Chloroplast Development: Whence and Whither

  • J. Kenneth Hoober
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 23)

The history of the chloroplast is a remarkable story, with an improbable beginning.Yetwere it not for the chloroplast, many forms of life would not exist and we would not have the opportunity to look back on its history. The chloroplast provides much of the nutritional base on which animals survive. Its ability to performphotosynthesis is foundational for life on the surface of the earth. Although the plastid varies dramatically in structure and function, the organelle has a monophyletic origin. Much effort has been spent on research to understand the evolution of the plastid and development of its characteristic features. The chloroplasts in green algae and plants have been studied most.


Thylakoid Membrane Plastid Genome Chloroplast Development Envelope Membrane Bundle Sheath Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison LA (2000) The role of sigma factors in plastid transcrip-tion. Biochimie 82: 537-548PubMedCrossRefGoogle Scholar
  2. Andersson MX and Stina A (2004) A chloroplast-localized vesicular transport system: a bio-informatics approach. BMC Genomics 5:40PubMedCrossRefGoogle Scholar
  3. Armstrong GA, Runge S, Frick G, Sperling U and Apel K (1995) Identification of NADPH:protochlorophyllide oxi-doreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Phys-iol 108: 1505-1517CrossRefGoogle Scholar
  4. Arnold GL, Anbar AD, Barling J and Lyons TW (2004) Molybdenum isotope evidence for widespread anoxia in mid-proterozoic oceans. Science 304: 87-90PubMedCrossRefGoogle Scholar
  5. Aseeva E, Ossenb ühl F, Eichacker LA, Wanner G, Soll J and Vothknecht U (2004) Complex formation of Vipp1 depends on its α-helical PspA-like domain. J Biol Chem 279: 35535-35541PubMedCrossRefGoogle Scholar
  6. Balaban TS, Fromme P, Holzwarth AR, Krauss N and Prokhorenko VI (2002) Relevance of the diasterotopic liga-tion of magnesium atoms of chlorophylls in photosystem I. Biochim Biophys Acta 1556: 197-207PubMedCrossRefGoogle Scholar
  7. Ballschmitter K, Cotton TM and Katz JJ (1969) Chlorophyll-water interactions. Hydration, dehydration and hydrates of chlorophyll. Biochim Biophys Acta 180: 347-359CrossRefGoogle Scholar
  8. Barber J (2003) Photosystem II: the engine of life. Quart Rev Biophys 36: 71-89CrossRefGoogle Scholar
  9. Bassi R, Croce R, Cugini D and Sandon à D (1999) Mutational analysis of a higher plant antenna protein provides identifi-cation of chromophores bound into multiple sites. Proc Natl Acad Sci USA 96: 10056-10061PubMedCrossRefGoogle Scholar
  10. Bedbrook JR, Link G, Coen DM, Bogorad L and Rich A (1978) Maize plastid gene expressed during photoregulated develop-ment. Proc Natl Acad Sci USA 75: 3060-3064PubMedCrossRefGoogle Scholar
  11. Bellafiore S, Ferris P, Naver H, G öhre V and Rochaix JD (2002) Loss of Albino3 leads to the specific depletion of the light-harvesting system. Plant Cell 14: 2303-2314PubMedCrossRefGoogle Scholar
  12. Bhattacharya D and Medlin L (1998) Algal phylogeny and the origin of land plants. Plant Physiol 116: 9-15CrossRefGoogle Scholar
  13. Bhattacharya D and Medlin LK (2004) Dating algal origin using molecular clock methods. Protist 155: 9-10PubMedCrossRefGoogle Scholar
  14. Bourett TM, Czymmek KJ and Howard RJ (1999) Ultrastructure of chloroplast protuberances in rice leaves preserved by high-pressure freezing. Planta 208: 472-479CrossRefGoogle Scholar
  15. Castle LA and Meinke DW (1994) A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development. Plant Cell 6: 25-41PubMedCrossRefGoogle Scholar
  16. Chen M, Eggink LL, Hoober JK and Larkin AWD (2005) Influ-ence of structure on binding of chlorophylls to peptide ligands. J Am Chem Soc 127: 2052-2053PubMedCrossRefGoogle Scholar
  17. Choquet Y and Vallon O (2000) Synthesis, assembly and degra-dation of thylakoid membrane proteins. Biochimie 82: 615-634PubMedCrossRefGoogle Scholar
  18. Chory J (1993) A genetic model for light-regulated seedling de-velopment in Arabidopsis. Development 115: 337-354Google Scholar
  19. Chory J and Peto CA (1990) Mutations in the DET1gene af-fect cell-type-specific expression of light regulated genes and chloroplast development in Arabidopsis. Proc Natl Acad Sci USA 87: 8776-8780PubMedCrossRefGoogle Scholar
