Skip to main content

Chloroplast Development: Whence and Whither

  • Chapter
The Structure and Function of Plastids

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 23))

The history of the chloroplast is a remarkable story, with an improbable beginning.Yetwere it not for the chloroplast, many forms of life would not exist and we would not have the opportunity to look back on its history. The chloroplast provides much of the nutritional base on which animals survive. Its ability to performphotosynthesis is foundational for life on the surface of the earth. Although the plastid varies dramatically in structure and function, the organelle has a monophyletic origin. Much effort has been spent on research to understand the evolution of the plastid and development of its characteristic features. The chloroplasts in green algae and plants have been studied most.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison LA (2000) The role of sigma factors in plastid transcrip-tion. Biochimie 82: 537-548

    Article  PubMed  CAS  Google Scholar 

  • Andersson MX and Stina A (2004) A chloroplast-localized vesicular transport system: a bio-informatics approach. BMC Genomics 5:40

    Article  PubMed  CAS  Google Scholar 

  • Armstrong GA, Runge S, Frick G, Sperling U and Apel K (1995) Identification of NADPH:protochlorophyllide oxi-doreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Phys-iol 108: 1505-1517

    Article  CAS  Google Scholar 

  • Arnold GL, Anbar AD, Barling J and Lyons TW (2004) Molybdenum isotope evidence for widespread anoxia in mid-proterozoic oceans. Science 304: 87-90

    Article  PubMed  CAS  Google Scholar 

  • Aseeva E, Ossenb ühl F, Eichacker LA, Wanner G, Soll J and Vothknecht U (2004) Complex formation of Vipp1 depends on its α-helical PspA-like domain. J Biol Chem 279: 35535-35541

    Article  PubMed  CAS  Google Scholar 

  • Balaban TS, Fromme P, Holzwarth AR, Krauss N and Prokhorenko VI (2002) Relevance of the diasterotopic liga-tion of magnesium atoms of chlorophylls in photosystem I. Biochim Biophys Acta 1556: 197-207

    Article  PubMed  CAS  Google Scholar 

  • Ballschmitter K, Cotton TM and Katz JJ (1969) Chlorophyll-water interactions. Hydration, dehydration and hydrates of chlorophyll. Biochim Biophys Acta 180: 347-359

    Article  Google Scholar 

  • Barber J (2003) Photosystem II: the engine of life. Quart Rev Biophys 36: 71-89

    Article  CAS  Google Scholar 

  • Bassi R, Croce R, Cugini D and Sandon à D (1999) Mutational analysis of a higher plant antenna protein provides identifi-cation of chromophores bound into multiple sites. Proc Natl Acad Sci USA 96: 10056-10061

    Article  PubMed  CAS  Google Scholar 

  • Bedbrook JR, Link G, Coen DM, Bogorad L and Rich A (1978) Maize plastid gene expressed during photoregulated develop-ment. Proc Natl Acad Sci USA 75: 3060-3064

    Article  PubMed  CAS  Google Scholar 

  • Bellafiore S, Ferris P, Naver H, G öhre V and Rochaix JD (2002) Loss of Albino3 leads to the specific depletion of the light-harvesting system. Plant Cell 14: 2303-2314

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D and Medlin L (1998) Algal phylogeny and the origin of land plants. Plant Physiol 116: 9-15

    Article  CAS  Google Scholar 

  • Bhattacharya D and Medlin LK (2004) Dating algal origin using molecular clock methods. Protist 155: 9-10

    Article  PubMed  CAS  Google Scholar 

  • Bourett TM, Czymmek KJ and Howard RJ (1999) Ultrastructure of chloroplast protuberances in rice leaves preserved by high-pressure freezing. Planta 208: 472-479

    Article  CAS  Google Scholar 

  • Castle LA and Meinke DW (1994) A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development. Plant Cell 6: 25-41

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Eggink LL, Hoober JK and Larkin AWD (2005) Influ-ence of structure on binding of chlorophylls to peptide ligands. J Am Chem Soc 127: 2052-2053

    Article  PubMed  CAS  Google Scholar 

  • Choquet Y and Vallon O (2000) Synthesis, assembly and degra-dation of thylakoid membrane proteins. Biochimie 82: 615-634

    Article  PubMed  CAS  Google Scholar 

  • Chory J (1993) A genetic model for light-regulated seedling de-velopment in Arabidopsis. Development 115: 337-354

    Google Scholar 

  • Chory J and Peto CA (1990) Mutations in the DET1gene af-fect cell-type-specific expression of light regulated genes and chloroplast development in Arabidopsis. Proc Natl Acad Sci USA 87: 8776-8780

