Photosystem I pp 177-192 | Cite as

The Long Wavelength Chlorophylls of Photosystem I

  • Navassard V. Karapetyan
  • Eberhard Schlodder
  • Rienk van Grondelle
  • Jan P. Dekker
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 24)

Abstract

In cyanobacteria, longwavelength chlorophylls (LWC) are located in the Photosystem I (PS I) core complex,whereas in plants and algae they are distributed between the PS I core and the light-harvesting complexes (LHC I). LWC are most probably aggregates of (excitonically) coupled chlorophylls, mainly dimers or trimers. The total number of LWC is rather small (≤10% of the total chlorophylls). Depending on their location in the PS I antenna and their distance from P700, they can play a crucial role in the kinetics of energy transfer and in the trapping of the excitation energy by charge separation. Energy absorbed by LWC is transferred uphill to P700 with high efficiency at room temperature, thereby increasing the cross-section for the absorption of red light. LWC are involved also in the dissipation of excess energy, thus protecting the reaction center. Under physiological conditions, the excitations within the PS I antenna are nearly thermally equilibrated over the different spectral forms and the excitation energy is efficiently trapped via charge separation in the reaction center. When the photochemistry in the reaction center is blocked, the excitations migrate to the LWCand are quenched either by P700+ or by the P700 triplet state depending on the state of P700.

Keywords

Oligomerization Photosynthesis Carotenoid Deconvolution Sorb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrizhiyevskaya EG, Schwabe TME, Germano M, D’Haene S, Kruip J, van Grondelle R and Dekker JP (2002) Spectroscopic properties of PS I–IsiA supercomplexes of the cyanobacterium Synechococcus PCC 7942. Biochim Biophys Acta 1556: 265–272PubMedCrossRefGoogle Scholar
  2. Andrizhiyevskaya EG, Frolov D, van Grondelle R and Dekker JP (2004) Energy transfer and trapping in the photosystem I complex of Synechococcus PCC 7942 and in its supercomplex with IsiA. Biochim Biophys Acta 1656: 104–113PubMedCrossRefGoogle Scholar
  3. Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635PubMedCrossRefGoogle Scholar
  4. Boekema EJ, Jensen PE, Schlodder E, van Breemen JFL, van Roon H, Scheller HV and Dekker JP (2001) Green plant photosystem I binds light-harvesting complex I on one side of the complex. Biochemistry 40: 1029–1036PubMedCrossRefGoogle Scholar
  5. Brody SS (1958) New excited state of chlorophyll. Science 128: 838–839CrossRefPubMedGoogle Scholar
  6. Byrdin M, Rimke I, Schlodder E, Stehlik D and Roelofs TA (2000) Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongatus with P700 reduced and oxidized state: are the kinetics of excited state decay trap-limited or transfer-limited? Biophys J 79: 992–1007PubMedGoogle Scholar
  7. Byrdin M, Jordan P, Krauß N, Fromme P, Stehlik D and Schlodder E (2002) Light harvesting in photosystem I: modelling based on 2.5 Å structure of photosystem I from Synechococcus elongatus. Biophys J 83: 433–457PubMedGoogle Scholar
  8. Cometta A, Zucchelli G, Karapetyan NV, Engelmann E, Garlashi FM and Jennings RC (2000) Thermal behavior of long wavelength absorption transitions in Spirulina platensis photosystem I trimers. Biophys J 79: 3235–3243PubMedGoogle Scholar
  9. Croce R, Dorra D, Holzwarth AR and Jennings RC (2000) Fluorescence decay and spectral evolution in intact photosystem I of higher plants. Biochemistry 39: 6341–6348PubMedCrossRefGoogle Scholar
  10. Croce R, Morosinotto T, Castelletti S, Breton J and Bassi R (2002) The Lhca antenna complexes of higher plants photosystem I. Biochim Biophys Acta 1556: 29–40PubMedCrossRefGoogle Scholar
  11. Deinum G, Kramer H, Aartsma TJ, Kleinherenbrink FAM and Amesz J (1991) Fluorescence quenching in Heliobacterium chlorum by reaction centers in the charge separated state. Biochim Biophys Acta 1058: 339–44CrossRefGoogle Scholar
