Advertisement

Photosystem I pp 205-222 | Cite as

Genetic Manipulation of Quinone Biosynthesis in Cyanobacteria

  • Yumiko Sakuragi
  • Donald A. Bryant
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 24)

Abstract

Isoprenoid quinones (phylloquinone, plastoquinone) and their derivatives (α-, β-, and γ-tocopherol) play crucial roles in oxygenic photosynthesis. Phylloquinone (vitamin K1) and plastoquinone-9 are cofactors of Photosystem I (PS I) and Photosystem II (PS II) complexes, respectively, and mediate electron transfer within and between complexes, while the roles of tocopherols are yet to be fully identified. Traditionally, the biosynthetic pathways of these quinones have been studied by direct enzymatic assays or, since the late 1960s, by using isotopic tracer compounds. Recent progress in the genome sequencing of 14 cyanobacteria has provided a newtool for the identification of genes encoding enzymes of the biosynthetic pathways of these quinones; comparative genomics, in combination with reverse genetics, has recently provided a wealth of new information. With the exception of Gloeobacter violaceus, phylloquinone biosynthesis in cyanobacteria has been shown to be very similar to menaquinone biosynthesis in Escherichia coli. Metabolic engineering of the pathway resulted in the incorporation of a variety of quinone species of either biotic or abiotic origin into the A1 site of Photosystem I, and the resulting strains are important tools for the investigation of electron transfer around the A1 quinone. Plastoquinone-9 biosynthesis in cyanobacteria differs from that in higher plants. Comparative genome analysis has revealed the presence of conserved open reading frames, which encode proteins that share sequence similarity with those required for ubiquinone biosynthesis in E. coli. Possible applications of metabolic engineering of the plastoquinone-9 and α-tocopherol biosynthetic pathways for studies of oxygenic photosynthesis are also discussed.

Keywords

Oxygenic Photosynthesis Nostoc Punctiforme Gene Bank Accession Number Chlorobium Tepidum Oxygenic Phototroph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfonso M, Perewoska I and Kirilovsky D (2000) Redox control of psbA gene expression in the cyanobacterium Synechocystis PCC 6803. Involvement of the cytochrome b6/f complex. Plant Physiol 122: 505–516PubMedCrossRefGoogle Scholar
  2. Allen JF and Pfannschmidt T (2000) Balancing the two photosystems: photosynthetic electron transfer governs transcription of reaction centre genes in chloroplasts. Phil Trans R Soc Lond B Biol Sci 355: 1351–1359CrossRefGoogle Scholar
  3. Allen CF, Franke H and Hirayama O (1967) Identification of plastoquinone and two naphthoquinones in Anacystis nidulans by NMR and mass spectroscopy. Biochem Biophys Res Commun 26: 562–568PubMedCrossRefGoogle Scholar
  4. Azzi A, Ricciarelli R and Zingg JM (2002) Non-antioxidant molecular functions of α-tocopherol (vitamin E). FEBS Lett 519: 8–10PubMedCrossRefGoogle Scholar
  5. Barber J and Anderson JM (2002) Introduction. Phil Trans R Soc Lond B 357: 1325–1328CrossRefGoogle Scholar
  6. Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635PubMedCrossRefGoogle Scholar
  7. Ben-Shem A, Frolow F and Nelson N (2004) Evolution of photosystem I –from symmetry through pseudosymmetry to asymmetry. FEBS Lett 564: 274–280PubMedCrossRefGoogle Scholar
  8. Biggins J (1990) Evaluation of selected benzoquinones, naphthoquinones, and anthraquinones as replacements for phylloquinone in the A1 acceptor site of the Photosystem I reaction center. Biochemistry 29: 7259–7264PubMedCrossRefGoogle Scholar
