Skip to main content

Plastid-to-Nucleus Signaling

  • Chapter

Part of the Advances in Photosynthesis and Respiration book series (AIPH,volume 23)

The function of the eukaryotic cell depends on the regulated and reciprocal interaction between its different compartments. This includes not only the exchange of energy equivalents but also information. Most information exchange flows from the nucleus to the organelles, because the large majority of genes encoding proteins with organellar function are encoded in the nucleus.

Keywords

  • Chloroplast Development
  • Nuclear Gene Expression
  • Tetrapyrrole Biosynthesis
  • Plastid Signal
  • Photosynthetic Gene Expression

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4020-4061-0_9
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-4061-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   399.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison LA, Simon LD and Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15: 2802-2809

    PubMed  CAS  Google Scholar 

  • Aluru MR, Bae H, Wu D and Rodermel SR (2001) The Ara-bidopsis immutans mutation affects plastid differentiation and the morphogenesis of white and green sectors in variegated plants. Plant Physiol 127: 67-77

    CrossRef  PubMed  CAS  Google Scholar 

  • Bae CH, Abe T, Matsuyama T, Fukunishi N, Nagata N, Nakano T, Kaneko Y, Miyoshi K, Matsushima H and Yoshida S (2001) Regulation of chloroplast gene expression is affected in ali, a novel tobacco albino mutant. Ann Bot 88: 545-553

    CrossRef  CAS  Google Scholar 

  • Baumgartner BJ, Rapp JC and Mullet J (1989) Plastid transcrip-tion activity and DNA copy number increase early in barley chloroplast development. Plant Physiol 89: 1011-1018

    CrossRef  PubMed  CAS  Google Scholar 

  • Beale S (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60: 43-73

    CrossRef  CAS  Google Scholar 

  • Bellaoui M, Keddie JS and Gruissem W (2003) DCL is a plant-specific protein required for plastid ribosomal RNA processing and embryo development. Plant Mol Biol 53: 531-543

    CrossRef  PubMed  CAS  Google Scholar 

  • Bezhani S, Sherameti I, Pfannschmidt T and Oelmuller R (2001) A repressor with similarities to prokaryotic and eukaryotic DNA helicases controls the assembly of the CAAT box binding complex at a photosynthesis gene promoter. J Biol Chem 276: 23785-23789

    CrossRef  PubMed  CAS  Google Scholar 

  • Bolle C, Kusnetsov VV, Herrmann RG and Oelmuller R (1996) The spinach AtpC and AtpD genes contain elements for light-regulated, plastid-dependent and organ-specific expression in the vicinity of the transcription start sites. Plant J 9: 21-30

    CrossRef  PubMed  CAS  Google Scholar 

  • Bradbeer J, Atkinson Y, B örner T and Hagemann R (1979) Cy-toplasmic synthesis of plastid polypeptides may be controlled by plastid-synthesised RNA. Nature 279: 816-817

    CrossRef  CAS  Google Scholar 

  • Bruce BD (2001) The paradox of plastid transit peptides: con-servation of function despite divergence in primary structure. Biochim Biophys Acta 1541: 2-21

    CrossRef  PubMed  CAS  Google Scholar 

  • Burgess D and Taylor W (1988) The chloroplast affects the tran-scription of a nuclear gene family. Mol Gen Genet 214: 89-96

    CrossRef  CAS  Google Scholar 

  • Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G and Kuntz M (1999) Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11: 57-68

    CrossRef  PubMed  CAS  Google Scholar 

  • Chatterjee M, Sparvoli S, Edmunds C, Garosi P, Findlay K and Martin C (1996) DAG, a gene required for chloroplast dif-ferentiation and palisade development in Antirrhinum majus. EMBO J 15: 4194-4207

    PubMed  CAS  Google Scholar 

  • Chatterjee M, Martin C, Sparvoli S, Edmunds C, Garosi P and Findlay K (1997) Tam3 produces a suppressible allele of the DAG locus of Antirrhinum majus similar to Mu-suppressible alleles of maize. Plant J 11: 759-771