    Article  PubMed  CAS  Google Scholar 

  • Chory J, Reinecke D, Sim S, Washburn T and Brenner M (1994) A role for cytokinins in de-etiolation in Arabidopsis. Plant Physiol 104: 339-347

    PubMed  CAS  Google Scholar 

  • Christie JM and Briggs WR (2001) Blue light sensing in higher plants. J Biol Chem 276: 11457-11460

    Article  PubMed  CAS  Google Scholar 

  • Conti M, Falini G and Samorì B (2000). How strong is the coor-dination bond between a histidine tag and Ni-nitrilotriacetate? An experiment of mechanochemistry on single molecules. Angew Chem Int Ed 39: 215-218

    Article  CAS  Google Scholar 

  • Croce R, Weiss S and Bassi R (1999) Carotenoid-binding sites of the major light-harvesting complex II of higher plants. J Biol Chem 274: 29613-29623

    Article  PubMed  CAS  Google Scholar 

  • Croce R, Canino G, Ros F and Bassi R (2002) Chromophore or-ganization in the higher-plant photosystem II antenna protein CP26. Biochemistry 41: 7334-7343

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt J and Tobin EM (1996) A DNA binding activity for one of two closely defined phytochrome regulatory elements in an Lhcb promoter is more abundant in etiolated than in green plants. Plant Cell 8: 31-41

    Article  PubMed  CAS  Google Scholar 

  • de la Luz Gutiérrez-Nava M, Gillmor CS, Jiménez LF, Guevara-Garacia A and León P (2004) CHLOROPLAST BIOGENESIS genes act cell and noncell autonomously in early chloroplast development. Plant Physiol 135: 471-482

    Article  Google Scholar 

  • Dep ège N, Bellafiore S and Rochaix JD (2003) Role of chloro-plast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299: 1572-1575

    Article  CAS  Google Scholar 

  • Dieterle M, B üche C, Sch äfer and Kretsch T (2003) Character-ization of a novel non-constitutive photomorphogenic cop1 allele. Plant Physiol 133: 1557-1564

    Article  PubMed  CAS  Google Scholar 

  • Dolganov NAM, Bhaya D and Grossman AR (1995) Cyanobac-terial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. Proc Natl Acad Sci USA 92: 636-640

    Article  PubMed  CAS  Google Scholar 

  • Dougherty RC, Strain HH, Svec WA, Uphaus RA and Katz JJ (1970) The structure, properties, and distribution of chloro-phyll c. J Am Chem Soc 92: 2826-2833

    Article  PubMed  CAS  Google Scholar 

  • Drews G (1996) Forty-five years of developmental biology of photosynthetic bacteria. Photosynth Res 48: 325-352

    Article  CAS  Google Scholar 

  • Dudev T, Cowan JA and Lim C (1999) Competitive binding in magnesium coordination chemistry: Water versus ligands of biological interest. J Am Chem Soc 121: 7665-7673

    Article  CAS  Google Scholar 

  • Dudko OK, Filippov AE, Klafter J and Urbakh M (2003) Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. Proc Natl Acad Sci USA 100: 11378-11381

    Article  PubMed  CAS  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E and Green BR (1999) A plylogenetic assessment of the eukaryotic light-harvesting proteins, with implications for plastid evolution. J Mol Evol 48: 59-68

    Article  PubMed  CAS  Google Scholar 

  • Dyall SD, Brown MT and Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304: 253-257

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt U, Grimm B and H örtensteiner S (2004) Recent ad-vances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56: 1-14

    Article  PubMed  CAS  Google Scholar 

  • Eggink LL and Hoober JK (2000) Chlorophyll binding to pep-tide maquettes containing a retention motif. J Biol Chem 275: 9087-9090

    Article  PubMed  CAS  Google Scholar 

  • Eggink LL, Park HS and Hoober JK (2001) The role of chloro-phyll b in photosynthesis: hypothesis. BMC Plant Biol 1: 2

    Article  PubMed  CAS  Google Scholar 

  • Eggink LL, LoBrutto R, Brune DC, Brusslan J, Yamasato A, Tanaka A and Hoober JK (2004) Synthesis of chlorophyll b: localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC Plant Biol 4: 5

    Article  PubMed  Google Scholar 

  • Eichacker LA, Soll J, Lauterbach P, R üdiger W, Klein RR and Mullet JE (1990) In vitro synthesis of chlorophyll A in the dark triggers accumulation of chlorophyll A apoproteins in barley etioplasts. J Biol Chem 265: 13566-13571

