Skip to main content

The Low Molecular Mass Subunits in Higher Plant Photosystem I

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 24))

Abstract

Photosystem I (PS I) in plants contains 18 different protein subunits. Only three subunits are directly involved in electron transport, while the remaining subunits have a multitude of other functions. Although the PS I complex in plants shows many specific adaptations, it is fascinating that the overall structure and function has been extremely well conserved through the billion years of evolution that separates plants and cyanobacteria. Important roles of the small accessory subunits include efficient docking of the electron donor plastocyanin and the electron acceptor ferredoxin. These functions are conserved between plants and cyanobacteria but plant PS I has a number of specific adaptations, particularly the PS I-N subunit, which is only present in eukaryotes and is involved in the efficient oxidation of plastocyanin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JF (2003) State transitions–a question of balance. Science 299: 1530–1532

    Article  PubMed  CAS  Google Scholar 

  • Anandan S, Vainstein A and Thornber JP (1989) Correlation of some published amino acid sequences for photosystem I polypeptides to a 17 kDa LHCI pigment–protein and to subunits III and IV of the core complex. FEBS Lett 256: 150–154

    Article  PubMed  CAS  Google Scholar 

  • Andersen B, Scheller HV and M⊘ller BL (1992) The PSI-E subunit of photosystem I binds ferredoxin:NADP+ oxidoreductase. FEBS Lett 311: 167–173

    Article  Google Scholar 

  • Antonkine ML, Jordan P, Fromme P, Krauß N, Golbeck JH and Stehlik D (2003) Assembly of protein subunits within the stromal ridge of photosystem I. Structural changes between unbound and sequentially PS I-bound polypeptides and correlated changes of the magnetic properties of the terminal iron sulfur clusters. J Mol Biol 327: 671–697

    Article  PubMed  CAS  Google Scholar 

  • Armbrust TS, Chitnis PR and Guikema JA (1996) Organization of photosystem I polypeptides examined by chemical cross-linking. Plant Physiol 111: 1307–1312

    PubMed  CAS  Google Scholar 

  • Bailey S, Walters RG, Jansson S and Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213: 794–801

    Article  PubMed  CAS  Google Scholar 

  • Bassi R and Simpson D (1987) Chlorophyll–protein complexes of barley photosystem I. Eur J Biochem 163: 221–230

    Article  PubMed  CAS  Google Scholar 

  • Bengis C and Nelson N (1977) Subunit structure of chloroplast photosystem I reaction center. J Biol Chem 252: 4564–4569

    PubMed  CAS  Google Scholar 

  • Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635

    Article  PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J and Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412: 743–745

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Jensen PE, Schlodder E, van Breemen JFL, van Roon H, Scheller HV and Dekker JP (2001a) Green plant photosystem I binds light-harvesting complex I on one side of the complex. Biochemistry 40: 1029–1036

    Article  CAS  Google Scholar 

  • Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel K-P, Pistorius EK and Kruip J (2001b) A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745–748

    Article  CAS  Google Scholar 

  • Chitnis VP, Jung YS, Albee L, Golbeck JH and Chitnis PR (1996) Mutational analysis of photosystem I polypeptides. J Biol Chem 271: 11772–11780

    Article  PubMed  CAS  Google Scholar 

  • Croce R, Morosinotto T, Castelletti S, Breton J and Bassi R (2002) The Lhca antenna complexes of higher plants photosystem I. Biochim Biophys Acta 1556: 29–40

    Article  PubMed  CAS  Google Scholar 

  • Farah J, Rappaport F, Choquet Y, Joliot P and Rochaix J-D (1995) Isolation of a psaF-deficient mutant of Chlamydomonas reinhardtii: efficient interaction of plastocyanin with the photosystem I reaction center is mediated by the PsaF subunit. EMBO J 14: 4976–4984

    PubMed  CAS  Google Scholar 

  • Fischer N, Boudreau E, Hippler M, Drepper F, Haehnel W and Rochaix J-D (1999) A large fraction of PsaF is nonfunctional in photosystem I complexes lacking the PsaJ subunit. Biochemistry 38: 5546–5552

    Article  PubMed  CAS  Google Scholar 

  • Fromme P, Jordan P and Krauß N (2001) Structure of photosystem I. Biochim Biophys Acta 1507: 5–31