    CrossRef  PubMed  CAS  Google Scholar 

  • Danon A and Mayfield SP (1991) Light regulated translational activators: identification of chloroplast gene specific mRNA binding proteins. EMBO J 10: 3993-4001

    PubMed  CAS  Google Scholar 

  • DeSantis-Maciossek G, Kofer W, Bock A, Schoch S, Maier RM, Wanner G, R üdiger W, Koop HU and Herrmann RG (1999) Targeted disruption of the plastid RNA polymerase gene rpoA, B and C1: molecular biology, biochemistry and ultrastructure. Plant J 18: 477-489

    CrossRef  CAS  Google Scholar 

  • Dunford R and Walden RM (1991) Plastid genome structure and plastid-related transcript levels in albino barley plants derived from anther culture. Curr Genet 20: 339-347

    CrossRef  PubMed  CAS  Google Scholar 

  • Durnford DG and Falkowski PG (1997) Chloroplast redox regu-lation of nuclear gene transcription during photoacclimation. Photosynth Res 53: 229-241

    CrossRef  CAS  Google Scholar 

  • Escoubas JM, Lomas M, LaRoche J and Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92: 10237-10241

    CrossRef  PubMed  CAS  Google Scholar 

  • Estevez JM, Cantero A, Romero C, Kawaide H, Jimenez LF, Kuzuyama T, Seto H, Kamiya Y and Leon P (2000) Anal-ysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methyl-D-erythritol-4-phosphate pathway in Arabidopsis. Plant Physiol 124: 95-104

    CrossRef  PubMed  CAS  Google Scholar 

  • Fankhauser C and Chory J (1997) Light control of plant devel-opment. Annu Rev Cell Dev Biol 13: 203-229

    CrossRef  PubMed  CAS  Google Scholar 

  • Forsburg SL and Guarente L (1989) Communication between mi-tochondria and the nucleus in regulation of cytochrome genes in the yeast Saccharomyces cerevisiae. Annu Rev Cell Biol 5: 153-180

    CrossRef  PubMed  CAS  Google Scholar 

  • Hanaoka M, Kanamaru K, Takahashi H and Tanaka K (2003) Molecular genetic analysis of chloroplast gene promoters de-pendent on SIG2, a nucleus-encoded sigma factor for the plastid-encoded RNA polymerase, in Arabidopsis thaliana. Nucleic Acids Res 31: 7090-7098

    CrossRef  PubMed  CAS  Google Scholar 

  • Hauser CR, Gillham NW and Boynton JE (1996) Transla-tional regulation of chloroplast genes. Proteins binding to the 5’-untranslated regions of chloroplast mRNAs in Chlamy-domonas reinhardtii. J Biol Chem 271: 1486-1497

    CrossRef  PubMed  CAS  Google Scholar 

  • Hayes R, Kudla J, Schuster G, Gabay L, Maliga P and Gruis-sem W (1996) Chloroplast mRNA 3 -end processing by a high molecular weight protein complex is regulated by nuclear-encoded RNA binding proteins. EMBO J 15: 1132-1141

    PubMed  CAS  Google Scholar 

  • Hedtke B, Borner T and Weihe A (1997) Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Sci-ence 277: 809-811

    CAS  Google Scholar 

  • Hedtke B, Borner T and Weihe A (2000) One RNA polymerase serving two genomes. EMBO Rep 1: 435-440

    CrossRef  PubMed  CAS  Google Scholar 

  • Hess WR, Prombona A, Fieder B, Subramanian AR and Borner T (1993) Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome-deficient plastids: evidence for a functioning non-chloroplast-encoded RNA polymerase. EMBO J 12: 563-571

    PubMed  CAS  Google Scholar 

  • Hess WR, Muller A, Nagy F and Borner T (1994) Ribosome-deficient plastids affect transcription of light-induced nuclear genes: genetic evidence for a plastid-derived signal. Mol Gen Genet 242: 305-312

    CrossRef  PubMed  CAS  Google Scholar 

  • Hirose T and Sugiura M (1996) Cis-acting elements and trans-acting factors for accurate translation of chloroplast psbA mR-NAs: development of an in vitro translation system from to-bacco chloroplasts. EMBO J 15: 1687-1695

