Photosystem I pp 139-154 | Cite as

The Low Molecular Mass Subunits in Higher Plant Photosystem I

  • Anna Haldrup
  • Poul Erik Jensen
  • Henrik Vibe Scheller
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 24)


Photosystem I (PS I) in plants contains 18 different protein subunits. Only three subunits are directly involved in electron transport, while the remaining subunits have a multitude of other functions. Although the PS I complex in plants shows many specific adaptations, it is fascinating that the overall structure and function has been extremely well conserved through the billion years of evolution that separates plants and cyanobacteria. Important roles of the small accessory subunits include efficient docking of the electron donor plastocyanin and the electron acceptor ferredoxin. These functions are conserved between plants and cyanobacteria but plant PS I has a number of specific adaptations, particularly the PS I-N subunit, which is only present in eukaryotes and is involved in the efficient oxidation of plastocyanin.


Antenna Size Synechococcus Elongatus Stromal Side Peripheral Antenna Lhca Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen JF (2003) State transitions–a question of balance. Science 299: 1530–1532PubMedCrossRefGoogle Scholar
  2. Anandan S, Vainstein A and Thornber JP (1989) Correlation of some published amino acid sequences for photosystem I polypeptides to a 17 kDa LHCI pigment–protein and to subunits III and IV of the core complex. FEBS Lett 256: 150–154PubMedCrossRefGoogle Scholar
  3. Andersen B, Scheller HV and M⊘ller BL (1992) The PSI-E subunit of photosystem I binds ferredoxin:NADP+ oxidoreductase. FEBS Lett 311: 167–173CrossRefGoogle Scholar
  4. Antonkine ML, Jordan P, Fromme P, Krauß N, Golbeck JH and Stehlik D (2003) Assembly of protein subunits within the stromal ridge of photosystem I. Structural changes between unbound and sequentially PS I-bound polypeptides and correlated changes of the magnetic properties of the terminal iron sulfur clusters. J Mol Biol 327: 671–697PubMedCrossRefGoogle Scholar
  5. Armbrust TS, Chitnis PR and Guikema JA (1996) Organization of photosystem I polypeptides examined by chemical cross-linking. Plant Physiol 111: 1307–1312PubMedGoogle Scholar
  6. Bailey S, Walters RG, Jansson S and Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213: 794–801PubMedCrossRefGoogle Scholar
  7. Bassi R and Simpson D (1987) Chlorophyll–protein complexes of barley photosystem I. Eur J Biochem 163: 221–230PubMedCrossRefGoogle Scholar
  8. Bengis C and Nelson N (1977) Subunit structure of chloroplast photosystem I reaction center. J Biol Chem 252: 4564–4569PubMedGoogle Scholar
  9. Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635PubMedCrossRefGoogle Scholar
  10. Bibby TS, Nield J and Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412: 743–745PubMedCrossRefGoogle Scholar
  11. Boekema EJ, Jensen PE, Schlodder E, van Breemen JFL, van Roon H, Scheller HV and Dekker JP (2001a) Green plant photosystem I binds light-harvesting complex I on one side of the complex. Biochemistry 40: 1029–1036CrossRefGoogle Scholar
  12. Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel K-P, Pistorius EK and Kruip J (2001b) A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745–748CrossRefGoogle Scholar
  13. Chitnis VP, Jung YS, Albee L, Golbeck JH and Chitnis PR (1996) Mutational analysis of photosystem I polypeptides. J Biol Chem 271: 11772–11780PubMedCrossRefGoogle Scholar
  14. Croce R, Morosinotto T, Castelletti S, Breton J and Bassi R (2002) The Lhca antenna complexes of higher plants photosystem I. Biochim Biophys Acta 1556: 29–40PubMedCrossRefGoogle Scholar