    Article  PubMed  CAS  Google Scholar 

  • Ganeteg U, Strand Å, Gustafsson P and Jansson S (2001) The properties of the chlorophyll a/b-binding proteins Lhca2 and Lhca3 studied in vivo using antisense inhibition. Plant Physiol 127: 150–158

    Article  PubMed  CAS  Google Scholar 

  • Ganeteg U, Klimmek F and Jansson S (2004) Lhca5 –an LHC-type protein associated with Photosystem I. Plant Mol Biol 54: 641–651

    Article  PubMed  CAS  Google Scholar 

  • Golbeck JH (1992) Structure and function of photosystem I. Annu Rev Plant Physiol Plant Mol Biol 43: 293–324

    Article  CAS  Google Scholar 

  • Gupta R, He Z and Luan S (2002) Functional relationship of cytochrome c6 and plastocyanin in Arabidopsis. Nature 417: 567–571

    Article  PubMed  CAS  Google Scholar 

  • Haldrup A, Naver H and Scheller HV (1999) The interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of photosystem I. Plant J 17: 689–698

    Article  PubMed  CAS  Google Scholar 

  • Haldrup A, Simpson JD and Scheller HV (2000) Down-regulation of the PSI-F subunit of Photosystem I in Arabidopsis thaliana. The PSI-F subunit is essential for photoautotrophic growth and antenna function. J Biol Chem 275: 31211–31218

    Article  PubMed  CAS  Google Scholar 

  • Haldrup A, Jensen PE, Lunde C and Scheller HV (2001) Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci 6: 301–305

    Article  PubMed  CAS  Google Scholar 

  • Haldrup A, Lunde C and Scheller HV (2003) Arabidopsis thaliana plants lacking the PSI-D subunit of photosystem I suffer severe photoinhibition, have unstable photosystem I complexes and altered redox homeostasis in the chloroplast stroma. J Biol Chem 278: 33276–33283

    Article  PubMed  CAS  Google Scholar 

  • Hansson M and Vener AV (2003) Identification of three previously unknown in vivo protein phosphorylation sites in thylakoid membranes of Arabidopsis thaliana. Mol Cell Proteomics 2: 550–559

    PubMed  CAS  Google Scholar 

  • He WZ and Malkin R (1992) Specific release of a 9-kDa extrinsic polypeptide of photosystem-I from spinach-chloroplasts by salt washing. FEBS Lett 308: 298–300

    Article  PubMed  CAS  Google Scholar 

  • Hippler M, Drepper F, Farah J and Rochaix J-D (1997) Fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii requires PsaF. Biochemistry 36: 6343–6349

    Article  PubMed  CAS  Google Scholar 

  • Hippler M, Drepper F, Haehnel W and Rochaix J-D (1998) The N-terminal domain of PsaF: precise recognition site for binding and fast electron transfer from cytochrome c(6) and plastocyanin to photosystem I of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 95: 7339–7344

    Article  PubMed  CAS  Google Scholar 

  • Hippler M, Drepper F, Rochaix JD and Mühlenhoff U (1999) Insertion of the N-terminal part of PsaF from Chlamydomonas reinhardtii into photosystem I from Synechococcus elongatus enables efficient binding of algal plastocyanin and cytochrome c6. J Biol Chem 274: 4180–4188

    Article  PubMed  CAS  Google Scholar 

  • Hippler M, Biehler K, Krieger-Liszkay A, van Dillewjin J and Rochaix J-D (2000) Limitation in electron transfer in photosystem I donor side mutants of Chlamydomonas reinhardtii–lethal photo-oxidative damage in high light is overcome in a suppressor strain deficient in the assembly of the light harvesting complex. J Biol Chem 275: 5852–5859

    Article  PubMed  CAS  Google Scholar 

  • Hippler M, Rimbault B and Takahashi Y (2002) Photosynthetic complex assembly in Chlamydomonas reinhardtii. Protist 153: 197–220

    Article  PubMed  CAS  Google Scholar 

  • Ihalainen JA, Jensen PE, Haldrup A, van Stokkum IHM, van Grondelle R, Scheller HV and Dekker JP (2002) Pigment organization and energy transfer dynamics in isolated photosystem I (PSI) complexes from Arabidopsis thaliana depleted of the PSI-G, PSI-K, PSI-L, or PSI-N subunit. Biophys J 83: 2190–2201