    PubMed  CAS  Google Scholar 

  • Huner NPA, O¨quist G and Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3: 224-230

    CrossRef  Google Scholar 

  • Jacobs J and Jacobs N (1993) Porphyrin accumulation and export by isolated barley (Hordum vulgare) plastids. Plant Physiol 101: 1181-1187

    PubMed  CAS  Google Scholar 

  • Jarvis P (2003) Intracellular signalling: the language of the chloroplast. Curr Biol 13: R314-R316

    CrossRef  PubMed  CAS  Google Scholar 

  • Jarvis P and Soll J (2002) Toc, tic, and chloroplast protein import. Biochim Biophys Acta 1590: 177-189

    CrossRef  PubMed  CAS  Google Scholar 

  • Jensen PE, Willows RD, Petersen BL, Vothknecht UC, Stum-mann BM, Kannangara CG, von Wettstein D and Henningsen KW (1996) Structural genes for Mg-chelatase subunits in bar-ley: xantha-f, -g and -h. Mol Gen Genet 250: 383-394

    PubMed  CAS  Google Scholar 

  • Johanningmeier U and Howell SH (1984) Regulation of light-harvesting chlorophyll-binding protein mRNA accumula-tion in Chlamydomonas reinhardi. Possible involvement of chlorophyll synthesis precursors. J Biol Chem 259: 13541-13549

    PubMed  CAS  Google Scholar 

  • Joyard J, Teyssier E, Mi ège C, Berny-Seigneurin D, Mar échal E, Block MA, Dorne AJ, Rolland N, Ajlani G and Douce R (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118: 715-723

    CrossRef  PubMed  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G and Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9: 627-40

    CrossRef  PubMed  CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G and Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284: 654-657

    CrossRef  PubMed  CAS  Google Scholar 

  • Keddie JS, Carol B, Jones JD and Gruissem W (1996) The DCL gene of tomato is required for chloroplast development and palisade cell morphogenesis in leaves. EMBO J 15: 4208-4217

    PubMed  CAS  Google Scholar 

  • Keegstra K and Cline K (1999) Protein import and routing sys-tems of the chloroplasts. Plant Cell 11: 557-570

    CrossRef  PubMed  CAS  Google Scholar 

  • Kittsteiner U, Brunner H and Rudiger W (1991) The green-ing process in cress sedlings. II. Complexing agents and 5-aminolevulinate inhibit accumulation of cab messenger RNA coding for the light-harvesting chlorophyll a/b protein. Physiol Plant 81: 190-196

    CrossRef  CAS  Google Scholar 

  • Kotani H and Tabata S (1998) Lessons from sequencing of the genome of a unicellular cyanobacterium, Synechocystis sp. PCC6803. Annu Rev Plant Physiol Plant Mol Biol 49: 151-171

    CrossRef  PubMed  CAS  Google Scholar 

  • Kropat J, Oster U, R üdiger W and Beck CF (1997) Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc Nat Acad Sci USA 94: 14168-14172

    CrossRef  PubMed  CAS  Google Scholar 

  • Kropat J, Oster U, R üdiger W and Beck CF (2000) Chloroplast signalling in the light induction of nuclear HSP70 genes re-quires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J 24: 523-531

    CrossRef  PubMed  CAS  Google Scholar 

  • Kusnetsov V, Bolle C, Lubberstedt T, Sopory S, Herrmann RG and Oelmuller R (1996) Evidence that the plastid signal and light operate via the same cis-acting elements in the promoters of nuclear genes for plastid proteins. Mol Gen Genet 252: 631-639

    PubMed  CAS  Google Scholar 

  • Kusumi K, Komori H, Satoh H and Iba K (2000) Characterization of a zebra mutant of rice with increased susceptibility to light stress. Plant Cell Physiol 41: 158-164

    PubMed  CAS  Google Scholar 

  • La Rocca N, Rascio N, Oster U and R üdiger W (2001) Amitrole treatment of etiolated barley seedlings leads to deregulation of tetrapyrrole synthesis and to reduced expression of Lhc and RbcS genes. Planta 213: 101-108