  9. Biggins J and Mathis P (1988) Functional role of vitamin K1 in Photosystem I of the cyanobacterium Synechocystis 6803. Biochemistry 27: 1494–1500PubMedCrossRefGoogle Scholar
  10. Brettel K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta 1318: 322–373CrossRefGoogle Scholar
  11. Brettel K and Leibl W (2001) Electron transfer in Photosystem I. Biochim Biophys Acta 1507: 100–114PubMedCrossRefGoogle Scholar
  12. Brettel K, Sétif P and Mathis P (1987) Flash-induced absorption changes in Photosystem I at low temperature: evidence that the electron acceptor A1 is vitamin K1. FEBS Lett 203: 220–224CrossRefGoogle Scholar
  13. Bryant DA (1994) The Molecular Biology of Cyanobacteria. Kluwer Academic Publisher, DordrechtGoogle Scholar
  14. Bryant DA (2003) The beauty in small things revealed. Proc Natl Acad Sci USA 17: 9647–9649CrossRefGoogle Scholar
  15. Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA and DellaPenna D (2003) Highly divergent methyltransferase catalyzes a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic prokaryotes. Plant Cell 15: 2343–2356PubMedCrossRefGoogle Scholar
  16. Collakova E and DellaPenna D (2001) Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 127: 1–12CrossRefGoogle Scholar
  17. Collakova E and DellaPenna D (2003) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol 131: 632–642PubMedCrossRefGoogle Scholar
  18. Collins MD and Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45: 316–354PubMedGoogle Scholar
  19. Dähnhardt D, Falk J, Appel J, van der Kooij TAW, Schulz-Friedrich R and Krupinska K (2002) The hydroxyphenylpyruvate dioxygenase from Synechocystis sp. PCC 6803 is not required for plastoquinone biosynthesis. FEBS Lett 523: 177–181PubMedCrossRefGoogle Scholar
  20. Deisenhofer J and Norris JR (1993) The Photosynthetic Reaction Center, Vol 1. Academic Press, San DiegoGoogle Scholar
  21. Delwiche FC and Palmer JD (1997) The origin of plastids and their spread via secondary endosymbiosis. In: Bhattacharya D (ed) Origins of Algae and Their Plastids, pp 53–86. Springer-Verlag, New YorkGoogle Scholar
  22. d’Harlingue A and Camara B (1985) Plastid enzymes of terpenoid biosynthesis. J Biol Chem 260: 15200–15203PubMedGoogle Scholar
  23. Douglas SD (1998) Plastid evolution: origins, diversity, trends. Curr Opin Genet Dev 8: 655–661PubMedCrossRefGoogle Scholar
  24. Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F, Makarova KS, Ostrowski M, Oztas S, Robert C, Rogozin IB, Scanlan DJ, Tandeau de Marsac N, Weissenbach J, Wincker P, Wolf YI and Hess WR (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci USA 100: 9647–9649CrossRefGoogle Scholar
  25. Durán RV, Hervás M, de la Rosa MA and Navarro JA (2004) The efficient functioning of photosynthesis and respiration in Synechocystis sp. PCC 6803 strictly requires the presence of either cytochrome c6 or plastocyanin. J Biol Chem 279: 7229–7233PubMedCrossRefGoogle Scholar
  26. Escoubas JM, Lomas M, LaRoche J and Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92: 10237–10241PubMedCrossRefGoogle Scholar
  27. Evans HM and Bishop BKS (1922) Fetal resorption. Science 55: 650CrossRefGoogle Scholar
  28. Falkowski PG (2002) The ocean’s invisible forest. Sci Am 287: 54–61PubMedCrossRefGoogle Scholar
  29. Fromme P, Jordan P and Krauß N (2001) Structure of photosystem I. Biochim Biophys Acta 1507: 5–31PubMedCrossRefGoogle Scholar
  30. Fromme P, Melkozernov A, Jordan P and Krauß N (2003) Structure and function of photosystem I: interactions with its soluble electron carriers and external antenna systems. FEBS Lett 555: 40–44PubMedCrossRefGoogle Scholar