  12. Dorra D, Fromme P, Karapetyan NV and Holzwarth AR (1998) Fluorescence kinetics of photosystem I: multiple fluorescence components. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol 1, pp 587–590. Kluwer, DordrechtGoogle Scholar
  13. Duval J-C, Thomas J-C and Choquet Y (1986) 77 K fluorescence quenching induced by reduction of photosystem I primary electron acceptors in a cyanobacterium. Biochim Biophys Acta 848: 352–358CrossRefGoogle Scholar
  14. Engelmann E, Tagliaube T, Karapetyan NV, Garlaschi FM, Zucchelli Z and Jennings RC (2001) CD spectroscopy provides evidence for excitonic interactions involving red-shifted chlorophyll forms in photosystem I. FEBS Lett 499: 112–115PubMedCrossRefGoogle Scholar
  15. Frese RN, Palacios MA, Azzizi A, van Stokkum IHM, Kruip J, Roegner M, Karapetyan NV, Schlodder E, van Grondelle R and Dekker JP (2002) Electric field effects on red chlorophylls, β-carotenes and P700 in cyanobacterial photosystem I complexes. Biochim Biophys Acta 1554: 180–191PubMedCrossRefGoogle Scholar
  16. Fromme P, Jordan P and Krauß N (2001) Structure of photosystem I. Biochim Biophys Acta 1507: 5–31PubMedCrossRefGoogle Scholar
  17. Fromme P, Schlodder E and Jansson S (2003) Structure and function of the antenna system in photosystem I. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis, pp 253–279. Kluwer, DordrechtGoogle Scholar
  18. Germano M, Yakushevska AE, Keegstra W, van Gorkom HJ, Dekker JP and Boekema EJ (2002) Supramolecular organization of photosystem I and light-harvesting complex I in Chlamydomonas reinhardtii. FEBS Lett 525: 121–125PubMedCrossRefGoogle Scholar
  19. Gobets B and van Grondelle R (2001) Energy transfer and trapping in photosystem I. Biochim Biophys Acta 1507: 80–99PubMedCrossRefGoogle Scholar
  20. Gobets B, van Amerongen H, Monshower R, Kruip J, Rögner M, van Grondelle R and Dekker JP (1994) Polarized site-selected fluorescence spectroscopy of isolated photosystem I particles. Biochim Biophys Acta 1188: 75–85CrossRefGoogle Scholar
  21. Gobets B, Kennis JTM, Ihalainen JA, Brazzoli M, Croce R, van Stokkum IHM, Bassi R, Dekker JP, van Amerongen H, Fleming GR and van Grondelle R (2001a) Excitation energy transfer in dimeric light-harvesting complex I: a combined streak-camera/fluorescence upconversion study. J Phys Chem B 105: 10132–10139CrossRefGoogle Scholar
  22. Gobets B, van Stokkum IHM, Rögner M, Kruip J, Schlodder E, Karapetyan NV, Dekker JP and van Grondelle R (2001b) Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: a unified compartmental model. Biophys J 81: 407–424Google Scholar
  23. Gobets B, Valkunas L and van Grondelle R (2003a) Bridging the gap between structural and lattice-models: a parametrization of energy transfer and trapping in photosystem I. Biophys J 85: 3872–3882Google Scholar
  24. Gobets B, van Stokkum IHM, van Mourik F, Dekker JP and van Grondelle R (2003b) Excitation wavelength dependence of the fluorescence kinetics in photosystem I particles from Synechocystis PCC 6803 and Synechococcus elongatus. Biophys J 85: 3883–3898Google Scholar
  25. Golbeck JH (1994) Photosystem I of cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 319–360. Kluwer, DordrechtGoogle Scholar
  26. Hayes JM, Matsuzaki S, Raetsep M and Small GJ (2000) Red chlorophyll a antenna states of photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J Phys Chem B 104: 5625–5633CrossRefGoogle Scholar
  27. Holzwarth AR, Schatz G, Brock H and Bittersmann E (1993) Energy transfer and charge separation kinetics in photosystem I. 1. Picosecond transient absorption and fluorescence study of cyanobacterial photosystem I particles. Biophys J 64: 1813–1826PubMedGoogle Scholar
  28. Holzwarth AR, Dorra D, Mueller MG and Karapetyan NV (1998) Structure–function relationships and excitation dynamics in photosystem I. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol 1, pp 497–502. Kluwer, DordrechtGoogle Scholar