    CrossRef  PubMed  CAS  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR and Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299: 902-906

    CrossRef  PubMed  CAS  Google Scholar 

  • Leister D (2003) Chloroplast research in the genomic age. Trends Genet 19: 47-56

    CrossRef  PubMed  CAS  Google Scholar 

  • Leon P, Arroyo A and Mackenzie S (1998) Nuclear control of plastid and mitochondrial development in higher plants. Annu Rev Plant Physiol Plant Mol Biol 49: 453-480

    CrossRef  PubMed  CAS  Google Scholar 

  • Li H, Culligan K, Dixon RA and Chory J (1995) CUE1: a mes-ophyll cell-specific positive regulator of light-controlled gene expression in Arabidopsis. Plant Cell 7: 1599-1610

    CrossRef  PubMed  CAS  Google Scholar 

  • Long D, Martin M, Sundberg E, Swinburne J, Puangsomlee P and Coupland G (1993) The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: identification of an albino mutation induced by Ds insertion. Proc Natl Acad Sci USA 90: 10370-10374

    CrossRef  PubMed  CAS  Google Scholar 

  • Lopez-Juez E, Jarvis RP, Takeuchi A, Page AM and Chory J (1998) New Arabidopsis cue mutants suggest a close connec-tion between plastid- and phytochrome-regulation of nuclear gene expression. Plant Physiol 118: 803-815

    CrossRef  PubMed  CAS  Google Scholar 

  • Mandel MA, Feldmann KA, Herrera-Estrella L, Rocha-Sosa M and Leon P (1996) CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J 9: 649-658

    CrossRef  PubMed  CAS  Google Scholar 

  • Martinez-Zapater JM, Gil P, Capel J and Somerville CR (1992) Mutations at the Arabidopsis CHM locus promote rearrange-ments of the mitochondrial genome. Plant Cell 4: 889-899

    CrossRef  PubMed  CAS  Google Scholar 

  • Matile P, Schellenberg M and Peisker C (1992) Production and release of a chlorophyll catabolite in isolated senescent chloro-plasts. Planta 187: 230-235

    CrossRef  CAS  Google Scholar 

  • Mayfield S and Taylor W (1984) Carotenoid-deficient maize seedlings fail to accumulate light harvesting chlorophyll a/b binding protein (LHCP) mRNA. Eur J Biochem 144: 79-84

    CrossRef  PubMed  CAS  Google Scholar 

  • Mayfield S, Yohn CB, Cohen A and Danon A (1995) Regulation of chloroplast gene expression. Annu Rev Plant Physiol Plant Mol Biol 46: 147-166

    CrossRef  CAS  Google Scholar 

  • McCormac AC, Fischer A, Kumar AM, Soll D and Terry MJ (2001) Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J 25: 549-561

    CrossRef  PubMed  CAS  Google Scholar 

  • Meskauskiene R and Apel K (2002) Interaction of FLU, a nega-tive regulator of tetrapyrrole biosynthesis, with the glutamyl-tRNA reductase requires the tetratricopeptide repeat domain of FLU. FEBS Lett 532: 27-30

    CrossRef  PubMed  CAS  Google Scholar 

  • Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R and Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98: 12826-12831

    CrossRef  PubMed  CAS  Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R, Nagatani A and Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Nat Acad Sci USA 98: 2053-2058

    CrossRef  PubMed  CAS  Google Scholar 

  • Moore M, Harrison MS, Peterson EC, Henry R, Sundberg E, Slagter JG, Fridborg I, Cleary SP, Robinson C, Coupland G, Long D, Martin M, Swinburne J and Puangsomlee P (2000) Chloroplast Oxa1p homolog albino3 is required for post-translational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J Biol Chem 275: 1529-1532

    CrossRef  PubMed  CAS  Google Scholar 

  • Mullet JE (1993) Dynamic regulation of chloroplast transcrip-tion. Plant Physiol 103: 309-313