    PubMed  CAS  Google Scholar 

  • Eichacker LA, Helfrich M, R üdiger W and M üller B (1996) Sta-bilization of chlorophyll a-binding apoproteins P700, CP47, CP43, D2 and D1 by chlorophyll a or Zn-pheophytin a. J Biol Chem 271: 32174-32179

    Article  PubMed  CAS  Google Scholar 

  • Fankhauser C (2001) The phytochromes, a family of red/ far-red absorbing photoreceptors. J Biol Chem 276: 11453-11456

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831-1838

    Article  PubMed  CAS  Google Scholar 

  • Ferro M, Salvi D, Rivi ère-Rolland H, Vermat T, Seigneurin-Berry D, Grunwald D, Garin J, Joyard J and Rolland N (2002) Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters. Proc Natl Acad Sci USA 99: 11487-11492

    Article  PubMed  CAS  Google Scholar 

  • Fromme P, Jordan P and Krauß N (2001) Structure of photosys-tem I. Biochim Biophys Acta 1507: 5-31

    Article  PubMed  CAS  Google Scholar 

  • Fuhrbank RT (1998) C4 pathway. In: Raghavendra AS (ed) Photosynthesis: A Comprehensive Treatise, pp 123-135. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Fuhrmann M, Hausherr A, Ferbitz L, Sch ödl T, Heitzer M and Hegemann P (2004) Monitoring dynamic expression of nu-clear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol Biol 55: 869-881

    PubMed  CAS  Google Scholar 

  • Funk C and Vermaas W (1999) A cyanobacterial gene fam-ily coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 38: 9397-9404

    Article  PubMed  CAS  Google Scholar 

  • Gantt E (1981) Phycobilosomes. Annu Rev Plant Physiol 32: 327-347

    Article  CAS  Google Scholar 

  • Georgescu RE, Alexov EG and Gunner MR (2002) Combin-ing conformational flexibility and continuum electrostatics for calculating pKas in proteins. Biophys J 83: 1731-1748

    Article  PubMed  CAS  Google Scholar 

  • Goss R, Wilhelm C and Garab G (2000) Organization of the pig-ment molecules in the chlorophyll a/b/c containing alga Man-toniella squamata (Prasinophyceae) studied by means of absorption, circular and linear dichroism spectroscopy. Biochim Biophys Acta 1457: 190-199

    Article  PubMed  CAS  Google Scholar 

  • Grandbois M, Beyer M, Rief M, Clausen-Schaumann H and Gaub HE (1999) How strong is a covalent bond? Science 283: 1727-1730

    Article  PubMed  CAS  Google Scholar 

  • Grossman AR, Bhaya D and He Q (2001) Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J Biol Chem 276: 11449-11452

    Article  PubMed  CAS  Google Scholar 

  • Grubm üller H, Heymann B and Tavan P (1996) Ligand binding: molecular mechanics calculation of the strepavidin-biotin rup-ture force. Science 271: 997-999

    Article  Google Scholar 

  • Gunner MR, Saleh MA, Cross E, ud-Doula A and Wise M (2000) Backbone dipoles generate positive potentials in all proteins: origins and implications of the effect. Biophys J 78: 1126-1144

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Barber J and Boekema EJ (1997) Structure and membrane organization of photosystem II in green plants. Annu Rev Plant Physiol Plant Mol Biol 48: 641-671

    Article  PubMed  CAS  Google Scholar 

  • Harris EH, Boynton JE and Gillham NW (1994) Chloroplast ribosomes and protein synthesis. Microbiol Rev 58: 700-754

    PubMed  CAS  Google Scholar 

  • He J-X, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ and Wang Z-Y (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth re-sponses. Science 307: 1634-1638

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB, Chen H, Kumar S, Wang DY-C, Thompson AS and Watanabe H (2001) A genomic timescale for the origin of eukaryotes. BMC Evol Biol 1:4

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB, Blair JE, Venturi ML and Shoe JL (2004) A molec-ular timescale of eukaryotic evolution and the rise of complex multicellular life. BMC Evol Biol 4:2

    Article  PubMed  Google Scholar 

  • Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J and Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: insights through comparative genomics. Photosynth Res 70: 53-71

    Article  PubMed  CAS  Google Scholar 

  • Hobe S, Fey H, Rogl H and Paulsen H (2003) Determination of relative chlorophyll binding affinities in the major light-harvesting chlorophyll a/b complex. J Biol Chem 278: 5912-5919

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK (1987) The molecular basis of chloroplast devel-opment. In: Hatch MD and Boardman NK (eds.) The Bio-chemistry of Plants, Vol. 10, pp 1-74 Academic Press, San Diego