  31. Glockner G, Rosenthal A and Valentin K (2000) The structure and gene repertoire of an ancient red algal plastid genome. J Mol Evol 51: 382–390PubMedGoogle Scholar
  32. Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 319–360. Kluwer Academic Publishers, DordrechtGoogle Scholar
  33. Golbeck JH (1995) Photosystem I and its bacterial counterparts. In: Song PS and Horspool W (eds) CRC Handbook of Organic Photochemistry and Photobiology, pp 1407–1419. CRC Press, Boca Raton, FLGoogle Scholar
  34. Golbeck JH (1998) Comparison of in vitro and in vivo mutants of PsaC in photosystem I: protocols for mutagenesis and techniques for analysis. Methods Enzymol 297: 95–123Google Scholar
  35. Golbeck JH (2003) The binding of cofactors to Photosystem I analyzed by spectroscopic and mutagenic methods. Annu Rev Biophys Biomol Struct 32: 237–256PubMedCrossRefGoogle Scholar
  36. Hauska G (1988) Phylloquinone in Photosystem I. Are quinones the secondary-electron acceptors in all types of photosynthetic reaction centers. Trends Biochem Sci 13: 415–416PubMedCrossRefGoogle Scholar
  37. Honda D, Yokota A and Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48: 723–739PubMedCrossRefGoogle Scholar
  38. Itoh S and Iwaki M (1989a) Vitamin K1 (phylloquinone) restores the turnover of FeS centers in the ether-extracted spinach PS I particles. FEBS Lett 243: 47–52CrossRefGoogle Scholar
  39. Itoh S and Iwaki M (1989b) New herbicide-binding site in the photosynthetic electron-transport chain. Competitive herbicide binding at the photosystem I phylloquinone-(vitamin K1)-binding site. FEBS Lett 250: 441–447CrossRefGoogle Scholar
  40. Itoh S and Iwaki M (1991) Full replacement of the function of the secondary electron acceptor phylloquinone (=vitamin K1) by non-quinone carbonyl compounds in green plant Photosystem I photosynthetic reaction center. Biochemistry 30: 5340–5346PubMedCrossRefGoogle Scholar
  41. Itoh S, Iwaki M and Ikegami I (2001) Modification of Photosystem I reaction center by the extraction and exchange of chlorophylls and quinones. Biochim Biophys Acta 1507: 115–138PubMedCrossRefGoogle Scholar
  42. Iwaki M and Itoh S (1989) Electron transfer in spinach Photosystem I reaction center containing benzo-, naphtho- and anthraquinones in place of phylloquinone. FEBS Lett 256: 11–16CrossRefGoogle Scholar
  43. Iwaki M and Itoh S (1991) Structure of the phylloquinone-binding (QΦ) site in green plant Photosystem I reaction centers: the affinity of quinones and quinoid compounds for QΦ site. Biochemistry 30: 5347–5352PubMedCrossRefGoogle Scholar
  44. Johnson TW, Shen G, Zybailov B, Folling D, Reategui R, Beauparlant S, Vassiliev IR, Bryant DA, Jones AD, Golbeck JH and Chitnis PR (2000) Recruitment of a foreign quinone into the A1 site of Photosystem I: I. Genetic and physiological characterization of phylloquinone biosynthetic pathway mutants in Synechocystis sp. PCC 6803. J Biol Chem 275: 8523–8530PubMedCrossRefGoogle Scholar
  45. Johnson TW, Zybailov B, Jones AD, Bittl R, Zech S, Stehlik D, Golbeck JH and Chitnis PR (2001) Recruitment of a foreign quinone into the A1 site of Photosystem I: in vivo replacement of plastoquinone-9 by media-supplemented naphthoquinones in phylloquinone biosynthetic pathway mutants of Synechocystis sp. PCC 6803. J Biol Chem 276: 39512–39521PubMedCrossRefGoogle Scholar
  46. Johnson TW, Naithani S, Stewart C Jr, Zybailov B, Jones AD, Golbeck JH and Chitnis PR (2003) The menD and menE homologs code for 2-succinyl-6-hydroxyl-2,4-cyclohexadiene-1-carboxylate synthase and O-succinylbenzoic acid-CoA synthase in the phylloquinone biosynthetic pathway of Synechocystis sp. PCC 6803. Biochim Biophys Acta 1557: 67–76CrossRefGoogle Scholar