  15. Farah J, Rappaport F, Choquet Y, Joliot P and Rochaix J-D (1995) Isolation of a psaF-deficient mutant of Chlamydomonas reinhardtii: efficient interaction of plastocyanin with the photosystem I reaction center is mediated by the PsaF subunit. EMBO J 14: 4976–4984PubMedGoogle Scholar
  16. Fischer N, Boudreau E, Hippler M, Drepper F, Haehnel W and Rochaix J-D (1999) A large fraction of PsaF is nonfunctional in photosystem I complexes lacking the PsaJ subunit. Biochemistry 38: 5546–5552PubMedCrossRefGoogle Scholar
  17. Fromme P, Jordan P and Krauß N (2001) Structure of photosystem I. Biochim Biophys Acta 1507: 5–31PubMedCrossRefGoogle Scholar
  18. Ganeteg U, Strand Å, Gustafsson P and Jansson S (2001) The properties of the chlorophyll a/b-binding proteins Lhca2 and Lhca3 studied in vivo using antisense inhibition. Plant Physiol 127: 150–158PubMedCrossRefGoogle Scholar
  19. Ganeteg U, Klimmek F and Jansson S (2004) Lhca5 –an LHC-type protein associated with Photosystem I. Plant Mol Biol 54: 641–651PubMedCrossRefGoogle Scholar
  20. Golbeck JH (1992) Structure and function of photosystem I. Annu Rev Plant Physiol Plant Mol Biol 43: 293–324CrossRefGoogle Scholar
  21. Gupta R, He Z and Luan S (2002) Functional relationship of cytochrome c6 and plastocyanin in Arabidopsis. Nature 417: 567–571PubMedCrossRefGoogle Scholar
  22. Haldrup A, Naver H and Scheller HV (1999) The interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of photosystem I. Plant J 17: 689–698PubMedCrossRefGoogle Scholar
  23. Haldrup A, Simpson JD and Scheller HV (2000) Down-regulation of the PSI-F subunit of Photosystem I in Arabidopsis thaliana. The PSI-F subunit is essential for photoautotrophic growth and antenna function. J Biol Chem 275: 31211–31218PubMedCrossRefGoogle Scholar
  24. Haldrup A, Jensen PE, Lunde C and Scheller HV (2001) Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci 6: 301–305PubMedCrossRefGoogle Scholar
  25. Haldrup A, Lunde C and Scheller HV (2003) Arabidopsis thaliana plants lacking the PSI-D subunit of photosystem I suffer severe photoinhibition, have unstable photosystem I complexes and altered redox homeostasis in the chloroplast stroma. J Biol Chem 278: 33276–33283PubMedCrossRefGoogle Scholar
  26. Hansson M and Vener AV (2003) Identification of three previously unknown in vivo protein phosphorylation sites in thylakoid membranes of Arabidopsis thaliana. Mol Cell Proteomics 2: 550–559PubMedGoogle Scholar
  27. He WZ and Malkin R (1992) Specific release of a 9-kDa extrinsic polypeptide of photosystem-I from spinach-chloroplasts by salt washing. FEBS Lett 308: 298–300PubMedCrossRefGoogle Scholar
  28. Hippler M, Drepper F, Farah J and Rochaix J-D (1997) Fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii requires PsaF. Biochemistry 36: 6343–6349PubMedCrossRefGoogle Scholar
  29. Hippler M, Drepper F, Haehnel W and Rochaix J-D (1998) The N-terminal domain of PsaF: precise recognition site for binding and fast electron transfer from cytochrome c(6) and plastocyanin to photosystem I of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 95: 7339–7344PubMedCrossRefGoogle Scholar
  30. Hippler M, Drepper F, Rochaix JD and Mühlenhoff U (1999) Insertion of the N-terminal part of PsaF from Chlamydomonas reinhardtii into photosystem I from Synechococcus elongatus enables efficient binding of algal plastocyanin and cytochrome c6. J Biol Chem 274: 4180–4188PubMedCrossRefGoogle Scholar
  31. Hippler M, Biehler K, Krieger-Liszkay A, van Dillewjin J and Rochaix J-D (2000) Limitation in electron transfer in photosystem I donor side mutants of Chlamydomonas reinhardtii–lethal photo-oxidative damage in high light is overcome in a suppressor strain deficient in the assembly of the light harvesting complex. J Biol Chem 275: 5852–5859PubMedCrossRefGoogle Scholar