    Google Scholar 

  • Hoober JK and Arygroudi-Akoyunoglou JH (2004) Assem-bly of light-harvesting complexes of photosystem II and the role of chlorophyll b. In: Papageorgiou G and Govindjee (eds.) Chlorophyll a Fluorescence: The Signature of Photosyn-thetic Efficienchy and Green Plant Productivity, pp 679-712. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Hoober JK and Blobel G (1969) Characterization of the chloro-plastic and cytoplasmic ribosomes of Chlamydomonas rein-hardi. J Mol Biol 41: 121-138

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK and Eggink LL (1999) Assembly of light-harvesting complex II and biogenesis of thylakoid membranes in chloro-plasts. Photosynth Res 61: 197-215

    Article  CAS  Google Scholar 

  • Hoober JK, Marks DB, Keller BJ and Margulies MM (1982) Regulation of accumulation of the major thylakoid polypep-tides in Chlamydomonas reinhardtii y-1 at 25â—¦C and 38â—¦C. J Cell Biol 95: 552-558

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK, Boyd CO and Paavola LG (1991) Origin of thylakoid membranes in Chlamydomonas reinhardtii y-1 at 38â—¦C. Plant Physiol 96: 1321-1328

    Article  PubMed  Google Scholar 

  • Horn R and Paulsen H (2004) Early steps in the assembly of light-harvesting chlorophyll a/b complex-time-resolved fluo-rescence measurements. J Biol Chem 279: 44400-44406

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Ayliffe MA and Timmis JN (2003) Direct measure-ment of the transfer rate of chloroplast DNA into the nucleus. Nature 422: 72-76

    Article  PubMed  CAS  Google Scholar 

  • Hutin C, Havaux M, Carde JP, Kloppstech K, Meiherhoff K, Hoffman N and Nussaume L (2002) Double mutation cpSRP43− /cpSRP54− is necessary to abolish the cpSRP path-way required for thylakoid targeting of the light-harvesting chlorophyll proteins. Plant J 29: 531-543

    Article  PubMed  CAS  Google Scholar 

  • Ishikita H, Loll B, Biesiadka J, Saenger W and Knapp E-W (2005) Redox potentials of chlorophylls in the photosystem II reaction center. Biochemistry 44: 4118-4124

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial pho-tosystem I at 2.5 AËš resolution. Nature 411: 909-917

    Article  PubMed  CAS  Google Scholar 

  • Joyard J, Teyssier E, Mi ège C, Berny-Seigneurin D, Mar échal E, Block MA, Dorne A-J, Rolland N, Ajlani G and Douce R (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118: 715-723

    Article  PubMed  CAS  Google Scholar 

  • Kargul J, Nield J and Barber J (2003) Three-dimensional re-construction of a light-harvesting complex I-photosystem I (LHCI-PSI) supercomplex from the green algal Chlamy-domonas reinhardtii. J Biol Chem 278: 16135-16141

    Article  PubMed  CAS  Google Scholar 

  • Kenigsbuch DE and Tobin EM (1995) A region of the Arabidop-sis Lhcb1*3 promoter that binds to CA-1 activity is essential for high expression and phytochrome regulation. Plant Physiol 108: 1023-1027

    Article  PubMed  CAS  Google Scholar 

  • Klinkert B, Ossenb ühl F, Sikorski M, Berry S, Eichacker L and Nickelsen J (2004) PratA, a periplasmic tetratricopeptide re-peat protein involved in biogenesis of photosystem II in Syne-chocystis sp. PCC 6803. J Biol Chem 279: 44639-44644

    Article  PubMed  CAS  Google Scholar 

  • Kohorn BD (1990) Replacement of histidines of light harvesting chlorophyll a/b binding protein II disrupts chlorophyll-protein complex assembly. Plant Physiol 93: 339-342

    Article  PubMed  CAS  Google Scholar 

  • Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J and Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci USA 98: 4238-4242

    Article  PubMed  CAS  Google Scholar 

  • Ku MSB, Kano-Murakami Y and Matsuoka M (1996) Evolution and expression of C4 photosynthesis genes. Plant Physiol 111: 949-957

    Article  PubMed  CAS  Google Scholar 

  • Kugrens P, Clay BL, Meyer DJ and Lee RE (1999) Ultrastructure and description of Cyanophora biloba, sp. nov., with additional observations on C. paradoxa (Glaucophyta). J Phycol 35: 844-854

    Article  Google Scholar 

  • K ühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614-621

    Article  Google Scholar 

  • Kurisu G, Zhang H, Smith JL and Cramer WA (2003) Structure of the cytochrome b6 f complex of oxygenic photosynthesis: tuning the cavity. Science 302: 1009-1014