  47. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution. Nature 411: 896–899CrossRefGoogle Scholar
  48. Kamal-Eldin A and Appelqvist L-A (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31: 671–701PubMedCrossRefGoogle Scholar
  49. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M and Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136PubMedCrossRefGoogle Scholar
  50. Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto T, Watanabe A, Iriguchi M, Ishikawa M, Kawashima M, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M and Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8: 205–213PubMedCrossRefGoogle Scholar
  51. Ke B (2001) Photosynthesis: Photobiochemistry and Photobiophysics. Kluwer Academic Publishers, DordrechtGoogle Scholar
  52. Koch M, Lemke R, Heise K and Mock H (2003) Characterization of Γ-tocopherol methyltransferase from Capsicum annuum L. and Arabidopsis thaliana. Eur J Biochem 270: 84–92PubMedCrossRefGoogle Scholar
  53. Lee PT, Hsu AY, Ha HT and Clarke CF (1997) A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of Escherichia coli ubiE gene. J Bacteriol 179: 1748–1754PubMedGoogle Scholar
  54. Li H and Sherman LA (2000) A redox-responsive regulator of photosynthesis gene expression in the cyanobacterium Synechocystis sp. Strain PCC 6803. J Bacteriol 182: 4268–4277PubMedCrossRefGoogle Scholar
  55. Li N, Zhao JD, Warren PV, Warden JT, Bryant DA and Golbeck JH (1991) PsaD is required for the stable binding of PsaC to the Photosystem I core protein of Synechococcus sp. PCC 6301. Biochemistry 30: 7863–7872PubMedCrossRefGoogle Scholar
  56. Margulis L (1970) Origin of Eukaryotic Cells. Yale University Press, New HavenGoogle Scholar
  57. Martin W, Stoebe B, Gremykin V, Hapsmann S, Hasegawa M and Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplast. Nature 393: 162–165PubMedCrossRefGoogle Scholar
  58. Matsuzaki M, Misumi O, Shin-IT, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y and Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428: 653–657PubMedCrossRefGoogle Scholar
  59. McKenna M, Henninger MD and Crane FL (1964) A second naphthoquinone in spinach chloroplasts. Nature 203: 524–525PubMedCrossRefGoogle Scholar
  60. Meganathan R (1996) Biosynthesis of the isoprenoid quinones-menaquinone (vitamin K2) and ubiquinone (coenzyme Q). In: Neidhardt FC (ed) Escherichia coli and Salmonella –Cellular and Molecular Biology, Vol 2, pp 642–656. ASM press, Washington, DCGoogle Scholar
  61. Meganathan R (2001) Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. Vitam Horm 61: 173–218PubMedGoogle Scholar
  62. Mehari T, Qiao F, Scott MP, Nellis DF, Zhao J, Bryant DA and Golbeck JH (1995) Modified ligands to FA and FB in Photosystem I. I. Structural constraints for the formation of iron–sulfur clusters in free and rebound PsaC. J Biol Chem 270: 28108–29117PubMedCrossRefGoogle Scholar
  63. Monzingo AF, Gao J, Qiu J, Georgiou G and Robertus JD (2003) The X-ray structure of Escherichia coli RraA (MenG), a protein inhibitor of RNA processing. J Mol Biol 332: 1015–1024PubMedCrossRefGoogle Scholar
  64. Mühlenhoff U, Kruip J, Nitschke W, Bryant DA, Rögner M, Sétif P and Boekema E (1996a) Characterization of a redox active cross-linking complex between cyanobacterial photosystem I and its physiological acceptor flavodoxin. EMBO J 15: 488–497Google Scholar