  32. Hippler M, Rimbault B and Takahashi Y (2002) Photosynthetic complex assembly in Chlamydomonas reinhardtii. Protist 153: 197–220PubMedCrossRefGoogle Scholar
  33. Ihalainen JA, Jensen PE, Haldrup A, van Stokkum IHM, van Grondelle R, Scheller HV and Dekker JP (2002) Pigment organization and energy transfer dynamics in isolated photosystem I (PSI) complexes from Arabidopsis thaliana depleted of the PSI-G, PSI-K, PSI-L, or PSI-N subunit. Biophys J 83: 2190–2201PubMedGoogle Scholar
  34. Ihnatowicz A, Pesaresi P, Varotto C, Richly E, Schenider A, Jahns P, Salamini F and Leister D (2004) Mutants for photosystem I subunit D of Arabidopsis thaliana: effects on photosynthesis, photosystem I stability and expression of nuclear genes for chloroplast functions. Plant J 37: 839–852PubMedCrossRefGoogle Scholar
  35. Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4: 236–240PubMedCrossRefGoogle Scholar
  36. Jansson S, Andersen B and Scheller HV (1996) Nearest neighbor analysis of higher-plant photosystem I holocomplex. Plant Physiol 12: 409–420CrossRefGoogle Scholar
  37. Jensen PE, Gilpin M, Knoetzel J and Scheller HV (2000) The PSI-K subunit of photosystem I is involved in the interaction between light-harvesting complex I and the photosystem I reaction core. J Biol Chem 275: 24701–24708PubMedCrossRefGoogle Scholar
  38. Jensen PE, Rosgaard L, Knoetzel J and Scheller HV (2002) Photosystem I activity is increased in the absence of the PSI-G subunit. J Biol Chem 277: 2798–2803PubMedCrossRefGoogle Scholar
  39. Jensen PE, Haldrup A, Rosgaard L and Scheller HV (2003) Molecular dissection of photosystem I in higher plants: topology, structure and function. Physiol Plant 119: 313–321CrossRefGoogle Scholar
  40. Jensen PE, Haldrup A, Zhang S and Scheller HV (2004) The PSI-O subunit of plant photosystem I is involved in balancing the excitation pressure between the two photosystems. J Biol Chem 279: 24212–24217PubMedCrossRefGoogle Scholar
  41. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  42. Klukas O, Schubert WD, Jordan P, Krauß N, Fromme P, Witt HT and Senger W (1999) Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. J Biol Chem 274: 7351–7360PubMedCrossRefGoogle Scholar
  43. Knoetzel J, Mant A, Haldrup A, Jensen PE and Scheller HV (2002) PSI-O, a new 10-kDa subunit of eukaryotic photosystem I. FEBS Lett 510: 145–148PubMedCrossRefGoogle Scholar
  44. Kruip J, Chitnis PR, Lagoutte B, Rogner M and Boekema EJ (1997) Structural organization of the major subunits in cyanobacterial photosystem I. Localization of subunits PsaC, -D, -E, -F, and -J. J Biol Chem 272: 17061–17069PubMedCrossRefGoogle Scholar
  45. Lelong C, Sétif P, Lagoutte B and Bottin H (1994) Identification of the amino acids involved in the functional interaction between photosystem I and ferredoxin from Synechocystis sp. PCC 6803 by chemical cross-linking. J Biol Chem 269: 10034–10039PubMedGoogle Scholar
  46. Lelong C, Boekema EJ, Kruip J, Bottin H, Rögner M and Sétif P (1996) Characterization of a redox active cross-linked complex between cyanobacterial photosystem I and soluble ferredoxin. EMBO J 15: 2160–2168PubMedGoogle Scholar
  47. Li N, Zhao J, Warren PV, Warden JT, Bryant DA and Golbeck JH (1991) PsaD is required for the stable binding of PsaC to the photosystem I core protein of Synechococcus sp. PCC 6301. Biochemistry 30: 7863–7872PubMedCrossRefGoogle Scholar
  48. Lunde C, Jensen PE, Haldrup A, Knoetzel J and Scheller HV (2000) The PSI-H subunit of photosystem I is essential for state transition in plants. Nature 408: 613–615PubMedCrossRefGoogle Scholar