  20. Chory J, Reinecke D, Sim S, Washburn T and Brenner M (1994) A role for cytokinins in de-etiolation in Arabidopsis. Plant Physiol 104: 339-347PubMedGoogle Scholar
  21. Christie JM and Briggs WR (2001) Blue light sensing in higher plants. J Biol Chem 276: 11457-11460PubMedCrossRefGoogle Scholar
  22. Conti M, Falini G and Samorì B (2000). How strong is the coor-dination bond between a histidine tag and Ni-nitrilotriacetate? An experiment of mechanochemistry on single molecules. Angew Chem Int Ed 39: 215-218CrossRefGoogle Scholar
  23. Croce R, Weiss S and Bassi R (1999) Carotenoid-binding sites of the major light-harvesting complex II of higher plants. J Biol Chem 274: 29613-29623PubMedCrossRefGoogle Scholar
  24. Croce R, Canino G, Ros F and Bassi R (2002) Chromophore or-ganization in the higher-plant photosystem II antenna protein CP26. Biochemistry 41: 7334-7343PubMedCrossRefGoogle Scholar
  25. Degenhardt J and Tobin EM (1996) A DNA binding activity for one of two closely defined phytochrome regulatory elements in an Lhcb promoter is more abundant in etiolated than in green plants. Plant Cell 8: 31-41PubMedCrossRefGoogle Scholar
  26. de la Luz Gutiérrez-Nava M, Gillmor CS, Jiménez LF, Guevara-Garacia A and León P (2004) CHLOROPLAST BIOGENESIS genes act cell and noncell autonomously in early chloroplast development. Plant Physiol 135: 471-482CrossRefGoogle Scholar
  27. Dep ège N, Bellafiore S and Rochaix JD (2003) Role of chloro-plast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299: 1572-1575CrossRefGoogle Scholar
  28. Dieterle M, B üche C, Sch äfer and Kretsch T (2003) Character-ization of a novel non-constitutive photomorphogenic cop1 allele. Plant Physiol 133: 1557-1564PubMedCrossRefGoogle Scholar
  29. Dolganov NAM, Bhaya D and Grossman AR (1995) Cyanobac-terial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. Proc Natl Acad Sci USA 92: 636-640PubMedCrossRefGoogle Scholar
  30. Dougherty RC, Strain HH, Svec WA, Uphaus RA and Katz JJ (1970) The structure, properties, and distribution of chloro-phyll c. J Am Chem Soc 92: 2826-2833PubMedCrossRefGoogle Scholar
  31. Drews G (1996) Forty-five years of developmental biology of photosynthetic bacteria. Photosynth Res 48: 325-352CrossRefGoogle Scholar
  32. Dudev T, Cowan JA and Lim C (1999) Competitive binding in magnesium coordination chemistry: Water versus ligands of biological interest. J Am Chem Soc 121: 7665-7673CrossRefGoogle Scholar
  33. Dudko OK, Filippov AE, Klafter J and Urbakh M (2003) Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. Proc Natl Acad Sci USA 100: 11378-11381PubMedCrossRefGoogle Scholar
  34. Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E and Green BR (1999) A plylogenetic assessment of the eukaryotic light-harvesting proteins, with implications for plastid evolution. J Mol Evol 48: 59-68PubMedCrossRefGoogle Scholar
  35. Dyall SD, Brown MT and Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304: 253-257PubMedCrossRefGoogle Scholar
  36. Eckhardt U, Grimm B and H örtensteiner S (2004) Recent ad-vances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56: 1-14PubMedCrossRefGoogle Scholar
  37. Eggink LL and Hoober JK (2000) Chlorophyll binding to pep-tide maquettes containing a retention motif. J Biol Chem 275: 9087-9090PubMedCrossRefGoogle Scholar
  38. Eggink LL, Park HS and Hoober JK (2001) The role of chloro-phyll b in photosynthesis: hypothesis. BMC Plant Biol 1: 2PubMedCrossRefGoogle Scholar
  39. Eggink LL, LoBrutto R, Brune DC, Brusslan J, Yamasato A, Tanaka A and Hoober JK (2004) Synthesis of chlorophyll b: localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC Plant Biol 4: 5PubMedCrossRefGoogle Scholar
  40. Eichacker LA, Soll J, Lauterbach P, R üdiger W, Klein RR and Mullet JE (1990) In vitro synthesis of chlorophyll A in the dark triggers accumulation of chlorophyll A apoproteins in barley etioplasts. J Biol Chem 265: 13566-13571PubMedGoogle Scholar
  41. Eichacker LA, Helfrich M, R üdiger W and M üller B (1996) Sta-bilization of chlorophyll a-binding apoproteins P700, CP47, CP43, D2 and D1 by chlorophyll a or Zn-pheophytin a. J Biol Chem 271: 32174-32179PubMedCrossRefGoogle Scholar