  65. Mühlenhoff U, Zhao J and Bryant DA (1996b) Interaction of Photosystem I and flavodoxin from the cyanobacterium Synechococcus sp. PCC 7002 as revealed by chemical cross-linking. Eur J Biochem 325: 324–331CrossRefGoogle Scholar
  66. Nakamura Y, Kaneko T, Sato S, Ikeuchi M, Katoh H, Sasamoto S, Watanabe A, Iriguchi M, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shinpo S, Sugimoto M, Takeuchi C, Yamada M and Tabata S (2002) Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res 9: 123–130PubMedCrossRefGoogle Scholar
  67. Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M and Tabata S (2003) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res 10: 137–145PubMedCrossRefGoogle Scholar
  68. Nelissen B, Van de Peer Y, Wilmotte A and De Wachter R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12: 1166–1173PubMedGoogle Scholar
  69. Norris SR, Shen X and DellaPenna D (1998) Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Physiol 117: 1317–1323PubMedCrossRefGoogle Scholar
  70. Ohta N, Matsuzaki M, Misumi O, Miyagishima SY, Nozaki H, Tanaka K, Shin-IT, Kohara Y and Kuroiwa T (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10: 67–77PubMedCrossRefGoogle Scholar
  71. Ort DR and Yocum CF (1996) Oxygenic Photosynthesis: The Light Reactions. Kluwer Academic Publishers, DordrechtGoogle Scholar
  72. Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA and Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424: 1037–1042PubMedCrossRefGoogle Scholar
  73. Pennock JF and Threlfall DR (1981) Biosynthesis of ubiquinone and related compounds. In: Porter JW and Spurgeon SL (eds) Biosynthesis of Isoprenoid Compounds, Vol 2, pp 191–303. John Wiley & Sons, New YorkGoogle Scholar
  74. Petersen J, Stehlik D, Gast P and Thurnauer M (1987) Comparison of the electron spin polarized spectrum found in plant Photosystem I and in iron-depleted bacterial reaction centers with time-resolved K-band EPR; evidence that the Photosystem I acceptor A1 is a quinone. Photosynth Res 14: 15–29CrossRefGoogle Scholar
  75. Porfirova S, Bergmuller E, Tropf S, Lemke R and Dormann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99: 12495–12500PubMedCrossRefGoogle Scholar
  76. Prince RC, Gunner MR and Dutton PL (1982) Quinones of value to electron-transfer studies: oxidation–reduction potentials of the first reduction step in an aprotic solvent. In: Trumpower BL (ed) Function of Quinones in Energy Conserving Systems, pp 29–33. Academic Press, New YorkGoogle Scholar
  77. Prince RC, Dutton PL and Bruce JM (1983) Electrochemistry of ubiquinones: menaquinones and plastoquinones in aprotic solvents. FEBS Lett 160: 273–276CrossRefGoogle Scholar
  78. Prince RC, Lloyd-Williams P, Bruce JM and Dutton PL (1986) Voltammetric measurements of quinones. Methods Enzymol 125: 109–119PubMedGoogle Scholar
  79. Ricciarelli R, Zingg J-M and Azzi A (2002) The 80th anniversary of vitamin E: beyond its antioxidant properties. Biol Chem 383: 457–465PubMedCrossRefGoogle Scholar
  80. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER and Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424: 1042–1047PubMedCrossRefGoogle Scholar
  81. Sakuragi Y (2004) Cyanobacterial quinomics –studies of quinones in cyanobacteria. PhD Thesis. The Pennsylvania State UniversityGoogle Scholar
  82. Sakuragi Y, Zybailov B, Shen G, Jones AD, Chitnis PR, van der Est A, Bittl R, Zech S, Stehlik D, Golbeck JH and Bryant DA (2002) Insertional inactivation of the menG gene, encoding 2-phytyl-1,4-naphthoquinone methyltransferase of Synechocystis sp. PCC 6803, results in the incorporation of 2-phytyl-1,4-naphthoquinone into the A1 site and alteration of the equilibrium constant between A1 and FX in Photosystem I. Biochemistry 41: 394–405PubMedCrossRefGoogle Scholar