    Article  PubMed  CAS  Google Scholar 

  • Kwok SF, Piekos B, Mis éra S and Deng X-W (1996) A complement of ten essential and pleiotropic Arabidopsis COP/DET/FUS genes is necessary for repression of photo-morphogenesis in darkness. Plant Physiol 110: 731-742

    Article  PubMed  CAS  Google Scholar 

  • Larkum T and Howe CJ (1997) Molecular aspects of light-harvesting processes in algae. Adv Bot Res 27: 257-330

    Article  CAS  Google Scholar 

  • Liere K, Kaden D, Maliga P and B örner T (2004) Overexpression of phage-type RNA polymerase RpoTp in tobacco demon-strates its role in chloroplast transcription by recognizing a distinct promoter type. Nucleic Acids Res 32: 1159-1165

    Article  PubMed  CAS  Google Scholar 

  • Lindsten A, Ryberg M and Sundqvist C (1988) The polypeptide composition of highly purified prolamellar bodies and prothy-lakoids from wheat (Triticum aestivum) as revealed by silver staining. Physiol Plant 72: 167-176

    Article  CAS  Google Scholar 

  • Liscum E, Hodgson DW and Campbell (2003) Blue light sig-naling through the cryptochromes and phototropins. So that’s what the blues is all about. Plant Physiol 133: 1429-1436

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 AËš resolution. Nature 428: 287-292

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (1998) Two plastid RNA polymerases of higher plants: an evolving story. Trends Plant Sci 3: 4-6

    Article  Google Scholar 

  • Maloney MA, Hoober JK and Marks DB (1989) Kinetics of chlorophyll accumulation and formation of chlorophyll-protein complexes during greening of Chlamydomonas rein-hardtii y-1 at 38â—¦C. Plant Physiol 91: 1100-1106

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M and Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393: 162-165

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M and Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroploast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246-12251

    Article  PubMed  CAS  Google Scholar 

  • Maxwell BB, Andersson CR, Poole DS, Kay SA and Chory J (2003) HY5, Circadian Clock-Associated 1, and a cis-element, DET1 dark response element, mediate DET1 regulation of Chlorophyll a/b-binding protein 2 expression. Plant Physiol 133: 1565-1577

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37: 951-959

    Article  Google Scholar 

  • McFadden GI and van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14: R15-R16

    Article  CAS  Google Scholar 

  • Merkel R, Nassoy P, Leung A, Ritchie K and Evans E (1999) Energy landscape of receptor-ligand bonds explored with dy-namic force spectroscopy. Nature 397: 50-53

    Article  PubMed  CAS  Google Scholar 

  • M ühlbauer SK and Eichacker LA (1998) Light-dependent for-mation of the photosynthetic proton gradient regulates trans-lation elongation in chloroplasts. J Biol Chem 273: 20935-20940

    Article  Google Scholar 

  • Mullet JE (1988) Chloroplast development and gene expres-sion. Annu Rev Plant Physiol Plant Mol Biol 39: 475-502

    Article  CAS  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K-I, Endo T, Tasaka M and Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429: 579-582

    Article  PubMed  CAS  Google Scholar 

  • Must árdy L and Garab G (2003) Granum revisited. A three-dimensional model-where things fall into place. Trends Plant Sci 8: 117-122

    Article  CAS  Google Scholar 

  • Nagy F and Sch äfer E (2002) Phytochromes control photomor-phogenesis by differentially regulated, integrated signaling pathways in higher plants. Annu Rev Plant Biol 53: 329-355

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S and Chory J (1999) BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA 96: 15316-15323

    Article  PubMed  CAS  Google Scholar 

  • Nemhauser JL and Chory J (2004) Bring it on: new insights into the mechanism of brassinosteroid action. J Exp Bot 395: 265-270

    Google Scholar 

  • Nemhauser JL, Maloof JN and Chory J (2003) Building inte-grated models of plant growth and development. Plant Physiol 132: 436-439

    Article  PubMed  CAS  Google Scholar 

  • Nield J, Orlova EV, Morris EP, Gowen B, van Heel M and Barber J (2000) 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle anal-ysis. Nature Struct Biol 7: 44-47

    Article  PubMed  CAS  Google Scholar 

  • Nisbet RER, Kilian O and McFadden GI (2004) Diatom ge-nomics: genetic acquisitions and mergers. Curr Biol 14: R1048-R1050

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa N and Mori S (1989) Ultrastructure of the thylakoid membrane in tomato leaf chloroplast revealed by liquid he-lium rapid-freezing and substitution-fixation method. Plant Cell Physiol 30: 1-7