    PubMed  CAS  Google Scholar 

  • Ihnatowicz A, Pesaresi P, Varotto C, Richly E, Schenider A, Jahns P, Salamini F and Leister D (2004) Mutants for photosystem I subunit D of Arabidopsis thaliana: effects on photosynthesis, photosystem I stability and expression of nuclear genes for chloroplast functions. Plant J 37: 839–852

    Article  PubMed  CAS  Google Scholar 

  • Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4: 236–240

    Article  PubMed  Google Scholar 

  • Jansson S, Andersen B and Scheller HV (1996) Nearest neighbor analysis of higher-plant photosystem I holocomplex. Plant Physiol 12: 409–420

    Article  Google Scholar 

  • Jensen PE, Gilpin M, Knoetzel J and Scheller HV (2000) The PSI-K subunit of photosystem I is involved in the interaction between light-harvesting complex I and the photosystem I reaction core. J Biol Chem 275: 24701–24708

    Article  PubMed  CAS  Google Scholar 

  • Jensen PE, Rosgaard L, Knoetzel J and Scheller HV (2002) Photosystem I activity is increased in the absence of the PSI-G subunit. J Biol Chem 277: 2798–2803

    Article  PubMed  CAS  Google Scholar 

  • Jensen PE, Haldrup A, Rosgaard L and Scheller HV (2003) Molecular dissection of photosystem I in higher plants: topology, structure and function. Physiol Plant 119: 313–321

    Article  CAS  Google Scholar 

  • Jensen PE, Haldrup A, Zhang S and Scheller HV (2004) The PSI-O subunit of plant photosystem I is involved in balancing the excitation pressure between the two photosystems. J Biol Chem 279: 24212–24217

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Klukas O, Schubert WD, Jordan P, Krauß N, Fromme P, Witt HT and Senger W (1999) Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. J Biol Chem 274: 7351–7360

    Article  PubMed  CAS  Google Scholar 

  • Knoetzel J, Mant A, Haldrup A, Jensen PE and Scheller HV (2002) PSI-O, a new 10-kDa subunit of eukaryotic photosystem I. FEBS Lett 510: 145–148

    Article  PubMed  CAS  Google Scholar 

  • Kruip J, Chitnis PR, Lagoutte B, Rogner M and Boekema EJ (1997) Structural organization of the major subunits in cyanobacterial photosystem I. Localization of subunits PsaC, -D, -E, -F, and -J. J Biol Chem 272: 17061–17069

    Article  PubMed  CAS  Google Scholar 

  • Lelong C, Sétif P, Lagoutte B and Bottin H (1994) Identification of the amino acids involved in the functional interaction between photosystem I and ferredoxin from Synechocystis sp. PCC 6803 by chemical cross-linking. J Biol Chem 269: 10034–10039

    PubMed  CAS  Google Scholar 

  • Lelong C, Boekema EJ, Kruip J, Bottin H, Rögner M and Sétif P (1996) Characterization of a redox active cross-linked complex between cyanobacterial photosystem I and soluble ferredoxin. EMBO J 15: 2160–2168

    PubMed  CAS  Google Scholar 

  • Li N, Zhao J, Warren PV, Warden JT, Bryant DA and Golbeck JH (1991) PsaD is required for the stable binding of PsaC to the photosystem I core protein of Synechococcus sp. PCC 6301. Biochemistry 30: 7863–7872

    Article  PubMed  CAS  Google Scholar 

  • Lunde C, Jensen PE, Haldrup A, Knoetzel J and Scheller HV (2000) The PSI-H subunit of photosystem I is essential for state transition in plants. Nature 408: 613–615

    Article  PubMed  CAS  Google Scholar 

  • Lunde C, Jensen PE, Rosgaard L, Haldrup A, Gilpin MJ and Scheller HV (2003) Plants impaired in state transitions can to a large degree compensate for their defect. Plant Cell Physiol 44: 44–54

    Article  PubMed  CAS  Google Scholar 

  • Mannan RM, Whitmarsh J, Nyman P and Pakrasi HB (1991) Directed mutagenesis of an iron–sulfur protein of the Photosystem I complex in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Proc Natl Acad Sci USA 88: 10168–10172