  42. Fankhauser C (2001) The phytochromes, a family of red/ far-red absorbing photoreceptors. J Biol Chem 276: 11453-11456PubMedCrossRefGoogle Scholar
  43. Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831-1838PubMedCrossRefGoogle Scholar
  44. Ferro M, Salvi D, Rivi ère-Rolland H, Vermat T, Seigneurin-Berry D, Grunwald D, Garin J, Joyard J and Rolland N (2002) Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters. Proc Natl Acad Sci USA 99: 11487-11492PubMedCrossRefGoogle Scholar
  45. Fromme P, Jordan P and Krauß N (2001) Structure of photosys-tem I. Biochim Biophys Acta 1507: 5-31PubMedCrossRefGoogle Scholar
  46. Fuhrbank RT (1998) C4 pathway. In: Raghavendra AS (ed) Photosynthesis: A Comprehensive Treatise, pp 123-135. Cambridge University Press, Cambridge, UKGoogle Scholar
  47. Fuhrmann M, Hausherr A, Ferbitz L, Sch ödl T, Heitzer M and Hegemann P (2004) Monitoring dynamic expression of nu-clear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol Biol 55: 869-881PubMedGoogle Scholar
  48. Funk C and Vermaas W (1999) A cyanobacterial gene fam-ily coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 38: 9397-9404PubMedCrossRefGoogle Scholar
  49. Gantt E (1981) Phycobilosomes. Annu Rev Plant Physiol 32: 327-347CrossRefGoogle Scholar
  50. Georgescu RE, Alexov EG and Gunner MR (2002) Combin-ing conformational flexibility and continuum electrostatics for calculating pKas in proteins. Biophys J 83: 1731-1748PubMedCrossRefGoogle Scholar
  51. Goss R, Wilhelm C and Garab G (2000) Organization of the pig-ment molecules in the chlorophyll a/b/c containing alga Man-toniella squamata (Prasinophyceae) studied by means of absorption, circular and linear dichroism spectroscopy. Biochim Biophys Acta 1457: 190-199PubMedCrossRefGoogle Scholar
  52. Grandbois M, Beyer M, Rief M, Clausen-Schaumann H and Gaub HE (1999) How strong is a covalent bond? Science 283: 1727-1730PubMedCrossRefGoogle Scholar
  53. Grossman AR, Bhaya D and He Q (2001) Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J Biol Chem 276: 11449-11452PubMedCrossRefGoogle Scholar
  54. Grubm üller H, Heymann B and Tavan P (1996) Ligand binding: molecular mechanics calculation of the strepavidin-biotin rup-ture force. Science 271: 997-999CrossRefGoogle Scholar
  55. Gunner MR, Saleh MA, Cross E, ud-Doula A and Wise M (2000) Backbone dipoles generate positive potentials in all proteins: origins and implications of the effect. Biophys J 78: 1126-1144PubMedCrossRefGoogle Scholar
  56. Hankamer B, Barber J and Boekema EJ (1997) Structure and membrane organization of photosystem II in green plants. Annu Rev Plant Physiol Plant Mol Biol 48: 641-671PubMedCrossRefGoogle Scholar
  57. Harris EH, Boynton JE and Gillham NW (1994) Chloroplast ribosomes and protein synthesis. Microbiol Rev 58: 700-754PubMedGoogle Scholar
  58. He J-X, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ and Wang Z-Y (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth re-sponses. Science 307: 1634-1638PubMedCrossRefGoogle Scholar
  59. Hedges SB, Chen H, Kumar S, Wang DY-C, Thompson AS and Watanabe H (2001) A genomic timescale for the origin of eukaryotes. BMC Evol Biol 1:4PubMedCrossRefGoogle Scholar
  60. Hedges SB, Blair JE, Venturi ML and Shoe JL (2004) A molec-ular timescale of eukaryotic evolution and the rise of complex multicellular life. BMC Evol Biol 4:2PubMedCrossRefGoogle Scholar
  61. Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J and Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: insights through comparative genomics. Photosynth Res 70: 53-71PubMedCrossRefGoogle Scholar
  62. Hobe S, Fey H, Rogl H and Paulsen H (2003) Determination of relative chlorophyll binding affinities in the major light-harvesting chlorophyll a/b complex. J Biol Chem 278: 5912-5919PubMedCrossRefGoogle Scholar
  63. Hoober JK (1987) The molecular basis of chloroplast devel-opment. In: Hatch MD and Boardman NK (eds.) The Bio-chemistry of Plants, Vol. 10, pp 1-74 Academic Press, San DiegoGoogle Scholar
  64. Hoober JK and Arygroudi-Akoyunoglou JH (2004) Assem-bly of light-harvesting complexes of photosystem II and the role of chlorophyll b. In: Papageorgiou G and Govindjee (eds.) Chlorophyll a Fluorescence: The Signature of Photosyn-thetic Efficienchy and Green Plant Productivity, pp 679-712. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  65. Hoober JK and Blobel G (1969) Characterization of the chloro-plastic and cytoplasmic ribosomes of Chlamydomonas rein-hardi. J Mol Biol 41: 121-138PubMedCrossRefGoogle Scholar