  29. Ikegami I (1976) Fluorescence changes related in the primary photochemical reaction in the P700-enriched particles isolated from spinach chloroplasts. Biochim Biophys Acta 449: 245–258PubMedCrossRefGoogle Scholar
  30. Ihalainen JA, Gobets B, Sznee K, Brazzoli M, Croce R, Bassi R, van Grondelle R, Korppi-Tommola JEI and Dekker JP (2000) Evidence for two spectroscopically different dimers of light-harvesting complex I from green plants. Biochemistry 39: 8625–8631PubMedCrossRefGoogle Scholar
  31. Ihalainen JA, Jensen PE, Haldrup A, van Stokkum IHM, van Grondelle R, Scheller HV and Dekker JP (2002) Pigment organization and energy transfer dynamics in isolated photosystem I (PS I) complexes from Arabidopsis thaliana depleted of the PS I-G, PS I-K, PS I-L, or PS I-N subunit. Biophys J 83: 2190–2201PubMedGoogle Scholar
  32. Ihalainen JA, Raetsep M, Jensen PE, Scheller HV, Croce R, Bassi R, Korppi-Tommola JEI and Freiberg A (2003) Red spectral forms of chlorophylls in green plant PS I –a site-selective and high-pressure spectroscopy study. J Phys Chem B 107: 9086–9093CrossRefGoogle Scholar
  33. Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1184: 1–19PubMedCrossRefGoogle Scholar
  34. Jordan P, Fromme P, Klukas O, Witt HT, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  35. Karapetyan NV (1998) Organization and role of the longwave chlorophylls in the photosystem I of the cyanobacterium Spirulina. Membr Cell Biol 12: 571–584PubMedGoogle Scholar
  36. Karapetyan NV, Klimov VV and Krasnovsky AA (1973) Light-induced changes in the fluorescence yield of particles obtained by digitonin fragmentation of chloroplasts. Photosynthetica 7: 330–337Google Scholar
  37. Karapetyan NV, Dorra D, Schweitzer G, Bezsmertnaya IN and Holzwarth AR (1997) Fluorescence spectroscopy of the longwave chlorophylls in trimeric and monomeric photosystem I core complexes from the cyanobacterium Spirulina platensis. Biochemistry 36: 13830–13837PubMedCrossRefGoogle Scholar
  38. Karapetyan NV, Holzwarth AR and Rögner M (1999a) The photosystem I trimer of cyanobacteria: molecular organization, excitation dynamics and physiological significance. FEBS Lett 460: 395–400CrossRefGoogle Scholar
  39. Karapetyan NV, Shubin VV and Strasser RJ (1999b) Energy exchange between the chlorophyll antenna of monomeric subunits within the photosystem I trimeric complex of the cyanobacterium Spirulina. Photosynth Res 61: 291–301CrossRefGoogle Scholar
  40. Kargul J, Nield J and Barber J (2003) Three-dimensional reconstruction of a light-harvesting complex photosystem I (LHC I-PS I) supercomplex from the green alga Chlamydomonas reinhardtii. J Biol Chem 278: 16135–16141PubMedCrossRefGoogle Scholar
  41. Katz JJ, Bowman MK, Michalski TJ and Worchester DL (1991) Chlorophyll aggregation: chlorophyll/water micelles as models for in vitro long-wavelength chlorophyll. In: Scheer H (ed) Chlorophylls, pp 211–235. CRC Press, Boca RatonGoogle Scholar
  42. Kennis JTM, Gobets B, van Stokkum IHM, Dekker JP, van Grondelle R and Fleming GR (2001) Light harvesting by chlorophylls and carotenoids in the photosystem I core complex of Synechococcus elongatus: a fluorescence upconversion study. J Phys Chem B 105: 4485–4494CrossRefGoogle Scholar
  43. Kleinherenbrink FAM, Deinum G, Otte CCM, Hoff AJ and Amesz J (1992) Energy transfer from long-wavelength absorbing antenna bacteriochlorophylls to the reaction center. Biochim Biophys Acta 1099: 175–181CrossRefGoogle Scholar
  44. Krasnovsky AA (1960) The primary processes of photosynthesis in plants. Annu Rev Plant Physiol 11: 363–410CrossRefGoogle Scholar
  45. Krasnovsky AA and Bystrova MI (1986) Self-assembly of chlorophyll aggregated structures. Biosystems 12: 181–194CrossRefGoogle Scholar
