Site-directed mutagenesis of PsaA residue W693 affects phylloquinone binding and function in the photosystem I reaction center of Chlamydomonas reinhardtii. Biochemistry 40: 2167–2175PubMedCrossRefGoogle Scholar
  60. Ramesh VM, Gibasiewicz K, Lin S, Bingham SE and Webber AN (2003) Bi-directional electron transfer in Photosystem I: accumulation of A0 in A-side or B-side mutants of the axial ligand to chlorophyll A0. Biochemistry 43: 1369–1375CrossRefGoogle Scholar
  61. Rigby SE, Evans MC and Heathcote P (1996) ENDOR and special triple resonance spectroscopy of A1 of photosystem 1. Biochemistry 35: 6651–6656PubMedCrossRefGoogle Scholar
  62. Rigby SE, Evans MC and Heathcote P (2001) Electron nuclear double resonance (ENDOR) spectroscopy of radicals in photosystem I and related Type 1 photosynthetic reaction centres. Biochim Biophys Acta 1507: 247–259PubMedCrossRefGoogle Scholar
  63. Rigby SE, Muhiuddin IP, Evans MC, Purton S and Heathcote P (2002) Photoaccumulation of the PsaB phyllosemiquinone in photosystem I of Chlamydomonas reinhardtii. Biochim Biophys Acta 1556: 13–20PubMedCrossRefGoogle Scholar
  64. Romijn JC and Amesz J (1977) Purification and photochemical properties of reaction centers of Chromatium vinosum. Evidence for the photoreduction of a naphthoquinone. Biochim Biophys Acta 461: 327–338PubMedCrossRefGoogle Scholar
  65. Schlodder E, Falkenberg K, Gergeleit M and Brettel K (1998) Temperature dependence of forward and reverse electron transfer from A1 , the reduced secondary electron acceptor in photosystem I. Biochemistry 37: 9466–9476PubMedCrossRefGoogle Scholar
  66. Sétif P (2001) Ferredoxin and flavodoxin reduction by photosystem I. Biochim Biophys Acta 1507: 161–179PubMedCrossRefGoogle Scholar
  67. Sétif P and Bottin H (1995) Laser flash absorption spectroscopy study of ferredoxin reduction by photosystem I: spectral and kinetic evidence for the existence of several photosystem I–ferredoxin complexes. Biochemistry 34: 9059–9070PubMedCrossRefGoogle Scholar
  68. Sétif P and Brettel K (1993) Forward electron transfer from phylloquinone A1 to iron sulfur centers in spinach photosystem I. Biochemistry 32: 7846–7854PubMedCrossRefGoogle Scholar
  69. Sétif P, Mathis P and Vanngard T (1984) Photosystem I photochemistry at low temperature. Heterogeneity in pathways for electron transfer to the secondary acceptors and for recombination processes. Biochim Biophys Acta 767: 404–414CrossRefGoogle Scholar
  70. Shen G, Antonkine ML, van der Est A, Vassiliev IR, Brettel K, Bittl R, Zech SG, Zhao J, Stehlik D, Bryant DA and Golbeck JH (2002) Assembly of photosystem I. II. Rubredoxin is required for the in vivo assembly of FX in Synechococcus sp. PCC 7002 as shown by optical and EPR spectroscopy. J Biol Chem 277: 20355–20366PubMedCrossRefGoogle Scholar
  71. Steffen MA, Lao KQ and Boxer SG (1994) Dielectric asymmetry in the photosynthetic reaction center. Science 264: 810–816CrossRefPubMedGoogle Scholar
  72. Takahashi Y, Hirota K and Katoh S (1985) Multiple forms of P700-chlorophyll a–protein complexes from Synechococcus sp.: the iron, quinone and carotenoid contents. Photosynth Res 6: 183–192CrossRefGoogle Scholar
  73. Thurnauer MC and Gast P (1985) Q-band (35 GHz) EPR results on the nature of A1 and the electron spin polarization in photosystem I particles. Photobiochem Photobiophys 9: 29–38Google Scholar
  74. Van Brederode ME, Jones MR, Van Mourik F, Van Stokkum IH and Van Grondelle R (1997) A new pathway for transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair. Biochemistry 36: 6855–6861PubMedCrossRefGoogle Scholar