  49. Lunde C, Jensen PE, Rosgaard L, Haldrup A, Gilpin MJ and Scheller HV (2003) Plants impaired in state transitions can to a large degree compensate for their defect. Plant Cell Physiol 44: 44–54PubMedCrossRefGoogle Scholar
  50. Mannan RM, Whitmarsh J, Nyman P and Pakrasi HB (1991) Directed mutagenesis of an iron–sulfur protein of the Photosystem I complex in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Proc Natl Acad Sci USA 88: 10168–10172PubMedCrossRefGoogle Scholar
  51. Mannan RM, Pakrasi HB and Sonoike K (1994) The PsaC protein is necessary for the stable association of the PsaD, PsaE, and PsaL proteins in the photosystem I complex: analysis of a cyanobacterial mutant strain. Arch Biochem Biophys 315: 68–73PubMedCrossRefGoogle Scholar
  52. Mant A, Woolhead CA, Moore M, Henry R and Robinson C (2001) Insertion of PsaK into the thylakoid membrane in a “horseshoe” conformation occurs in the absence of signal recognition particle, nucleoside triphosphates, or functional Albino3. J Biol Chem 276: 36200–36206PubMedCrossRefGoogle Scholar
  53. Merati G and Zanetti G (1987) Chemical cross-linking of ferredoxin to spinach thylakoids. FEBS Lett 215: 37–40CrossRefGoogle Scholar
  54. Naver H, Schott MP, Andersen B, M⊘ller BL and Scheller HV (1995) Reconstitution of barley photosystem I reveals that the N-terminus of the PSI-D subunit is essential for tight binding of PSI-C. Physiol Plant 95: 19–26CrossRefGoogle Scholar
  55. Naver H, Scott MP, Golbeck JH, M⊘ller BL and Scheller HV (1996) Reconstitution of barley photosystem I with modified PSI-C allows identification of domains interacting with PSI-D and PSI-A/B. J Biol Chem 271: 8996–9001PubMedCrossRefGoogle Scholar
  56. Naver H, Haldrup A and Scheller HV (1999) Cosuppression of photosystem I subunit PSI-H in Arabidopsis thaliana. Efficient electron transfer and stability of photosystem I is dependent upon the PSI-H subunit. J Biol Chem 274: 10784–10789PubMedCrossRefGoogle Scholar
  57. Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Ann Rev Plant Physiol Plant Mol Biol 50: 333–359CrossRefGoogle Scholar
  58. Okkels JS, Jepsen LB, Honberg LS, Lehmbeck J, Scheller HV, Brandt P, Hoyer-Hansen G, Stummann B, Henningsen KW, von Wettstein D and M⊘ller BL (1988) A cDNA clone encoding a 10.8-kDa photosystem I polypeptide of barley. FEBS Lett 237: 108–112PubMedCrossRefGoogle Scholar
  59. Pesaresi P, Lunde C, Jahns P, Tarantino D, Meurer J, Varotto C, Hirtz R-D, Soave C, Scheller HV, Salamini F and Leister D (2002) A stable LHCII–PSI aggregate and suppression of photosynthetic state transitions in the psae1-1 mutant of Arabidopsis thaliana. Planta 215: 940–948PubMedCrossRefGoogle Scholar
  60. Rosgaard L, Zygadlo A, Scheller HV, Mant A and Jensen PE (2005) Insertion of the plant photosystem I subunit G into the thyklakoid membrane: in vitro and in vivo studies of wild-type and tagged versions of the protein. FEBS J 272: 4002–4010PubMedCrossRefGoogle Scholar
  61. Rousseau F, Sétif P and Lagoutte B (1993) Evidence for the involvement of PSI-E subunit in the reduction of photosystem I. EMBO J 12: 1755–1765PubMedGoogle Scholar
  62. Scheller HV, Jensen PE, Haldrup A, Lunde C and Knoetzel J (2001) Role of subunits in eukaryotic PSI. Biochim Biophys Acta 1507: 41–60PubMedCrossRefGoogle Scholar
  63. Scheller HV, Lunde C, Haldrup A and Jensen, PE (2004) Functional characterization of the photosynthetic apparatus in Arabidopsis thaliana. In: Leister D (ed) Plant Functional Genomics, pp 393–429. The Haworth’s Press, Binghamton, New YorkGoogle Scholar
  64. Schmid VHR, Potthast S, Wiener M, Bergauer V, Paulsen H and Storf S (2002) Pigment binding of photosystem I light-harvesting proteins. J Biol Chem 277: 37307–37314PubMedCrossRefGoogle Scholar