  46. Kruip J, Karapetyan NV, Terekhova IV and Rögner M (1999) In vitro oligomerization of a membrane protein complex. Liposome-based reconstitution of trimeric photosystem I from isolated monomers. J Biol Chem 274: 18181–18188PubMedCrossRefGoogle Scholar
  47. Litvin FF and Krasnovsky AA (1957) Investigation by fluorescence spectra of intermediate stages of chlorophyll biosynthesis in etiolated leaves. Dokl AN SSSR (Russ) 117: 106–109Google Scholar
  48. Melkozernov AN (2001) Excitation energy transfer in photosystem I from oxygenic organisms. Photosynth Res 70: 129–153PubMedCrossRefGoogle Scholar
  49. Melkozernov AN, Schmid VHR, Schmidt GW and Blankenship RE (1998) Energy redistribution in heterodimeric light-harvesting complex LHCI-730 of photosystem I. J Phys Chem B 102: 8183–8189CrossRefGoogle Scholar
  50. Melkozernov AN, Lin S and Blankenship RE (2000a) Femtosecond transient spectroscopy and excitonic interactions in photosystem I. J Phys Chem B 104: 1651–1656CrossRefGoogle Scholar
  51. Melkozernov AN, Lin S and Blankenship RE (2000b) Excitation dynamics and heterogeneity of energy equilibration in the core antenna of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 39: 1489–1498CrossRefGoogle Scholar
  52. Melkozernov AN, Lin S, Schmid VHR, Paulsen H, Schmidt GW and Blankenship RE (2000c) Ultrafast excitation dynamics of low energy pigments in reconstituted peripheral light-harvesting complexes of photosystem I. FEBS Lett 471: 89–92CrossRefGoogle Scholar
  53. Melkozernov AN, Lin S, Blankenship RE and Valkunas L (2001) Spectral inhomogeneity of photosystem I and its influence on excitation equilibration and trapping in the cyanobacteriun Synechocystis sp. PCC 6803 at 77 K. Biophys J 81: 1144–1154PubMedCrossRefGoogle Scholar
  54. Morosinotto T, Casteletti S, Breton J, Bassi R and Croce R (2002) Mutation analysis of Lhca1 antenna complex –Low energy absorption forms originate from pigment–pigment interactions. J Biol Chem 277: 36253–36261PubMedCrossRefGoogle Scholar
  55. Morosinotto T, Breton J, Bassi R and Croce R (2003) The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I. J Biol Chem 278: 49223–49229PubMedCrossRefGoogle Scholar
  56. Mukerji I and Sauer K (1989) Temperature-dependent steady-state and picosecond kinetic fluorescence measurements of a photosystem I preparation from spinach. In: Briggs WR (ed) Photosynthesis. Plant Biology, Vol 8, pp 105–122. Alan R Liss, New YorkGoogle Scholar
  57. Palsson L-O, Dekker JP, Schlodder E, Monshouwer R and van Grondelle R (1996) Polarized site-selective fluorescence spectroscopy of the long-wavelength emitting chlorophylls in isolated photosystem I particles of Synechococcus elongatus. Photosynth Res 48: 239–262CrossRefGoogle Scholar
  58. Palsson L-O, Flemming C, Gobets B, van Grondelle R, Dekker JP and Schlodder E (1998) Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys J 74: 2611–2622PubMedGoogle Scholar
  59. Raetsep M, Johnson TW, Chitnis PR and Small GJ (2000) The red-absorbing chlorophyll a antenna states of photosystem I: a hole-burning study of Synechocystis sp. PCC 6803 and its mutants. J Phys Chem 104B: 836–847Google Scholar
  60. Rivadossi A, Zucchelli G, Garlaschi FM and Jennings RC (1999) The importance of PSI chlorophyll red forms in light-harvesting by leaves. Photosynth Res 60: 209–215CrossRefGoogle Scholar
  61. Schlodder E, Cetin M, Byrdin M, Terekhova IN and Karapetyan N. (2005) P700+- and 3P700-induced quenching of the fluorescence at 760 nm in trimeric photosystem I complexes from the cyanobacteriumArthrospira platensis. Biochim Biophys Acta 1706: 53–67PubMedCrossRefGoogle Scholar
  62. Schmid VHR, Cammarata KV, Bruns BU and Schmidt GW (1997) In vitro reconstitution of the photosystem I light-harvesting complex LHCI-730: heterodimerization is required for antenna pigment organization. Proc Natl Acad Sci USA 94: 7667–7672PubMedCrossRefGoogle Scholar