  66. Hoober JK and Eggink LL (1999) Assembly of light-harvesting complex II and biogenesis of thylakoid membranes in chloro-plasts. Photosynth Res 61: 197-215CrossRefGoogle Scholar
  67. Hoober JK, Marks DB, Keller BJ and Margulies MM (1982) Regulation of accumulation of the major thylakoid polypep-tides in Chlamydomonas reinhardtii y-1 at 25C and 38C. J Cell Biol 95: 552-558PubMedCrossRefGoogle Scholar
  68. Hoober JK, Boyd CO and Paavola LG (1991) Origin of thylakoid membranes in Chlamydomonas reinhardtii y-1 at 38C. Plant Physiol 96: 1321-1328PubMedCrossRefGoogle Scholar
  69. Horn R and Paulsen H (2004) Early steps in the assembly of light-harvesting chlorophyll a/b complex-time-resolved fluo-rescence measurements. J Biol Chem 279: 44400-44406PubMedCrossRefGoogle Scholar
  70. Huang CY, Ayliffe MA and Timmis JN (2003) Direct measure-ment of the transfer rate of chloroplast DNA into the nucleus. Nature 422: 72-76PubMedCrossRefGoogle Scholar
  71. Hutin C, Havaux M, Carde JP, Kloppstech K, Meiherhoff K, Hoffman N and Nussaume L (2002) Double mutation cpSRP43 /cpSRP54 is necessary to abolish the cpSRP path-way required for thylakoid targeting of the light-harvesting chlorophyll proteins. Plant J 29: 531-543PubMedCrossRefGoogle Scholar
  72. Ishikita H, Loll B, Biesiadka J, Saenger W and Knapp E-W (2005) Redox potentials of chlorophylls in the photosystem II reaction center. Biochemistry 44: 4118-4124PubMedCrossRefGoogle Scholar
  73. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial pho-tosystem I at 2.5 A˚ resolution. Nature 411: 909-917PubMedCrossRefGoogle Scholar
  74. Joyard J, Teyssier E, Mi ège C, Berny-Seigneurin D, Mar échal E, Block MA, Dorne A-J, Rolland N, Ajlani G and Douce R (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118: 715-723PubMedCrossRefGoogle Scholar
  75. Kargul J, Nield J and Barber J (2003) Three-dimensional re-construction of a light-harvesting complex I-photosystem I (LHCI-PSI) supercomplex from the green algal Chlamy-domonas reinhardtii. J Biol Chem 278: 16135-16141PubMedCrossRefGoogle Scholar
  76. Kenigsbuch DE and Tobin EM (1995) A region of the Arabidop-sis Lhcb1*3 promoter that binds to CA-1 activity is essential for high expression and phytochrome regulation. Plant Physiol 108: 1023-1027PubMedCrossRefGoogle Scholar
  77. Klinkert B, Ossenb ühl F, Sikorski M, Berry S, Eichacker L and Nickelsen J (2004) PratA, a periplasmic tetratricopeptide re-peat protein involved in biogenesis of photosystem II in Syne-chocystis sp. PCC 6803. J Biol Chem 279: 44639-44644PubMedCrossRefGoogle Scholar
  78. Kohorn BD (1990) Replacement of histidines of light harvesting chlorophyll a/b binding protein II disrupts chlorophyll-protein complex assembly. Plant Physiol 93: 339-342PubMedCrossRefGoogle Scholar
  79. Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J and Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci USA 98: 4238-4242PubMedCrossRefGoogle Scholar
  80. Ku MSB, Kano-Murakami Y and Matsuoka M (1996) Evolution and expression of C4 photosynthesis genes. Plant Physiol 111: 949-957PubMedCrossRefGoogle Scholar
  81. Kugrens P, Clay BL, Meyer DJ and Lee RE (1999) Ultrastructure and description of Cyanophora biloba, sp. nov., with additional observations on C. paradoxa (Glaucophyta). J Phycol 35: 844-854CrossRefGoogle Scholar
  82. K ühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614-621CrossRefGoogle Scholar
  83. Kurisu G, Zhang H, Smith JL and Cramer WA (2003) Structure of the cytochrome b6 f complex of oxygenic photosynthesis: tuning the cavity. Science 302: 1009-1014PubMedCrossRefGoogle Scholar
  84. Kwok SF, Piekos B, Mis éra S and Deng X-W (1996) A complement of ten essential and pleiotropic Arabidopsis COP/DET/FUS genes is necessary for repression of photo-morphogenesis in darkness. Plant Physiol 110: 731-742PubMedCrossRefGoogle Scholar
  85. Larkum T and Howe CJ (1997) Molecular aspects of light-harvesting processes in algae. Adv Bot Res 27: 257-330CrossRefGoogle Scholar