    Google Scholar 

  • Noy D, Yerushalmi R, Brumfeld V, Ashur I, Scheer H, Baldridge KK and Scherz A (2000) Optical absorption and computa-tional studies of [Ni]-bacteriochlorophyll-a. New insight into charge distribution between metal and ligands. J Am Chem Soc 122: 3937-3944

    Article  CAS  Google Scholar 

  • Oba T and Tamiaki H (2002) Which side of the Ï€ -macrocycle plane of (bacterio)chlorophylls is favored for binding of the fifth ligand? Photosynth Res 74: 1-10

    Article  PubMed  CAS  Google Scholar 

  • Ohad I, Siekevitz P and Palade GE (1965) Biogenesis of chloro-plast membranes. II. Plastid differentiation during greening of a dark-grown algal mutant (Chlamydomonas reinhardtii). J Cell Biol 35: 553-584

    Article  Google Scholar 

  • Oster U, Tanaka R, Tanaka A and R üdiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21: 305-310

    Article  PubMed  CAS  Google Scholar 

  • Osterlund MT, Hardtke CS, Wei N and Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405: 462-466

    Article  PubMed  CAS  Google Scholar 

  • Osteryoung KW and Nunnari J (2003) The division of endosym-biotic organelles. Science 302: 1698-1704

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD (2000) A single birth of all plastids? Nature 405: 32-33

    Article  PubMed  CAS  Google Scholar 

  • Park H and Hoober JK (1997) Chlorophyll synthesis modulates retention of apoproteins of light-harvesting complex II by the chloroplast in Chlamydomonas reinhardtii. Physiol Plant 101: 135-142

    Article  CAS  Google Scholar 

  • Park H, Eggink LL, Roberson RW and Hoober JK (1999) Trans-fer of proteins from the chloroplast to vacuoles in Chlamy-domonas reinhardtii (Chlorophyta): a pathway for degrada-tion. J Phycol 35: 528-538

    Article  CAS  Google Scholar 

  • Park H, Kreunen SS, Cuttriss AJ, DellaPenna D and Pogson BJ (2002) Identification of the carotenoid isomerase provides in-sight into carotenoid biosynthesis, prolamellar body forma-tion, and photomorphogenesis. Plant Cell 14: 321-332

    Article  PubMed  CAS  Google Scholar 

  • Pascal A, Caffarri S, Croce R, Sandon à D, Bassi R and Robert B (2002) A structural investigation of the central chlorophyll a binding sites in the minor photosystem II antenna protein, Lhcb4. Biochemistry 41: 2305-2310

    Article  CAS  Google Scholar 

  • Pattanayak GK and Tripathy BC (2002) Catalytic function of a novel protein protochlorophyllide oxidoreductase C of Ara-bidopsis thaliana. Biochem Biophys Res Commun 291: 921-924

    Article  PubMed  CAS  Google Scholar 

  • Pflanzagl B, Zenker A, Pittenauer E, Allmaier G, Martinez-Torrecuadrada J, Schmid ER, De Pedro MA and L öffelhardt W (1996) Primary structure of cyanelle peptidoglycan of Canophora paradeoxa: a prokaryotic cell wall as part of an organelle envelope. J Bacteriol 178: 332-339

    Google Scholar 

  • Pyke KA and Leech RM (1992) Chloroplast division and expan-sion is radically altered by nuclear mutations in Arabidopsis thaliana. Plant Physiol 99: 1005-1008

    Article  PubMed  CAS  Google Scholar 

  • Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA and Lavergne J (2002) Kinetics and pathways of charge recom-bination in photosystem II. Biochemistry 41: 8518-8527

    Article  PubMed  CAS  Google Scholar 

  • Raven JA and Allen JF (2003) Genomics and chloroplast evolu-tion: what did cyanobacteria do for plants? Genome Biology 4: 209.

    Article  PubMed  Google Scholar 

  • Reinbothe S and Reinbothe C (1996) The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem 237: 323-343

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe C, Apel K and Reinbothe S (1995) A light-induced protease from barley plastids degrades NADPH: protochloro-phyllide oxidoreductase complexed with chlorophyllide. Mol Cell Biol 15: 6206-6212

    PubMed  CAS  Google Scholar 

  • Reinbothe C, Buhr F, Pollmann S and Reinbothe S (2003) In vitro reconstitution of light-harvesting POR-protochlorophyllide complex with protochlorophyllides a and b. J Biol Chem 278: 807-815

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe C, Pollmann S, Desvignes C, Weigele M, Beck E and Reinbothe S (2004) LHPP, the light-harvesting NADPH: pro-tochlorophyllide (Pchlide) oxidoreductase: Pchlide complex of etiolated plants, is developmentally expressed across the barley leaf gradient. Plant Sci 167: 1027-1041