  63. Schmid VHR, Potthast S, Wiener M, Bergauer V, Paulsen H and Storf S (2002) Pigment binding of photosystem I light-harvesting proteins. J Biol Chem 277: 36707–36714CrossRefGoogle Scholar
  64. Sener MK, Lu DY, Ritz T, Park S, Fromme P and Schulten K (2002) Robustness and optimality of light harvesting in cyanobacterial photosystem I. J Phys Chem B 106: 7948–7960CrossRefGoogle Scholar
  65. Shubin VV, Murthy SDS, Karapetyan NV and Mohanty P (1991) Origin of the 77 K variable fluorescence at 758 nm in the cyanobacterium Spirulina platensis. Biochim Biophys Acta 1060: 28–36CrossRefGoogle Scholar
  66. Shubin VV, Bezsmertnaya IN and Karapetyan NV (1992) Isolation from Spirulina membranes of two photosystem I-type complexes, one of which contains chlorophyll responsible for the 77 K fluorescence band at 760 nm. FEBS Lett 309: 340–342PubMedCrossRefGoogle Scholar
  67. Shubin VV, Tsuprun VL, Bezsmertnaya IN and Karapetyan NV (1993) Trimeric forms of the photosystem I reaction center complex pre-exist in the membranes of the cyanobacteriun Spirulina platensis. FEBS Lett 334: 79–82PubMedCrossRefGoogle Scholar
  68. Shubin VV, Bezsmertnaya IN and Karapetyan NV (1995) Efficient energy transfer from the long-wavelength antenna chlorophylls to P700 in photosystem I complexes from Spirulina platensis. J Photochem Photobiol B 30: 153–160CrossRefGoogle Scholar
  69. Trissl H-W (1993) Long-wavelength absorbing antenna pigments and heterogeneous absorption bands concentrate excitons and increase absorption cross-section. Photosynth Res 35: 247–263CrossRefGoogle Scholar
  70. Turconi S, Weber N, Schweitzer G, Strotmann H and Holzwath A (1994) Energy transfer and charge separation kinetics in photosystem I. 2. Picosecond fluorescence study of various PSI particles and light-harvesting complex isolated from higher plants. Biochim Biophys Acta 1187: 324–334CrossRefGoogle Scholar
  71. van der Lee J, Bald D, Kwa SLS, van Grondelle R, Rögner M and Dekker JP (1993) Steady-state polarized-light spectroscopy of isolated photosystem I complex. Photosynth Res 35: 311–321CrossRefGoogle Scholar
  72. van Grondelle R, Dekker JP, Gilbro T and Sundstroem V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65CrossRefGoogle Scholar
  73. White NTH, Beddard GS, Thorne JR, Feeban TM, Keyes TA, Heathcote P (1996) Primary charge separation and energy transfer in the photosystem I reaction center of higher plants. J Phys Chem B 100: 12086–12099CrossRefGoogle Scholar
  74. Witt H, Bordignon E, Carbonera D, Dekker JP, Karapetyan NV, Teutloff C, Webber A, Lubitz W and Schlodder E (2003) Species-specific differences of the spectroscopic properties of P700: analysis of the influence of non-conserved amino acid residues by site-directed mutagenesis of photosystem I from Chlamydomonas reinhardtii. J Biol Chem 278: 46760–46771PubMedCrossRefGoogle Scholar
  75. Wittmershaus BP, Tran TD and Panaia B (1998) Fluorescence from low-energy chlorophylls in photosystem I of Synechocystis sp. PCC 6803 at physiological temperatures. Photosynth Res 57: 29–39CrossRefGoogle Scholar
  76. Woolf VM, Wittmershaus BP, Vermaas WFJ and Tran TD (1994) Resolution of low-energy chlorophylls in photosystem I of Synechocystis sp. PCC 6803 at 77 and 295 K through fluorescence excitation anisotropy. Photosynth Res 40: 21–34CrossRefGoogle Scholar
  77. Zazubovich V, Matsuzaki S, Johnson TW, Hayes JM, Chitnis PR and Small GJ (2002) Red antenna states of photosystem I from cyanobacterium Synechococcus elongatus: a spectral hole-burning study. Chem. Physics 275: 47–59CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Navassard V. Karapetyan
    • 1
  • Eberhard Schlodder
    • 2
  • Rienk van Grondelle
    • 3
  • Jan P. Dekker
    • 3
  1. 1.A.N. Bakh Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Max-Volmer-Laboratory of Biophysical ChemistryTechnical UniversityBerlinGermany
  3. 3.Division of Physics and AstronomyFree UniversityAmsterdamThe Netherlands

Personalised recommendations