    Article  PubMed  CAS  Google Scholar 

  • Mannan RM, Pakrasi HB and Sonoike K (1994) The PsaC protein is necessary for the stable association of the PsaD, PsaE, and PsaL proteins in the photosystem I complex: analysis of a cyanobacterial mutant strain. Arch Biochem Biophys 315: 68–73

    Article  PubMed  CAS  Google Scholar 

  • Mant A, Woolhead CA, Moore M, Henry R and Robinson C (2001) Insertion of PsaK into the thylakoid membrane in a “horseshoe” conformation occurs in the absence of signal recognition particle, nucleoside triphosphates, or functional Albino3. J Biol Chem 276: 36200–36206

    Article  PubMed  CAS  Google Scholar 

  • Merati G and Zanetti G (1987) Chemical cross-linking of ferredoxin to spinach thylakoids. FEBS Lett 215: 37–40

    Article  CAS  Google Scholar 

  • Naver H, Schott MP, Andersen B, M⊘ller BL and Scheller HV (1995) Reconstitution of barley photosystem I reveals that the N-terminus of the PSI-D subunit is essential for tight binding of PSI-C. Physiol Plant 95: 19–26

    Article  CAS  Google Scholar 

  • Naver H, Scott MP, Golbeck JH, M⊘ller BL and Scheller HV (1996) Reconstitution of barley photosystem I with modified PSI-C allows identification of domains interacting with PSI-D and PSI-A/B. J Biol Chem 271: 8996–9001

    Article  PubMed  CAS  Google Scholar 

  • Naver H, Haldrup A and Scheller HV (1999) Cosuppression of photosystem I subunit PSI-H in Arabidopsis thaliana. Efficient electron transfer and stability of photosystem I is dependent upon the PSI-H subunit. J Biol Chem 274: 10784–10789

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Ann Rev Plant Physiol Plant Mol Biol 50: 333–359

    Article  CAS  Google Scholar 

  • Okkels JS, Jepsen LB, Honberg LS, Lehmbeck J, Scheller HV, Brandt P, Hoyer-Hansen G, Stummann B, Henningsen KW, von Wettstein D and M⊘ller BL (1988) A cDNA clone encoding a 10.8-kDa photosystem I polypeptide of barley. FEBS Lett 237: 108–112

    Article  PubMed  CAS  Google Scholar 

  • Pesaresi P, Lunde C, Jahns P, Tarantino D, Meurer J, Varotto C, Hirtz R-D, Soave C, Scheller HV, Salamini F and Leister D (2002) A stable LHCII–PSI aggregate and suppression of photosynthetic state transitions in the psae1-1 mutant of Arabidopsis thaliana. Planta 215: 940–948

    Article  PubMed  CAS  Google Scholar 

  • Rosgaard L, Zygadlo A, Scheller HV, Mant A and Jensen PE (2005) Insertion of the plant photosystem I subunit G into the thyklakoid membrane: in vitro and in vivo studies of wild-type and tagged versions of the protein. FEBS J 272: 4002–4010

    Article  PubMed  CAS  Google Scholar 

  • Rousseau F, Sétif P and Lagoutte B (1993) Evidence for the involvement of PSI-E subunit in the reduction of photosystem I. EMBO J 12: 1755–1765

    PubMed  CAS  Google Scholar 

  • Scheller HV, Jensen PE, Haldrup A, Lunde C and Knoetzel J (2001) Role of subunits in eukaryotic PSI. Biochim Biophys Acta 1507: 41–60

    Article  PubMed  CAS  Google Scholar 

  • Scheller HV, Lunde C, Haldrup A and Jensen, PE (2004) Functional characterization of the photosynthetic apparatus in Arabidopsis thaliana. In: Leister D (ed) Plant Functional Genomics, pp 393–429. The Haworth’s Press, Binghamton, New York

    Google Scholar 

  • Schmid VHR, Potthast S, Wiener M, Bergauer V, Paulsen H and Storf S (2002) Pigment binding of photosystem I light-harvesting proteins. J Biol Chem 277: 37307–37314