    Article  CAS  Google Scholar 

  • Reinbothe S, Quigley F, Gray J, Schemenewitz A and Reinbothe C (2004) Identification of plastid envelope proteins required for import of protochlorophyllide oxidoreductase A into the chloroplast of barley. Proc Natl Acad Sci USA 101: 2197-2202

    Article  PubMed  CAS  Google Scholar 

  • Remelli R, Varotto C, Sandonà D. Croce R and Bassi R (1999) Chlorophyll binding to monomeric light-harvesting complex: a mutational analysis of chromophore-binding residues. J Biol Chem 274: 33510-33521

    Article  PubMed  CAS  Google Scholar 

  • Richly E and Leister D (2004) NUPTs in sequenced eukaryotes and their genomic organization in relation to NUMTs. Mol Biol Evol 21: 1972-1980

    Article  PubMed  CAS  Google Scholar 

  • Robertson EJ, Pyke KA and Leech RM (1995) arc6, an extreme chloroplast division mutant of Arabidopsis also alters proplas-tid proliferation and morphology in shoot and root apices. J Cell Sci 108: 2937-2944

    PubMed  CAS  Google Scholar 

  • Rogl H and K ühlbrandt W (1999) Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry 38: 16214-16222

    Article  PubMed  CAS  Google Scholar 

  • Ryberg M and Sundqvist C (1988) The regular ultrastructure of isolated prolamellar bodies depends on the presence of membrane-bound NADPH-protochlorophyllide oxidoreduc-tase. Physiol Plant 73: 218-226

    Article  CAS  Google Scholar 

  • Sacksteder CA, Kanazawa A, Jacoby ME and Kramer DM (2000) The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q cycle is continuously engaged. Proc Natl Acad Sci USA 97: 14283-14288

    Article  PubMed  CAS  Google Scholar 

  • Schmid VHR, Potthast S, Wiener M, Bergauer V, Paulsen H and Storf S (2002) Pigment binding of photosystem I light-harvesting proteins. J Biol Chem 277: 37307-37314

    Article  PubMed  CAS  Google Scholar 

  • Sch ünemann D (2003) Structure and function of the chloroplast signal recognition particle. Curr Genet 44: 295-304

    Article  CAS  Google Scholar 

  • Selstam E and Sandelius AS (1984) A comparison between pro-lamellar bodies and prothylakoid membranes of etioplasts of dark-grown wheat concerning lipoid and polypeptide compo-sition. Plant Physiol 76: 1036-1040

    Article  PubMed  CAS  Google Scholar 

  • Serino G and X-W Deng (2003) The COP9 signalosome: reg-ulating plant development through the control of proteolysis. Annu Rev Plant Biol 54: 165-182

    Article  PubMed  CAS  Google Scholar 

  • Skulason H and Frisbie CD (2002) Direct detection by atomic force microscopy of single bond forces associated with the rupture of discrete charge-transfer complexes. J Am Chem Soc 124: 15125-15133

    Article  PubMed  CAS  Google Scholar 

  • Sluiman HJ and Lokhorst GM (1988) The ultrastructure of cel-lular division (autosporogenesis) in the coccoid green alga, Trebouxia aggregate, revealed by rapid freeze fixation and freeze substitution. Protoplasma 144: 149-159

    Article  Google Scholar 

  • Soll J and Schleiff E (2004) Protein import into chloroplasts. Nature Rev Mol Cell Biol 5: 198-208

    Article  CAS  Google Scholar 

  • Staehelin LA (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid mem-branes. Photosynth Res 76: 185-196

    Article  PubMed  CAS  Google Scholar 

  • Stegemann S, Hartmann S, Ruf S and Bock B (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100, 8828-8833

    Article  PubMed  CAS  Google Scholar 

  • Stoebe B and Maier UG (2002) One, two, three: nature’s tool box for building plastids. Protoplasma 219: 123-130

    Article  PubMed  Google Scholar 

  • Stroebel D, Choquet Y, Popot J-L and Picot D (2003) An atyp-ical haem in the cytochrome b6 f complex. Nature 426: 413-418

    Article  PubMed  CAS  Google Scholar 

  • Su Q, Frick G, Armstrong G and Apel K (2001) POR C of Ara-bidopsis thaliana: a third light- and NADPH-dependent pro-tochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47: 805-813

    Article  PubMed  CAS  Google Scholar 

  • Tan S and Troxler RF (1999) Characterization of two chloroplast RNA polymerase sigma factors from Zea mays: photoregulation and differential expression. Proc Natl Acad Sci USA 96: 5316-5321