  86. Liere K, Kaden D, Maliga P and B örner T (2004) Overexpression of phage-type RNA polymerase RpoTp in tobacco demon-strates its role in chloroplast transcription by recognizing a distinct promoter type. Nucleic Acids Res 32: 1159-1165PubMedCrossRefGoogle Scholar
  87. Lindsten A, Ryberg M and Sundqvist C (1988) The polypeptide composition of highly purified prolamellar bodies and prothy-lakoids from wheat (Triticum aestivum) as revealed by silver staining. Physiol Plant 72: 167-176CrossRefGoogle Scholar
  88. Liscum E, Hodgson DW and Campbell (2003) Blue light sig-naling through the cryptochromes and phototropins. So that’s what the blues is all about. Plant Physiol 133: 1429-1436PubMedCrossRefGoogle Scholar
  89. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 A˚ resolution. Nature 428: 287-292PubMedCrossRefGoogle Scholar
  90. Maliga P (1998) Two plastid RNA polymerases of higher plants: an evolving story. Trends Plant Sci 3: 4-6CrossRefGoogle Scholar
  91. Maloney MA, Hoober JK and Marks DB (1989) Kinetics of chlorophyll accumulation and formation of chlorophyll-protein complexes during greening of Chlamydomonas rein-hardtii y-1 at 38C. Plant Physiol 91: 1100-1106PubMedCrossRefGoogle Scholar
  92. Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M and Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393: 162-165PubMedCrossRefGoogle Scholar
  93. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M and Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroploast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246-12251PubMedCrossRefGoogle Scholar
  94. Maxwell BB, Andersson CR, Poole DS, Kay SA and Chory J (2003) HY5, Circadian Clock-Associated 1, and a cis-element, DET1 dark response element, mediate DET1 regulation of Chlorophyll a/b-binding protein 2 expression. Plant Physiol 133: 1565-1577PubMedCrossRefGoogle Scholar
  95. McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37: 951-959CrossRefGoogle Scholar
  96. McFadden GI and van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14: R15-R16CrossRefGoogle Scholar
  97. Merkel R, Nassoy P, Leung A, Ritchie K and Evans E (1999) Energy landscape of receptor-ligand bonds explored with dy-namic force spectroscopy. Nature 397: 50-53PubMedCrossRefGoogle Scholar
  98. M ühlbauer SK and Eichacker LA (1998) Light-dependent for-mation of the photosynthetic proton gradient regulates trans-lation elongation in chloroplasts. J Biol Chem 273: 20935-20940CrossRefGoogle Scholar
  99. Mullet JE (1988) Chloroplast development and gene expres-sion. Annu Rev Plant Physiol Plant Mol Biol 39: 475-502CrossRefGoogle Scholar
  100. Munekage Y, Hashimoto M, Miyake C, Tomizawa K-I, Endo T, Tasaka M and Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429: 579-582PubMedCrossRefGoogle Scholar
  101. Must árdy L and Garab G (2003) Granum revisited. A three-dimensional model-where things fall into place. Trends Plant Sci 8: 117-122CrossRefGoogle Scholar
  102. Nagy F and Sch äfer E (2002) Phytochromes control photomor-phogenesis by differentially regulated, integrated signaling pathways in higher plants. Annu Rev Plant Biol 53: 329-355PubMedCrossRefGoogle Scholar
  103. Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S and Chory J (1999) BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA 96: 15316-15323PubMedCrossRefGoogle Scholar
  104. Nemhauser JL and Chory J (2004) Bring it on: new insights into the mechanism of brassinosteroid action. J Exp Bot 395: 265-270Google Scholar
  105. Nemhauser JL, Maloof JN and Chory J (2003) Building inte-grated models of plant growth and development. Plant Physiol 132: 436-439PubMedCrossRefGoogle Scholar
  106. Nield J, Orlova EV, Morris EP, Gowen B, van Heel M and Barber J (2000) 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle anal-ysis. Nature Struct Biol 7: 44-47PubMedCrossRefGoogle Scholar
  107. Nisbet RER, Kilian O and McFadden GI (2004) Diatom ge-nomics: genetic acquisitions and mergers. Curr Biol 14: R1048-R1050PubMedCrossRefGoogle Scholar
  108. Nishizawa N and Mori S (1989) Ultrastructure of the thylakoid membrane in tomato leaf chloroplast revealed by liquid he-lium rapid-freezing and substitution-fixation method. Plant Cell Physiol 30: 1-7Google Scholar