    CrossRef  PubMed  CAS  Google Scholar 

  • Mullineaux P and Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5: 43-48

    CrossRef  PubMed  CAS  Google Scholar 

  • Oelm üller R and Mohr H (1986) Photo-oxidative destruction of chloroplasts and its consequences for expression of nuclear genes. Planta 167: 106-113

    CrossRef  Google Scholar 

  • Oelm üller R, Levitan I, Bergfeld R, Rajasekhar V and Mohr H (1986) Expression of nuclear genes is affected by treatments acting on the plastids. Planta 168: 482-492

    CrossRef  Google Scholar 

  • Osterlund MT, Wei N and Deng XW (2000) The roles of pho-toreceptor systems and the COP1-targeted destabilization of HY5 in light control of Arabidopsis seedling development. Plant Physiol 124: 1520-1524

    CrossRef  PubMed  CAS  Google Scholar 

  • Oswald O, Martin T, Dominy PJ and Graham IA (2001) Plastid re-dox state and sugars: interactive regulators of nuclear-encoded photosynthetic gene expression. Proc Natl Acad Sci USA 13: 2047-2052

    CrossRef  Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photo-synthesis controls its own genes. Trends Plant Sci 8: 33-41

    CrossRef  PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Nilsson A and Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397: 625-628

    CrossRef  CAS  Google Scholar 

  • Pfannschmidt T, Schutze K, Brost M and Oelmuller R (2001) A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photo-system stoichiometry adjustment. J Biol Chem 276: 36125-36130

    CrossRef  PubMed  CAS  Google Scholar 

  • Puente P, Wei N and Deng XW (1996) Combinatorial interplay of promoter elements constitutes the minimal determinants for light and developmental control of gene expression in Arabidopsis. EMBO J 15: 3732-3743

    PubMed  CAS  Google Scholar 

  • Rapp JC and Mullet JE (1991) Chloroplast transcription is re-quired to express the nuclear genes rbcS and cab. Plastid DNA copy number is regulated independently. Plant Mol Biol 17: 813-823

    CrossRef  PubMed  CAS  Google Scholar 

  • Reiter RS, Coomber SA, Bourett TM, Bartley GE and Scolnik PA (1994) Control of leaf and chloroplast development by the Arabidopsis gene pale cress. Plant Cell 6: 1253-1264

    CrossRef  PubMed  CAS  Google Scholar 

  • Rintamaki E, Martinsuo P, Pursiheimo S and Aro EM (2000) Cooperative regulation of light-harvesting complex II phos-phorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts. Proc Natl Acad Sci USA 97: 11644-11649

    CrossRef  PubMed  CAS  Google Scholar 

  • Rodermel S and Park S (2003) Pathways of intracellular commu-nication: tetrapyrroles and plastid-to-nucleus signaling. Bioas-says 25: 631-636

    CrossRef  CAS  Google Scholar 

  • Sakamoto W, Kondo H, Murata M and Motoyoshi F (1996) Al-tered mitochondrial gene expression in a maternal distorted leaf mutant of Arabidopsis induced by chloroplast mutator. Plant Cell 8: 1377-1390

    CrossRef  PubMed  CAS  Google Scholar 

  • Strand A, Hurry V, Gustafsson P and Gardestrom P (1997) De-velopment of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohy-drates. Plant J 12: 605-614

    CrossRef  PubMed  CAS  Google Scholar 

  • Strand A, Asami T, Alonso J, Ecker JR and Chory J (2003) Chloroplast to nucleus communication triggered by accumu-lation of Mg-protoporphyrinIX. Nature 421: 79-83

    CrossRef  PubMed  CAS  Google Scholar 

  • Streatfield SJ, Weber A, Kinsman EA, Hausler RE, Li J, Post-Beittenmiller D, Kaiser WM, Pyke KA, Flugge UI and Chory J (1999) The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression. Plant Cell 11: 1609-1622

    CrossRef  PubMed  CAS  Google Scholar 

  • Sullivan JA and Gray JC (1999) Plastid translation is required for the expression of nuclear photosynthesis genes in the dark and in roots of the pea lip1 mutant. Plant Cell 11: 901-910