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka N, Yoshida K and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chloro-phyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95: 12719-12723

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-813

    Article  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY and Martin W (2004) En-dosymbiotic gene transfer: organelle genomes forge eukary-otic chromosomes. Nature Rev Genet 5: 123-135

    Article  PubMed  CAS  Google Scholar 

  • Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400: 159-162

    Article  PubMed  CAS  Google Scholar 

  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Denzel MA, Torres QI and Neff MM (2003) CYP72B1 inacti-vates brassinosteroid hormones: an intersection between pho-tomorphogenesis and plant steroid signal transduction. Plant Physiol 133: 1643-1653

    Article  PubMed  CAS  Google Scholar 

  • van der Vegte EW and Hadziioannou G (1997) Scanning force microscopy with chemical specificity: an extensive study of chemically specific tip-surface interactions and the chemical imaging of surface functional groups. Langmuir 13: 4357-4368

    Article  CAS  Google Scholar 

  • Vavilin DV and Vermaas WFJ (2002) Regulation of the tetrapyr-role biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria. Physiol Plant 115: 9-24

    Article  PubMed  CAS  Google Scholar 

  • von Wettstein D (2001) Discovery of a protein required for pho-tosynthetic membrane assembly. Proc Natl Acad Sci USA 98: 3633-3635

    Article  PubMed  CAS  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Pyankov VI and Edwards GE (1999) Anatomy, chloroplast structure and compartmentation of enzymes relative to photosynthetic mechanisms in leaves and cotyledons of species in the tribe Salsoleae (Chenopodi-aceae). J Exp Bot 50: 1779-1795

    Article  CAS  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Artyusheva EG, Freitag H and Edwards GE (2002) Proof of C4 photo-synthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J 31: 649-662

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ma, L-G, Li, J-M, Zhao H-Y and Deng XW (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294: 154-158

    Article  PubMed  CAS  Google Scholar 

  • Wang Z-Y and He J-X (2004) Brassinosteroid signal transduction-choices of signals and receptors. Trends Plant Sci 9: 91-96

    Article  PubMed  CAS  Google Scholar 

  • Wang Z-Y and Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93: 1207-1217

    Article  PubMed  CAS  Google Scholar 

  • Wei N and Deng X-W (1996) The role of the COP/DET/FUS genes in light control of Arabidopsis seedling development. Plant Physiol 112: 871-878

    Article  PubMed  CAS  Google Scholar 

  • Westphal S, Soll J and Vothknecht UC (2001) A vesicle transport system inside of chloroplasts. FEBS Lett 506: 257-261

    Article  PubMed  CAS  Google Scholar 

  • Westphal S, Soll J and Vothknecht UC (2003) Evolution of chloroplast vesicle transport. Plant Cell Physiol 44: 217-222

    Article  PubMed  CAS  Google Scholar 

  • White RA and Hoober JK (1994) Biogenesis of thylakoid mem-branes in Chlamydomonas reinhardtii y1: a kinetic study of initial greening. Plant Physiol 106: 583-590

    Article  PubMed  CAS  Google Scholar 

  • White RA, Wolfe GR, Komine Y and Hoober JK (1996) Localization of light-harvesting complex apoproteins in the chloroplast and cytoplasm during greening of Chlamy-domonas reinhardtii at 38â—¦C. Photosynth Res 47: 267-280

    Article  CAS  Google Scholar 

  • Wolfe GR, Cunningham FX Jr, Durnford D, Green BR and Gantt E (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367: 566-568

    Article  CAS  Google Scholar 

  • Xiong J and Bauer CE (2002) A cytochrome b origin of photosynthetic reaction centers: an evolutionary link be-tween respiration and photosynthesis. J Mol Biol 322: 1025-1037

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724-1730

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Pinto G and Bhattacharya D (2002) The single, ancient origin of chromist plastids. Proc Natl Acad Sci USA 99: 15507-15512

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G and Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21: 809-818

    Article  PubMed  CAS  Google Scholar 

  • Zak E, Norling B, Maitra R, Huang F, Andersson B and Pakrasi HB (2001) The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci USA 98: 13443-13448

    Article  PubMed  CAS  Google Scholar 

  • Zerges W (2000) Translation in chloroplasts. Biochimie 82: 583-601

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of photosystem II from Syne-chococcus elongatus at 3.8AËš resolution. Nature 409: 739-743

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hoober, J.K. (2007). Chloroplast Development: Whence and Whither. In: Wise, R.R., Hoober, J.K. (eds) The Structure and Function of Plastids. Advances in Photosynthesis and Respiration, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4061-0_2

Download citation

Publish with us

Policies and ethics