  65. Sommer F, Drepper F and Hippler M (2002) The luminal helix l of PsaB is essential for recognition of plastocyanin or cytochrome c(6) and fast electron transfer to photosystem I in Chlamydomonas reinhardtii. J Biol Chem 277: 6573–6581PubMedCrossRefGoogle Scholar
  66. Takahashi Y, Goldschmidt-Clermont M, Soen SY, Franzen LG and Rochaix J-D (1991) Directed chloroplast transformation in Chlamydomonas reinhardtii: insertional inactivation of the psaC gene encoding the iron sulfur protein destabilizes photosystem I. EMBO J 10: 2033–2040PubMedGoogle Scholar
  67. Varotto C, Pesaresi P, Meurer J, Oelmuller R, Steiner-Lange S, Salamini F and Leister D (2000) Disruption of the Arabidopsis photosystem I gene psaE1 affects photosynthesis and impairs growth. Plant J 22: 115–124PubMedCrossRefGoogle Scholar
  68. Varotto C, Pesaresi P, Jahns P, Lessnick A, Tizzano M, Schiavon F, Salamini F and Leister D (2002) Single and double knockouts of the genes for photosystem I subunits G, K, and H of Arabidopsis. Effects on photosystem I composition, photosynthetic electron flow, and state transitions. Plant Physiol 129: 616–624PubMedCrossRefGoogle Scholar
  69. Wastl J, Bendall DS and Howe CJ (2002) Higher plants contain a modified cytochrome c6. Trends Plant Sci 7: 244–245PubMedCrossRefGoogle Scholar
  70. Weigel M, Pesaresi P and Leister D (2003) Tracking the function of the cytochrome c6-like protein in higher plants. Trends Plant Sci 8: 513–517PubMedCrossRefGoogle Scholar
  71. Xu Q, Yu L, Chitnis VP and Chitnis PR (1994) Function and organization of photosystem I in a cyanobacterial mutant strain that lacks PsaF and PsaJ subunits. J Biol Chem 269: 3205–3211PubMedGoogle Scholar
  72. Xu Q, Hoppe D, Chitnis VP, Odom WR, Guikema JA and Chitnis PR (1995) Mutational analysis of Photosystem I polypeptides in the cyanobacterium Synechocystis sp. PCC 6803 –targeted inactivation of psaI reveals the function of PsaI in the structural organization of PSI. J Biol Chem 270: 16243–16250PubMedCrossRefGoogle Scholar
  73. Xu W, Jung YS, Chitnis VP, Guikema JA, Golbeck JH and Chitnis PR (1994) Mutational analysis of photosystem I polypeptides in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 269: 21512–21518PubMedGoogle Scholar
  74. Yamamoto Y, Tsuji H and Obokata J (1993) Structure and expression of a nuclear gene for the PSI-D subunit of photosystem I in Nicotiana sylvestris. Plant Mol Biol 22: 985–994PubMedCrossRefGoogle Scholar
  75. Yu J, Smart LB, Jung YS, Golbeck J and McIntosh L (1995) Absence of PsaC subunits allows assembly of Photosystem I core but prevents the binding of PsaD and PsaE in Synechocystis sp. PCC 6803. Plant Mol Biol 29: 331–342PubMedCrossRefGoogle Scholar
  76. Zanetti G and Merati G (1987) Interaction between photosystem I and ferredoxin. Identification by chemical cross-linking of the polypeptide which binds ferredoxin. Eur J Biochem 169: 143–146PubMedCrossRefGoogle Scholar
  77. Zhang S and Scheller HV (2004) Light harvesting complex II binds to several small subunits of PSI. J Biol Chem 279: 3180–3187PubMedCrossRefGoogle Scholar
  78. Zilber AL and Malkin R (1988) Ferredoxin cross-links to a 22-kDa subunit of photosystem I. Plant Physiol 88: 810–814PubMedCrossRefGoogle Scholar
  79. Zygadlo A, Jensen PE, Leister D and Scheller HV (2005) Photosystem I lacking the PSI-G subunit has higher affinity for plastocyanin and is sensitive to photodamage. Biochim Biophys Acta 1708: 154–163PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Anna Haldrup
    • 1
  • Poul Erik Jensen
    • 1
  • Henrik Vibe Scheller
    • 1
  1. 1.Plant Biochemistry Laboratory, Department of Plant BiologyThe Royal Veterinary and Agricultural UniversityFrederiksberg CDenmark

Personalised recommendations