    Article  PubMed  CAS  Google Scholar 

  • Sommer F, Drepper F and Hippler M (2002) The luminal helix l of PsaB is essential for recognition of plastocyanin or cytochrome c(6) and fast electron transfer to photosystem I in Chlamydomonas reinhardtii. J Biol Chem 277: 6573–6581

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Goldschmidt-Clermont M, Soen SY, Franzen LG and Rochaix J-D (1991) Directed chloroplast transformation in Chlamydomonas reinhardtii: insertional inactivation of the psaC gene encoding the iron sulfur protein destabilizes photosystem I. EMBO J 10: 2033–2040

    PubMed  CAS  Google Scholar 

  • Varotto C, Pesaresi P, Meurer J, Oelmuller R, Steiner-Lange S, Salamini F and Leister D (2000) Disruption of the Arabidopsis photosystem I gene psaE1 affects photosynthesis and impairs growth. Plant J 22: 115–124

    Article  PubMed  CAS  Google Scholar 

  • Varotto C, Pesaresi P, Jahns P, Lessnick A, Tizzano M, Schiavon F, Salamini F and Leister D (2002) Single and double knockouts of the genes for photosystem I subunits G, K, and H of Arabidopsis. Effects on photosystem I composition, photosynthetic electron flow, and state transitions. Plant Physiol 129: 616–624

    Article  PubMed  CAS  Google Scholar 

  • Wastl J, Bendall DS and Howe CJ (2002) Higher plants contain a modified cytochrome c6. Trends Plant Sci 7: 244–245

    Article  PubMed  CAS  Google Scholar 

  • Weigel M, Pesaresi P and Leister D (2003) Tracking the function of the cytochrome c6-like protein in higher plants. Trends Plant Sci 8: 513–517

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Yu L, Chitnis VP and Chitnis PR (1994) Function and organization of photosystem I in a cyanobacterial mutant strain that lacks PsaF and PsaJ subunits. J Biol Chem 269: 3205–3211

    PubMed  CAS  Google Scholar 

  • Xu Q, Hoppe D, Chitnis VP, Odom WR, Guikema JA and Chitnis PR (1995) Mutational analysis of Photosystem I polypeptides in the cyanobacterium Synechocystis sp. PCC 6803 –targeted inactivation of psaI reveals the function of PsaI in the structural organization of PSI. J Biol Chem 270: 16243–16250

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Jung YS, Chitnis VP, Guikema JA, Golbeck JH and Chitnis PR (1994) Mutational analysis of photosystem I polypeptides in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 269: 21512–21518

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Tsuji H and Obokata J (1993) Structure and expression of a nuclear gene for the PSI-D subunit of photosystem I in Nicotiana sylvestris. Plant Mol Biol 22: 985–994

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Smart LB, Jung YS, Golbeck J and McIntosh L (1995) Absence of PsaC subunits allows assembly of Photosystem I core but prevents the binding of PsaD and PsaE in Synechocystis sp. PCC 6803. Plant Mol Biol 29: 331–342

    Article  PubMed  CAS  Google Scholar 

  • Zanetti G and Merati G (1987) Interaction between photosystem I and ferredoxin. Identification by chemical cross-linking of the polypeptide which binds ferredoxin. Eur J Biochem 169: 143–146

    Article  PubMed  CAS  Google Scholar 

  • Zhang S and Scheller HV (2004) Light harvesting complex II binds to several small subunits of PSI. J Biol Chem 279: 3180–3187

    Article  PubMed  CAS  Google Scholar 

  • Zilber AL and Malkin R (1988) Ferredoxin cross-links to a 22-kDa subunit of photosystem I. Plant Physiol 88: 810–814

    Article  PubMed  CAS  Google Scholar 

  • Zygadlo A, Jensen PE, Leister D and Scheller HV (2005) Photosystem I lacking the PSI-G subunit has higher affinity for plastocyanin and is sensitive to photodamage. Biochim Biophys Acta 1708: 154–163

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Haldrup, A., Jensen, P.E., Scheller, H.V. (2006). The Low Molecular Mass Subunits in Higher Plant Photosystem I. In: Golbeck, J.H. (eds) Photosystem I. Advances in Photosynthesis and Respiration, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4256-0_11

Download citation

Publish with us

Policies and ethics