    CrossRef  PubMed  CAS  Google Scholar 

  • Sullivan JA and Gray JC (2000) The pea light-independent pho-tomorphogenesis1 mutant results from partial duplication of COP1 generating an internal promoter and producing two dis-tinct transcripts. Plant Cell 12: 1927-1938

    CrossRef  PubMed  CAS  Google Scholar 

  • Sullivan JA and Gray JC (2002) Multiple plastid signals regu-late the expression of the pea plastocyanin gene in pea and transgenic tobacco plants. Plant J 32: 763-774

    CrossRef  PubMed  CAS  Google Scholar 

  • Sundberg E, Slagter JG, Fridborg I, Cleary SP, Robinson C and Coupland G (1997) ALBINO3, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria. Plant Cell 9: 717-730

    CrossRef  PubMed  CAS  Google Scholar 

  • Susek RE, Ausubel FM and Chory J (1993) Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74: 787-799

    CrossRef  PubMed  CAS  Google Scholar 

  • Terry MJ and Kendrick RE (1999) Feedback inhibition of chloro-phyll synthesis in the phytochrome chromophore-deficient au-rea and yellow-green-2 mutants of tomato. Plant Physiol 119: 143-152

    CrossRef  PubMed  CAS  Google Scholar 

  • Terry MJ, Maines MD and Lagarias JC (1993) Inactivation of phytochrome- and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase. J Biol Chem 268: 26099-26106

    PubMed  CAS  Google Scholar 

  • Terzagi WB and Cashmore AR (1995) Light regulated transcrip-tion. Annu Rev Plant Physiol Plant Mol Biol 40: 211-233

    Google Scholar 

  • Thomas J and Weinstein J (1990) Measurement of heme efflux and heme content in isolated developing chloroplasts. Plant Physiol 94: 1414-1423

    CrossRef  PubMed  CAS  Google Scholar 

  • Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S and Jensen PE (2003) Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc Natl Acad Sci USA 100: 16119-16124

    CrossRef  PubMed  CAS  Google Scholar 

  • Wakasugi T, Tsudzuki T and Sugiura M (2001) The genomics of land plant chloroplasts: gene content and alterations of ge-nomic information by RNA editing. Photosynth Res 70: 107-118

    CrossRef  PubMed  CAS  Google Scholar 

  • Wetzel CM, Jiang CZ, Meehan LJ, Voytas DF and Roder-mel SR (1994) Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis. Plant J 6: 161-175

    CrossRef  PubMed  CAS  Google Scholar 

  • Wilson KE, Krol M and Huner NP (2003) Temperature-induced greening of Chlorella vulgaris. The role of the cellular en-ergy balance and zeaxanthin-dependent nonphotochemical quenching. Planta 217: 616-627

    CrossRef  PubMed  CAS  Google Scholar 

  • Wu D, Wright DA, Wetzel C, Voytas DF and Rodermel S (1999) The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11: 43-55

    CrossRef  PubMed  CAS  Google Scholar 

  • Zhang H, Scheirer DC, Fowle WH and Goodman HM (1992) Expression of antisense or sense RNA of an ankyrin repeat-containing gene blocks chloroplast differentiation in Ara-bidopsis. Plant Cell 4: 1575-1588

    CrossRef  PubMed  CAS  Google Scholar 

  • Zhang H, Wang W-Y and Goodman HM (1994) Expression of the Arabidopsis gene Akr coincides with chloroplast development. Plant Physiol 106: 1261-1267

    PubMed  CAS  Google Scholar 

  • Zhang L and Hach A (1999) Molecular mechanism of heme signaling in yeast: the transcriptional activator Hap1 serves as the key mediator. Cell Mol Life Sci 56: 415-426

    CrossRef  PubMed  CAS  Google Scholar 

  • Zubko MK and Day A (1998) Stable albinism induced without mutagenesis: a model for ribosome-free plastid inheritance. Plant J 15: 265-271

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Strand, Å., Kleine, T., Chory, J. (2007). Plastid-to-Nucleus Signaling. In: Wise, R.R., Hoober, J.K. (eds) The Structure and Function of Plastids. Advances in Photosynthesis and Respiration, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4061-0_9

Download citation