  109. Noy D, Yerushalmi R, Brumfeld V, Ashur I, Scheer H, Baldridge KK and Scherz A (2000) Optical absorption and computa-tional studies of [Ni]-bacteriochlorophyll-a. New insight into charge distribution between metal and ligands. J Am Chem Soc 122: 3937-3944CrossRefGoogle Scholar
  110. Oba T and Tamiaki H (2002) Which side of the π -macrocycle plane of (bacterio)chlorophylls is favored for binding of the fifth ligand? Photosynth Res 74: 1-10PubMedCrossRefGoogle Scholar
  111. Ohad I, Siekevitz P and Palade GE (1965) Biogenesis of chloro-plast membranes. II. Plastid differentiation during greening of a dark-grown algal mutant (Chlamydomonas reinhardtii). J Cell Biol 35: 553-584CrossRefGoogle Scholar
  112. Oster U, Tanaka R, Tanaka A and R üdiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21: 305-310PubMedCrossRefGoogle Scholar
  113. Osterlund MT, Hardtke CS, Wei N and Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405: 462-466PubMedCrossRefGoogle Scholar
  114. Osteryoung KW and Nunnari J (2003) The division of endosym-biotic organelles. Science 302: 1698-1704PubMedCrossRefGoogle Scholar
  115. Palmer JD (2000) A single birth of all plastids? Nature 405: 32-33PubMedCrossRefGoogle Scholar
  116. Park H and Hoober JK (1997) Chlorophyll synthesis modulates retention of apoproteins of light-harvesting complex II by the chloroplast in Chlamydomonas reinhardtii. Physiol Plant 101: 135-142CrossRefGoogle Scholar
  117. Park H, Eggink LL, Roberson RW and Hoober JK (1999) Trans-fer of proteins from the chloroplast to vacuoles in Chlamy-domonas reinhardtii (Chlorophyta): a pathway for degrada-tion. J Phycol 35: 528-538CrossRefGoogle Scholar
  118. Park H, Kreunen SS, Cuttriss AJ, DellaPenna D and Pogson BJ (2002) Identification of the carotenoid isomerase provides in-sight into carotenoid biosynthesis, prolamellar body forma-tion, and photomorphogenesis. Plant Cell 14: 321-332PubMedCrossRefGoogle Scholar
  119. Pascal A, Caffarri S, Croce R, Sandon à D, Bassi R and Robert B (2002) A structural investigation of the central chlorophyll a binding sites in the minor photosystem II antenna protein, Lhcb4. Biochemistry 41: 2305-2310CrossRefGoogle Scholar
  120. Pattanayak GK and Tripathy BC (2002) Catalytic function of a novel protein protochlorophyllide oxidoreductase C of Ara-bidopsis thaliana. Biochem Biophys Res Commun 291: 921-924PubMedCrossRefGoogle Scholar
  121. Pflanzagl B, Zenker A, Pittenauer E, Allmaier G, Martinez-Torrecuadrada J, Schmid ER, De Pedro MA and L öffelhardt W (1996) Primary structure of cyanelle peptidoglycan of Canophora paradeoxa: a prokaryotic cell wall as part of an organelle envelope. J Bacteriol 178: 332-339Google Scholar
  122. Pyke KA and Leech RM (1992) Chloroplast division and expan-sion is radically altered by nuclear mutations in Arabidopsis thaliana. Plant Physiol 99: 1005-1008PubMedCrossRefGoogle Scholar
  123. Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA and Lavergne J (2002) Kinetics and pathways of charge recom-bination in photosystem II. Biochemistry 41: 8518-8527PubMedCrossRefGoogle Scholar
  124. Raven JA and Allen JF (2003) Genomics and chloroplast evolu-tion: what did cyanobacteria do for plants? Genome Biology 4: 209.PubMedCrossRefGoogle Scholar
  125. Reinbothe S and Reinbothe C (1996) The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem 237: 323-343PubMedCrossRefGoogle Scholar
  126. Reinbothe C, Apel K and Reinbothe S (1995) A light-induced protease from barley plastids degrades NADPH: protochloro-phyllide oxidoreductase complexed with chlorophyllide. Mol Cell Biol 15: 6206-6212PubMedGoogle Scholar
  127. Reinbothe C, Buhr F, Pollmann S and Reinbothe S (2003) In vitro reconstitution of light-harvesting POR-protochlorophyllide complex with protochlorophyllides a and b. J Biol Chem 278: 807-815PubMedCrossRefGoogle Scholar
  128. Reinbothe C, Pollmann S, Desvignes C, Weigele M, Beck E and Reinbothe S (2004) LHPP, the light-harvesting NADPH: pro-tochlorophyllide (Pchlide) oxidoreductase: Pchlide complex of etiolated plants, is developmentally expressed across the barley leaf gradient. Plant Sci 167: 1027-1041CrossRefGoogle Scholar
  129. Reinbothe S, Quigley F, Gray J, Schemenewitz A and Reinbothe C (2004) Identification of plastid envelope proteins required for import of protochlorophyllide oxidoreductase A into the chloroplast of barley. Proc Natl Acad Sci USA 101: 2197-2202PubMedCrossRefGoogle Scholar