  75. van der Est A (2001) Light-induced spin polarization in type I photosynthetic reaction centres. Biochim Biophys Acta 1507: 212–225PubMedCrossRefGoogle Scholar
  76. van der Est A, Bock C, Golbeck J, Brettel K, Sétif P and Stehlik D (1994) Electron transfer from the acceptor A1 to the iron–sulfur centers in photosystem I as studied by transient EPR spectroscopy. Biochemistry 33: 11789–11797PubMedCrossRefGoogle Scholar
  77. van der Est A, Prisner T, Bittl R, Fromme P, Lubitz W, Mobius K and Stehlik D (1997) Time-resolved X-, K-, and W-Band EPR of the radical pair state P700 ·+A1 ·− of Photosystem I in comparison with P865 ·+QA ·−in bacterial reaction centers. J Phys Chem B 101: 1437–1443CrossRefGoogle Scholar
  78. Vassiliev IR, Jung YS, Yang F and Golbeck JH (1998) PsaC subunit of photosystem I is oriented with iron–sulfur cluster FB as the immediate electron donor to ferredoxin and flavodoxin. Biophys J 74: 2029–2035PubMedCrossRefGoogle Scholar
  79. Vos MH and van Gorkom HJ (1988) Thermodynamics of electron transport in photosystem I by electric field-stimulated charge recombination. Biochim Biophys Acta 934: 293–302CrossRefGoogle Scholar
  80. Wakeham MC, Goodwin MG, McKibbin C and Jones MR (2003) Photo-accumulation of the P+QB radical pair state in purple bacterial reaction centres that lack the QA ubiquinone. FEBS Lett 540: 234–240PubMedCrossRefGoogle Scholar
  81. Warren PV, Golbeck JH and Warden JT (1993) Charge recombination between P700+ and A1 occurs directly to the ground state of P700 in a photosystem I core devoid of FX, FB, and FA. Biochemistry 32: 849–857PubMedCrossRefGoogle Scholar
  82. Webber AN and Lubitz W (2001) P700: the primary electron donor of photosystem I. Biochim Biophys Acta 1507: 61–79PubMedCrossRefGoogle Scholar
  83. Webber AN, Su H, Bingham SE, Kass H, Krabben L, Kuhn M, Jordan R, Schlodder E and Lubitz W (1996) Site-directed mutations affecting the spectroscopic characteristics and midpoint potential of the primary donor in photosystem I. Biochemistry 35: 12857–12863PubMedCrossRefGoogle Scholar
  84. Witt H, Schlodder E, Teutloff C, Niklas J, Bordignon E, Carbonera D, Kohler S, Labahn A and Lubitz W (2002) Hydrogen bonding to P700: site-directed mutagenesis of threonine A739 of photosystem I in Chlamydomonas reinhardtii. Biochemistry 41: 8557–8569PubMedCrossRefGoogle Scholar
  85. Xu W, Chitnis P, Valieva A, van der Est A, Pushkar YN, Krzystyniak M, Teutloff C, Zech SG, Bittl R, Stehlik D, Zybailov B, Shen G and Golbeck JH (2003a) Electron transfer in cyanobacterial photosystem I: I. Physiological and spectroscopic characterization of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J Biol Chem 278: 27864–27875CrossRefGoogle Scholar
  86. Xu W, Chitnis PR, Valieva A, van der Est A, Brettel K, Guergova-Kuras M, Pushkar YN, Zech SG, Stehlik D, Shen G, Zybailov B and Golbeck JH (2003b) Electron transfer in cyanobacterial photosystem I: II. Determination of forward electron transfer rates of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J Biol Chem 278: 27876–27887CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Fabrice Rappaport
    • 1
  • Bruce A. Diner
    • 2
  • Kevin Redding
    • 3
  1. 1.Laboratoire de Physiologie membranaire et moléculaire du ChloroplasteCNRS-Univ.ParisFrance
  2. 2.Central Research and DevelopmentExperimental StationWilmingtonUSA
  3. 3.Department of ChemistryUniversity of AlabamaTuscaloosaUSA

Personalised recommendations