  83. Sakuragi Y, Zybailov B, Shen G, Bryant DA, Golbeck, JH, Diner BA, Karygina I, Pushkar Y and Stehlik D (2005) Recruitment of a foreign quinone into the A1 site of photosystem I. Characterization of a menB rubA double deletion mutant in Synechococcus sp. PCC 7002 devoid of FX, FA, and FB and containing plastoquinone or exchanged 9,10-anthraquinone. J Biol Chem 280: 12371–12381PubMedCrossRefGoogle Scholar
  84. Sattler S, Cahoon EB, Coughlan SJ and DellaPenna D (2003) Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Phys 132: 2184–2195CrossRefGoogle Scholar
  85. Sattler S, Gillilanda LU, Magallanes-Lundback M, Pollard M and DellaPenna D (2004) Vitamin E is essential for seed longevity and preventing lipid peroxidation during germination. Plant Cell 16: 1419–1432PubMedCrossRefGoogle Scholar
  86. Savidge B, Weiss JD, Wong YH, Lassner NW, Mitsky TA, Shewmaker CK, Post-Beittenmiller D and Valentin HE (2002) Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 129: 321–332PubMedCrossRefGoogle Scholar
  87. Schledz M, Seidler A, Beyer P and Neuhaus G (2001) A novel phytyltransferase from Synechocystis sp. PCC 6803 involved in tocopherol biosynthesis. FEBS Lett 499: 15–3589PubMedCrossRefGoogle Scholar
  88. Schoeder H-U and Lockau W (1986) Phylloquinone copurified with the large subunits of Photosystem I. FEBS Lett 199: 23–27CrossRefGoogle Scholar
  89. Schopf JW (1993) Microfossils of the early archean apex chert: new evidence of the antiquity of life. Science 260: 640–646PubMedCrossRefGoogle Scholar
  90. Semenov AY, Vassiliev IR, van der Est A, Mamedov MD, Zybailov B, Shen G, Stehlik D, Diner BA, Chitnis PR and Golbeck JH (2000) Recruitment of a foreign quinone into the A1 site of Photosystem I: altered kinetics of electron transfer in phylloquinone biosynthetic pathway mutants studied by time-resolved optical, EPR, and electromagnetic techniques. J Biol Chem 275: 23429–23438PubMedCrossRefGoogle Scholar
  91. Sétif P (2001) Ferredoxin and flavodoxin reduction by photosystem I. Biochim Biophys Acta 1507: 161–179PubMedCrossRefGoogle Scholar
  92. Shen G, Zhao J, Reimer SK, Antonkine ML, Cai Q, Weiland SM, Golbeck JH and Bryant DA (2002a) Assembly of Photosystem I: I. Inactivation of the rubA gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of Photosystem I activity. J Biol Chem 277: 20343–20354CrossRefGoogle Scholar
  93. Shen G, Antonkine ML, van der Est A, Vassiliev IR, Brettel K, Bittl R, Zech SG, Zhao J, Stehlik D, Bryant DA and Golbeck JH (2002b) Assembly of Photosystem I. II. Rubredoxin is required for the in vivo assembly of FX in Synechococcus sp. PCC 7002 as shown by optical and EPR spectroscopy. J Biol Chem 277: 20355–20366CrossRefGoogle Scholar
  94. Shinkarev VP, Zybailov B, Vassiliev IR and Golbeck JH (2002) Modeling of the P700+ charge recombination kinetics with phylloquinone and plastoquinone in the A1 site of Photosystem I. Biophys J 83: 2885–2897PubMedCrossRefGoogle Scholar
  95. Shintani D and DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282: 2098–2100PubMedCrossRefGoogle Scholar
  96. Shintani D, Cheng Z and DellaPenna D (2002) The role of 2-methyl-6-phytyl-benzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC 6803. FEBS Lett 511: 1–5PubMedCrossRefGoogle Scholar
  97. Simantiras M and Leistner E (1991) Cell free synthesis of ortho-succinylbenzoic acid in protein extracts from anthraquinone and phylloquinone (vitamin K1) producing plant-cell suspensions cultures –occurrence of intermediates between isochorismic and ortho-succinylbenzoic acid. Z Naturforsch C 46: 364–370Google Scholar