  130. Remelli R, Varotto C, Sandonà D. Croce R and Bassi R (1999) Chlorophyll binding to monomeric light-harvesting complex: a mutational analysis of chromophore-binding residues. J Biol Chem 274: 33510-33521PubMedCrossRefGoogle Scholar
  131. Richly E and Leister D (2004) NUPTs in sequenced eukaryotes and their genomic organization in relation to NUMTs. Mol Biol Evol 21: 1972-1980PubMedCrossRefGoogle Scholar
  132. Robertson EJ, Pyke KA and Leech RM (1995) arc6, an extreme chloroplast division mutant of Arabidopsis also alters proplas-tid proliferation and morphology in shoot and root apices. J Cell Sci 108: 2937-2944PubMedGoogle Scholar
  133. Rogl H and K ühlbrandt W (1999) Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry 38: 16214-16222PubMedCrossRefGoogle Scholar
  134. Ryberg M and Sundqvist C (1988) The regular ultrastructure of isolated prolamellar bodies depends on the presence of membrane-bound NADPH-protochlorophyllide oxidoreduc-tase. Physiol Plant 73: 218-226CrossRefGoogle Scholar
  135. Sacksteder CA, Kanazawa A, Jacoby ME and Kramer DM (2000) The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q cycle is continuously engaged. Proc Natl Acad Sci USA 97: 14283-14288PubMedCrossRefGoogle Scholar
  136. Schmid VHR, Potthast S, Wiener M, Bergauer V, Paulsen H and Storf S (2002) Pigment binding of photosystem I light-harvesting proteins. J Biol Chem 277: 37307-37314PubMedCrossRefGoogle Scholar
  137. Sch ünemann D (2003) Structure and function of the chloroplast signal recognition particle. Curr Genet 44: 295-304CrossRefGoogle Scholar
  138. Selstam E and Sandelius AS (1984) A comparison between pro-lamellar bodies and prothylakoid membranes of etioplasts of dark-grown wheat concerning lipoid and polypeptide compo-sition. Plant Physiol 76: 1036-1040PubMedCrossRefGoogle Scholar
  139. Serino G and X-W Deng (2003) The COP9 signalosome: reg-ulating plant development through the control of proteolysis. Annu Rev Plant Biol 54: 165-182PubMedCrossRefGoogle Scholar
  140. Skulason H and Frisbie CD (2002) Direct detection by atomic force microscopy of single bond forces associated with the rupture of discrete charge-transfer complexes. J Am Chem Soc 124: 15125-15133PubMedCrossRefGoogle Scholar
  141. Sluiman HJ and Lokhorst GM (1988) The ultrastructure of cel-lular division (autosporogenesis) in the coccoid green alga, Trebouxia aggregate, revealed by rapid freeze fixation and freeze substitution. Protoplasma 144: 149-159CrossRefGoogle Scholar
  142. Soll J and Schleiff E (2004) Protein import into chloroplasts. Nature Rev Mol Cell Biol 5: 198-208CrossRefGoogle Scholar
  143. Staehelin LA (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid mem-branes. Photosynth Res 76: 185-196PubMedCrossRefGoogle Scholar
  144. Stegemann S, Hartmann S, Ruf S and Bock B (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100, 8828-8833PubMedCrossRefGoogle Scholar
  145. Stoebe B and Maier UG (2002) One, two, three: nature’s tool box for building plastids. Protoplasma 219: 123-130PubMedCrossRefGoogle Scholar
  146. Stroebel D, Choquet Y, Popot J-L and Picot D (2003) An atyp-ical haem in the cytochrome b6 f complex. Nature 426: 413-418PubMedCrossRefGoogle Scholar
  147. Su Q, Frick G, Armstrong G and Apel K (2001) POR C of Ara-bidopsis thaliana: a third light- and NADPH-dependent pro-tochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47: 805-813PubMedCrossRefGoogle Scholar
  148. Tan S and Troxler RF (1999) Characterization of two chloroplast RNA polymerase sigma factors from Zea mays: photoregulation and differential expression. Proc Natl Acad Sci USA 96: 5316-5321PubMedCrossRefGoogle Scholar
  149. Tanaka A, Ito H, Tanaka R, Tanaka N, Yoshida K and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chloro-phyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95: 12719-12723PubMedCrossRefGoogle Scholar
  150. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-813CrossRefGoogle Scholar
  151. Timmis JN, Ayliffe MA, Huang CY and Martin W (2004) En-dosymbiotic gene transfer: organelle genomes forge eukary-otic chromosomes. Nature Rev Genet 5: 123-135PubMedCrossRefGoogle Scholar
  152. Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400: 159-162PubMedCrossRefGoogle Scholar
  153. Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Denzel MA, Torres QI and Neff MM (2003) CYP72B1 inacti-vates brassinosteroid hormones: an intersection between pho-tomorphogenesis and plant steroid signal transduction. Plant Physiol 133: 1643-1653PubMedCrossRefGoogle Scholar
  154. van der Vegte EW and Hadziioannou G (1997) Scanning force microscopy with chemical specificity: an extensive study of chemically specific tip-surface interactions and the chemical imaging of surface functional groups. Langmuir 13: 4357-4368CrossRefGoogle Scholar
  155. Vavilin DV and Vermaas WFJ (2002) Regulation of the tetrapyr-role biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria. Physiol Plant 115: 9-24PubMedCrossRefGoogle Scholar
  156. von Wettstein D (2001) Discovery of a protein required for pho-tosynthetic membrane assembly. Proc Natl Acad Sci USA 98: 3633-3635PubMedCrossRefGoogle Scholar
  157. Voznesenskaya EV, Franceschi VR, Pyankov VI and Edwards GE (1999) Anatomy, chloroplast structure and compartmentation of enzymes relative to photosynthetic mechanisms in leaves and cotyledons of species in the tribe Salsoleae (Chenopodi-aceae). J Exp Bot 50: 1779-1795CrossRefGoogle Scholar
  158. Voznesenskaya EV, Franceschi VR, Kiirats O, Artyusheva EG, Freitag H and Edwards GE (2002) Proof of C4 photo-synthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J 31: 649-662PubMedCrossRefGoogle Scholar
  159. Wang H, Ma, L-G, Li, J-M, Zhao H-Y and Deng XW (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294: 154-158PubMedCrossRefGoogle Scholar
  160. Wang Z-Y and He J-X (2004) Brassinosteroid signal transduction-choices of signals and receptors. Trends Plant Sci 9: 91-96PubMedCrossRefGoogle Scholar
  161. Wang Z-Y and Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93: 1207-1217PubMedCrossRefGoogle Scholar
  162. Wei N and Deng X-W (1996) The role of the COP/DET/FUS genes in light control of Arabidopsis seedling development. Plant Physiol 112: 871-878PubMedCrossRefGoogle Scholar
  163. Westphal S, Soll J and Vothknecht UC (2001) A vesicle transport system inside of chloroplasts. FEBS Lett 506: 257-261PubMedCrossRefGoogle Scholar
  164. Westphal S, Soll J and Vothknecht UC (2003) Evolution of chloroplast vesicle transport. Plant Cell Physiol 44: 217-222PubMedCrossRefGoogle Scholar
  165. White RA and Hoober JK (1994) Biogenesis of thylakoid mem-branes in Chlamydomonas reinhardtii y1: a kinetic study of initial greening. Plant Physiol 106: 583-590PubMedCrossRefGoogle Scholar
  166. White RA, Wolfe GR, Komine Y and Hoober JK (1996) Localization of light-harvesting complex apoproteins in the chloroplast and cytoplasm during greening of Chlamy-domonas reinhardtii at 38C. Photosynth Res 47: 267-280CrossRefGoogle Scholar
  167. Wolfe GR, Cunningham FX Jr, Durnford D, Green BR and Gantt E (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367: 566-568CrossRefGoogle Scholar
  168. Xiong J and Bauer CE (2002) A cytochrome b origin of photosynthetic reaction centers: an evolutionary link be-tween respiration and photosynthesis. J Mol Biol 322: 1025-1037PubMedCrossRefGoogle Scholar
  169. Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724-1730PubMedCrossRefGoogle Scholar
  170. Yoon HS, Hackett JD, Pinto G and Bhattacharya D (2002) The single, ancient origin of chromist plastids. Proc Natl Acad Sci USA 99: 15507-15512PubMedCrossRefGoogle Scholar
  171. Yoon HS, Hackett JD, Ciniglia C, Pinto G and Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21: 809-818PubMedCrossRefGoogle Scholar
  172. Zak E, Norling B, Maitra R, Huang F, Andersson B and Pakrasi HB (2001) The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci USA 98: 13443-13448PubMedCrossRefGoogle Scholar
  173. Zerges W (2000) Translation in chloroplasts. Biochimie 82: 583-601PubMedCrossRefGoogle Scholar
  174. Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of photosystem II from Syne-chococcus elongatus at 3.8A˚ resolution. Nature 409: 739-743PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • J. Kenneth Hoober
    • 1
  1. 1.School of Life SciencesArizona State UniversityTempeUSA

Personalised recommendations