  98. Soll J, Kemmerling M and Schultz G (1980) Tocopherol and plastoquinone synthesis in spinach chloroplasts subfractions. Arch Biochem Biophys 204: 544–550PubMedCrossRefGoogle Scholar
  99. Soll J, Schultz G, Joyard J, Douce R and Block MA (1985) Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplast. Arch Biochem Biophys 238: 290–299PubMedCrossRefGoogle Scholar
  100. Swiezewska E (2004) Ubiquinone and plastoquinone metabolism in plants. Methods Enzymol 378: 124–131PubMedCrossRefGoogle Scholar
  101. Takahashi Y, Hirota K and Katoh S (1985) Multiple forms of P700-chlorophyll a–protein complex from Synechococcus sp.: the iron, quinone and carotenoid contents. Photosynth Res 6: 183–192CrossRefGoogle Scholar
  102. Thornber JP, Alberte RS, Hunter FA, Shiozawa JA and Kan K-S (1976) The organization of chlorophyll in the plant photosynthetic unit. Brookhaven Symp Biol 28: 132–148PubMedGoogle Scholar
  103. Threlfall DR and Whistance GR (1971) Biosynthesis of isoprenoid quinones and chromanols. In: Goodwin TW (ed) Aspects of Terpenoid Chemistry and Biochemistry, Vol 12, pp 357–404. Academic Press, New YorkGoogle Scholar
  104. Trebst A, Depka BM and Hollander-Czytko H (2002) A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of Photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett 516: 156–160PubMedCrossRefGoogle Scholar
  105. Vassiliev IR, Antonkine ML and Golbeck JH (2001) Iron–sulfur clusters in type I reaction centers. Biochim Biophys Acta 1507: 139–160PubMedCrossRefGoogle Scholar
  106. Yoshida E, Nakamura A and Watanabe A (2003) Reversed-phase HPLC determination of chlorophyll a′ and naphthoquinones in Photosystem I of red algae: existence of two menaquinone-4 molecules in Photosystem I of Cyanidium caldarium. Anal Sci 19: 1001–1005PubMedCrossRefGoogle Scholar
  107. Zhao JD, Warren PV, Li N, Bryant DA and Golbeck JH (1990) Reconstitution of electron transport in Photosystem I with PsaC and PsaD proteins expressed in Escherichia coli. FEBS Lett 276: 175–180PubMedCrossRefGoogle Scholar
  108. Zhao J, Li N, Warren PV, Golbeck JH and Bryant DA (1992) Site-directed conversion of a cysteine to aspartate leads to the assembly of a [3Fe–4S] cluster in PsaC of Photosystem I. The photoreduction of FA is independent of FB at low temperature. Biochemistry 31: 5093–5099PubMedCrossRefGoogle Scholar
  109. Zhao J, Snyder WB, Mühlenhoff U, Rhiel E, Warren PV, Golbeck JH and Bryant DA (1993) Cloning and characterization of the psaE gene of the cyanobacterium Synechococcus sp. PCC 7002: characterization of a psaE mutant and overproduction of the protein in Escherichia coli. Mol Microbiol 9: 183–194PubMedCrossRefGoogle Scholar
  110. Ziegler K, Maldener I and Lockau W (1989) 5′-Monohydroxyphylloquinone as a component of Photosystem I. Z Natuforsch C 44: 468–472Google Scholar
  111. Zybailov B (2003) Modified quinone acceptor in photosystem I. PhD Thesis. The Pennsylvania State UniversityGoogle Scholar
  112. Zybailov B, van der Est A, Zech SG, Teutloff C, Johnson TW, Shen G, Bittle R, Stehlik D, Chitnis PR and Golbeck JH (2000) Recruitment of a foreign quinone into the A1 site of Photosystem I: II. Structural and functional characterization of phylloquinone biosynthetic pathway mutants by electron paramagnetic resonance and electron-nuclear double resonance spectroscopy. J Biol Chem 275: 8531–8539PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Yumiko Sakuragi
    • 1
  • Donald A. Bryant
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations