Skip to main content

Lipid Synthesis, Metabolism and Transport

  • Chapter
Book cover The Structure and Function of Plastids

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 23))

Chloroplasts harbor the enzymes of fatty acid de novo synthesis, and contain a unique set of glycerolipids which is different from yeast, animals and from most bacteria. Fatty acid synthesis in plastids depends on acyl carrier protein, and the acyl chains are directly incorporated into plastid lipids via the prokaryotic pathway or, after hydrolysis and export from the plastid, employed to synthesize eukaryotic lipids at the endoplasmic reticulum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815

    Google Scholar 

  • Andersson MX, Stridh MH, Larsson KE, Liljenberg C and Sandelius AS (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galac- tolipid digalactosyldiacylglycerol. FEBS Lett 537: 128-132

    PubMed  Google Scholar 

  • Awai K, Mar échal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K-i, Ohta H and Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid synthesis in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA 98: 10960-10965

    PubMed  Google Scholar 

  • Babiychuk E, M üller F, Eubel H, Braun H-P, Frentzen M and Kushnir S (2003) Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33: 899-909

    PubMed  Google Scholar 

  • Bao X, Focke M, Pollard M and Ohlrogge J (2000) Understanding in vivo carbon precursor supply for fatty acid synthesis in leaf tissue. Plant J 22: 39-50

    PubMed  Google Scholar 

  • Beisson F, Koo AJK, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y and Ohlrogge JB (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132: 681-697 http:// www.plantbiology.msu.edu/lipids/genesurvey/index.htm

  • Benson AA (1963) The plant sulfolipid. Adv Lipid Res 1: 387-394

    PubMed  Google Scholar 

  • Benson AA and Maruo B (1958) Plant phospholipids: I. Identi-fication of the phosphatidyl glycerols. Biochim Biophys Acta 27: 189-195

    PubMed  Google Scholar 

  • Benson AA, Danie H and Wiser R (1959) A sulfolipid in plants. Proc Natl Acad Sci USA 45: 1582-1587

    PubMed  Google Scholar 

  • Bertrams M and Heinz H (1981) Positional specificity and fatty acid selectivity of purified sn-glycerol 3-phosphate acyltrans-ferases from chloroplasts. Plant Physiol 68: 653-657

    PubMed  Google Scholar 

  • Block MA, Dorne A-J, Joyard J and Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts: II. Biochemical characterization. J Biol Chem 258: 13281-13286

    PubMed  Google Scholar 

  • Block MA, Mar échal E and Joyard J (2001) Role of the plastid envelope in the biogenesis of chloroplast lipids. In: Aro E-M and Andersson B (eds) Regulation of photosynthesis, pp 195-218. Kluwer Academic Publisher, Dordrecht, the Netherlands

    Google Scholar 

  • Bonaventure G, Salas JJ, Pollard MR and Ohlrogge JB (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15: 1020-1033

    PubMed  Google Scholar 

  • Branen JK, Shintani DK and Engeseth NJ (2003) Expression of antisense acyl carrier protein-4 reduces lipid content in Arabidopsis leaf tissue. Plant Physiol 132: 748-756

    PubMed  Google Scholar 

  • Browse J, McCourt P and Somerville CR (1985) A mutant of Ara-bidopsis thaliana lacking a chloroplast-specific lipid. Science 227: 763-765

    PubMed  Google Scholar 

  • Browse J, Warwick N, Somerville CR and Slack CR (1986) Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the 16:3 plant Arabidopsis thaliana. Biochem J 235: 25-31

    PubMed  Google Scholar 

  • Carlsson AS, LaBrie ST, Kinney AJ, von Wettstein-Knowles P and Browse J (2002) A KAS2 cDNA complements the phe-notypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket. Plant J 29: 761-770

    PubMed  Google Scholar 

  • Carter HE, McCluer RH and Slifer ED (1956) Lipids of wheat flour: I. Characterization of galactosylglycerol components. J Am Chem Soc 78: 3735-3738

    Google Scholar 

  • D örmann P and Benning C (1998) The role of UDP-glucose epimerase in carbohydrate metabolism of Arabidopsis. Plant J 13: 641-652

    Google Scholar 

  • D örmann P and Benning C (2002) Galactolipids rule in seed plants. Trends Plant Sci 7: 112-118

    Google Scholar 

  • D örmann P, Hoffmann-Benning S, Balbo I and Benning C (1995a) Isolation and characterization of an Arabidopsis mu-tant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell 7: 1801-1810

    Google Scholar 

  • D örmann P, Voelker TA and Ohlrogge JB (1995b) Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long chain acyl-acyl carrier proteins. Arch Biochem Biophys 316: 612-618

    Google Scholar 

  • D örmann P, Balbo I and Benning C (1999) Arabidopsis galac-tolipid biosynthesis and lipid trafficking mediated by DGD1. Science 284: 2181-2184

    Google Scholar 

  • Eastmond PJ (2004) Glycerol-insensitive Arabidopsis mutants: gli1 seedlings lack glycerol kinase, accumulate glycerol and are more resistant to abiotic stress. Plant J 37: 617-625

    PubMed  Google Scholar 

  • Essigmann B, Gueler S, Narang RA, Linke D and Benning C (1998) Phosphate availability affects the thylakoid lipid com-position and the expression of SQD1, a gene required for sul-folipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95: 1950-1955

    PubMed  Google Scholar 

  • Farmer EE, Alm éras E and Krishnamurtzy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6: 372-378

    PubMed  Google Scholar 

  • Folch J (1942) Brain cephalin, a mixture of phosphatides. Separa-tion from it of phosphatidyl serine, phosphatidyl ethanolamine and a fraction containing an inositol phosphatide. J Biol Chem 146: 35-44

    Google Scholar 

  • Frentzen M (1993) Acyltransferases and triacylglycerols. In: Moore TS Jr (ed) Lipid Metabolism in Plants, pp 195-230. CRC Press, Boca Raton, FL

    Google Scholar 

  • Froehlich J, Benning C and D örmann P (2001) The digalacto-syldiacylglycerol synthase DGD1 is inserted into the outer envelope membrane of chloroplasts in a manner independent of the general import pathway and does not depend on direct interaction with MGDG synthase for DGDG biosynthesis. J Biol Chem 276: 31806-31812

    PubMed  Google Scholar 

  • Fujino Y and Miyazawa T (1979) Chemical structures of mono-, di-, tri- and tetraglycosyl glycerides in rice bran. Biochim Biophys Acta 572: 442-451

    PubMed  Google Scholar 

  • Gibson Y, Arondel V, Iba K and Somerville C (1994) Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiol 106: 1615-1621

    PubMed  Google Scholar 

  • Goode JH and Dewey RE (1999) Characterization of aminoal-coholphosphotransferases from Arabidopsis thaliana and soy-bean. Plant Physiol Biochem 37: 445-457

    Google Scholar 

  • Graham D and Patterson BD (1982) Responses of plants to low, non-freezing temperatures: proteins, metabolism and acclima-tion. Annu Rev Plant Physiol 33: 347-372

    Google Scholar 

  • Griebau R and Frentzen M (1994) Biosynthesis of phosphatidyl-glycerol in isolated mitochondria of etiolated mung bean (Vigna radiata L.) seedlings. Plant Physiol 105: 1269-1274

    PubMed  Google Scholar 

  • Hagio M, Sakurai I, Sato S, Kato T, Tabata S and Wada H (2002) Phosphatidylglycerol is essential for the development of thy-lakoid membranes in Arabidopsis thaliana. Plant Cell Physiol 43: 1456-1464

    PubMed  Google Scholar 

  • H ärtel H, Lokstein H, D örmann P, Grimm B and Benning C (1997) Changes in the composition of the photosynthetic appa-ratus in the galactolipid deficient dgd1 mutant of Arabidopsis thaliana. Plant Physiol 115: 1175-1184

    Google Scholar 

  • H ärtel H, D örmann P and Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids following phos-phate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97: 10649-10654

    Google Scholar 

  • Heemskerk JWM, Storz T, Schmidt RR and Heinz E (1990) Biosynthesis of digalactosyldiacylglycerol in plastids from 16:3 and 18:3 plants. Plant Physiol 93: 1286-1294

    PubMed  Google Scholar 

  • Heinz E and Roughan PG (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol 72: 273-279

    PubMed  Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP, Hiller RG, Wilte W and Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788-1744

    PubMed  Google Scholar 

  • Huang AHC (1975) Enzymes of glycerol metabolism in the stor-age tissues of fatty seedlings. Plant Physiol 55: 555-558

    PubMed  Google Scholar 

  • Hugly S and Somerville C (1992) A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol 99: 197-202

    PubMed  Google Scholar 

  • Hugly S, Kunst L, Browse J and Somerville C (1989) Enhanced thermal tolerance of photosynthesis and altered chloroplast ultrastructure in a mutant of Arabidopsis deficient in lipid de-saturation. Plant Physiol 90: 1134-1142

    PubMed  Google Scholar 

  • Ishizaki O, Nishida I, Agata K, Eguchi G and Murata N (1988) Cloning and nucleotide sequence of cDNA for the plastid glycerol-3-phosphate acyltransferase from squash. FEBS Lett 238: 424-430

    PubMed  Google Scholar 

  • Jarvis P, D örmann P, Peto CA, Lutes J, Benning C and Chory J (2000) Galactolipid deficiency and abnormal chloroplast de-velopment in the Arabidopsis MGD synthase 1 mutant. Proc Natl Acad Sci USA 97: 8175-8179

    PubMed  Google Scholar 

  • Jones A, Davies HM and Voelker TA (1995) Palmitoyl-acyl car-rier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7: 359-371

    PubMed  Google Scholar 

  • Jorasch P, Wolter FP, Z ähringer Y and Heinz E (1998) A UDP gly-cosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol Microbiol 29: 419-430

    PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial pho-tosystem I at 2.5 A˚ resolution. Nature 411: 909-917

    PubMed  Google Scholar 

  • Joyard J, Teyssier E, Mi ège C, Berny-Seigneurin D, Mar échal E, Block MA, Dorne A-J, Rolland N, Ajlani G and Douce R (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118: 715-723

    PubMed  Google Scholar 

  • Kachroo P, Shanklin J, Shah J, Whittle EJ and Klessig DF (2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA 98: 9448-9453

    PubMed  Google Scholar 

  • Kachroo A, Lapchyk L, Fukushige H, Hildegrand D, Klessing D and Kachroo P (2003) Plastidial fatty acid signaling modulates salicylic acid- and jasmonic acid-mediated defense pathways in the Arabidopsis ssi2 mutant. Plant Cell 15: 2952-2965

    PubMed  Google Scholar 

  • Kang L, Li J, Zhao T, Xiao F, Tang X, Thilmony R, He SY and Zhou J-M (2003) Interplay of the Arabidopsis nonhost resis-tance gene NHO1 with bacterial virulence. Proc Natl Acad Sci USA 100: 3519-3524

    PubMed  Google Scholar 

  • Ke J, Behal RH, Back SL, Nikolau BJ, Wurtele, ES and Oliver DJ (2000a) The role of pyruvate dehydrogenase and acetyl-coenzyme A synthetase in fatty acid synthesis in developing Arabidopsis seeds. Plant Physiol 123: 497-508

    Google Scholar 

  • Ke J, Wen T-N, Nikolau BJ and Wurtele ES (2000b) Coordinate regulation of the nuclear and plastidic genes coding for the subunits of the heteromeric acetyl-coenzyme A carboxylase. Plant Physiol 122: 1057-1071

    Google Scholar 

  • Kelly AA and D örmann P (2002) DGD2, an Arabidopsis gene en-coding a UDP-galactose dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate limiting conditions. J Biol Chem 277: 1166-1173

    PubMed  Google Scholar 

  • Kelly AA, Froehlich JE and D örmann P (2003) Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15: 2694-2706

    PubMed  Google Scholar 

  • Kim HU and Huang AHC (2004) Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiol 134: 1206-1216

    PubMed  Google Scholar 

  • Klaus D, Ohlrogge JB, Neuhaus HE and D örmann P (2004) Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase. Planta 219: 389-396

    PubMed  Google Scholar 

  • Klukas W-D, Schubert PJ, Krauß N, Fromme P, Witt HT and Saenger W (1999) Localization of two phylloquinones, QK and QK ’, in an improved electron density map of photosystem I at 4-A˚ resolution. J Biol Chem 274: 7361-7367

    PubMed  Google Scholar 

  • Kobayashi K, Awai K, Takamiya K-i and Ohta H (2004) Ara-bidopsis type B monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phos-phate starvation. Plant Physiol 134: 640-468

    PubMed  Google Scholar 

  • Kodama H, Hamada T, Horiguchi C, Nishimura M and Iba K (1994) Genetic enhancement of cold tolerance by expression of a gene for chloroplast omega-3 fatty acid desaturase in transgenic tobacco. Plant Physiol 105: 601-605

    PubMed  Google Scholar 

  • Kojima M, Seki K, Ohnishi M, Ito S and Fujino Y (1990) Struc-ture of novel glyceroglycolipids in Adzuki bean (Vigna angu-laris) seeds. Biochem Cell Biol 68: 59-64

    PubMed  Google Scholar 

  • Konishi T, Shinohara K, Yamada K and Sasaki Y (1996) Acetyl-CoA carboxylase in higher plants. Most plants other than Gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol 37: 117-122

    PubMed  Google Scholar 

  • K önigs B and Heinz E (1974) Investigation of some enzymatic activities contributing to the biosynthesis of galactolipid pre-cursors in Vicia faba. Planta 118: 159-169

    Google Scholar 

  • Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J and Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci USA 98: 4238-4242

    PubMed  Google Scholar 

  • Kunst L, Browse J and Somerville C (1988) Altered regula-tion of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity. Proc Natl Acad Sci USA 85: 4143-4147

    PubMed  Google Scholar 

  • Lightner J, Wu JR and Browse J (1994a) A mutant of Arabidopsis with increased levels of stearic acid. Plant Physiol 106: 1443-1451

    Google Scholar 

  • Lightner J, James DW Jr, Dooner HK and Browse J (1994b) Al-tered body morphology is caused by increased stearate levels in a mutant of Arabidopsis. Plant J 6: 401-412

    Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 A˚ resolution. Nature 428: 287-292

    PubMed  Google Scholar 

  • Minnikin DE, Abdolrahimyadeh H and Baddiley J (1974) Replacement of acidic phospholipids by acidic glycolipids in Pseudomonas diminuta. Nature 249: 268-269

    PubMed  Google Scholar 

  • Mi ège C, Maréchal E, Shimojima M, Awai K, Block MA, Ohta H, Takamiya K-i, Douce R and Joyard J (1999) Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. Eur J Biochem 265: 990-1001

    Google Scholar 

  • McConn M and Browse J (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8: 403-416

    PubMed  Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE and Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94: 5473-5477

    PubMed  Google Scholar 

  • Miquel M, Cassagne C and Browse J (1998) A new class of Arabidopsis mutants with reduced hexadecatrienoic acid fatty acid levels. Plant Physiol 117: 923-930

    PubMed  Google Scholar 

  • M öhlmann T, Tjaden J, Schw öppe C, Winkler, HW, Kampfenkel, K and Neuhaus HE (1998) Occurrence of two plastidic ATP/ADP transporters in Arabidopsis thaliana L. Molecu-lar characterisation and comparative structural analysis of similar ATP/ADP translocators from plastids and Rickettsia prowazekii. Eur J Biochem 252: 353-359

    Google Scholar 

  • Mongrand S, Bessoule J-J, Cabantous F and Cassagne C (1998) The C16:3/C18:3 fatty acid balance in photosynthetic tissues from 468 plant species. Phytochemistry 49: 1049-1064

    Google Scholar 

  • Mongrand S, Cassagne C and Bessoule J-J (2000) Import of lyso-phosphatidylcholine into chloroplasts likely at the origin of eukaryotic plastidial lipids. Plant Physiol 122: 845-852

    PubMed  Google Scholar 

  • Moon BY, Higahis S-I, Gombos Z and Murata N (1995) Unsat-uration of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhi-bition in transgenic tobacco plants. Proc Natl Acad Sci USA 92: 6219-6223

    PubMed  Google Scholar 

  • Moreau P, Bessoule JJ, Mongrand S, Testet E, Vincent P and Cassagne C (1998) Lipid trafficking in plant cells. Prog Lipid Res 37: 371-391

    PubMed  Google Scholar 

  • Morr é DJ, Sellden G, Sundqvist C and Sandelius AS (1991) Stromal low temperature compartment derived from the in-ner membrane of the chloroplast envelope. Plant Physiol 97: 1558-1564

    Google Scholar 

  • Mou Z, He Y, Dai Y, Liu X and Li J (2000) Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology. Plant Cell 12: 405-417

    PubMed  Google Scholar 

  • M üller F and Frentzen M (2001) Phosphatidylglycerophosphate synthases from Arabidopsis thaliana. FEBS Lett 509: 298-302

    Google Scholar 

  • Mulichak AM, Theisen MJ, Essigmann B, Benning C and Garavito RM (1999) Crystal structure of SQD1, an enzyme involved in the biosynthesis of the plant sulfolipid headgroup donor UDP-sulfoquinovose. Proc Natl Acad Sci USA 96: 13097-13102

    PubMed  Google Scholar 

  • Murakami Y, Tsuyama M, Kobayashi Y, Kodama H and Iba K (2000) Trienoic fatty acids and plant tolerance of high tem-perature. Science 287: 476-479

    PubMed  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y and Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356: 710-713

    Google Scholar 

  • Nandi A, Krothapalli K, Buseman CM, Li M, Welti R, Enyedi A and Shah J (2003) Arabidopsis sfd Mutants affect plastidic lipid composition and suppress dwarfing, cell death, and the enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase. Plant Cell 15: 2383-2398

    PubMed  Google Scholar 

  • Nandi A, Welti R and Shah J (2004) The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene suppressor of fatty acid desaturase deficiency 1 is required for glycerolipid metabolism and for the activation of systemic acquired resis-tance. Plant Cell 16: 465-477

    PubMed  Google Scholar 

  • Nußberger S, D örr K, Wang N and K ühlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting com-plex. J Mol Biol 234: 347-356

    PubMed  Google Scholar 

  • Ohlrogge JB, Kuhn DN and Stumpf PK (1979) Subcellular local-ization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc Natl Acad Sci USA 76: 1194-1198

    PubMed  Google Scholar 

  • Ohlrogge JB, Jaworski JG and Post-Beittenmiller D (1993) De novo fatty acid biosynthesis. In: Moore TS Jr (ed) Lipid Metabolism in Plants, pp 3-32. CRC Press, Boca Raton, FL

    Google Scholar 

  • Pierrugues O, Brutesco C, Oshiro J, Gouyi M, Deveaux Y, Car-man GM, Thuriaux P and Kazmaier M (2001) Lipid phosphate phosphatases in Arabidopsis. Regulation of the AtLPP1 gene in response to stress. J Biol Chem 276: 20300-20308

    PubMed  Google Scholar 

  • Reifarth F, Christen G, Seeliger AG, D örmann P, Benning C and Renger G (1997) Modification of the water oxidizing complex in leaves of the dgd1 mutant of Arabidopsis thaliana deficient in the galactolipid digalactosyldiacylglycerol. Biochemistry 36: 11769-11776

    PubMed  Google Scholar 

  • Reinsberg D, Booth PJ, Jegersch öld C, Khoo BJ and Paulsen H (2000) Folding, assembly and stability of the major light-harvesting complex of higher plants, LHCII, in the presence of native lipids. Biochemistry 39: 14305-14313

    PubMed  Google Scholar 

  • Reiter W-D and Vanzin GF (2001) Molecular genetics of nu-cleotide sugar interconversion pathways in plants. Plant Mol Biol 47: 95-113

    PubMed  Google Scholar 

  • Rhee K-H, Morris EP, Barber J and K ühlbrandt W (1997) Two-dimensional structure of plant photosystem II at 8A˚ resolution. Nature 389: 522-526

    Google Scholar 

  • Roesler K, Shintani D, Savage L, Boddupalli S and Ohlrogge J (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol 113: 75-81

    PubMed  Google Scholar 

  • Roughan PG and Slack CR (1982) Cellular organization of glyc-erolipid metabolism. Annu Rev Plant Physiol 33: 97-132

    Google Scholar 

  • Sanda S, Leustek T, Theisen MJ, Garavito RM and Benning C (2001) Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro. J Biol Chem 276: 3941-3946

    PubMed  Google Scholar 

  • Sasaki Y, Konishi T and Nagano Y (1995) The compartmentation of acetyl-coenzyme A carboxylase in plants. Plant Physiol 108: 445-449

    PubMed  Google Scholar 

  • Schnurr JA, Shockey JM, de Boer G-J and Browse JB (2002) Fatty acid export from the chloroplast. Molecular characteri-zation of a major plastidial acyl-coenzyme A synthetase from Arabidopsis. Plant Physiol 129: 1700-1709

    PubMed  Google Scholar 

  • Sch ötz F (1975) Vergr ößerung der Kontaktfl äche zwischen Chloroplasten und ihrer cytoplasmatischen Umgebung durch tubul äre Ausst ülpungen der Plastidenh ülle. Planta 124: 277-285

    Google Scholar 

  • Schulte W, T öpfer R, Stracke R, Schell J and Martini N (1997) Multi-functional acetyl-CoA carboxylase from Brassica na-pus is encoded by a multi-gene family: indication for plastidic localization of at least one isoform. Proc Natl Acad Sci USA 94: 3465-3470

    PubMed  Google Scholar 

  • Seifert GJ, Barber C, Wells B, Dolan L and Roberts K (2002) Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-D-galactose into cell wall polymers. Curr Biol 12: 1840-1845

    PubMed  Google Scholar 

  • Shah J, Kachroo P, Nandi A and Klessig DF (2001) A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J 25: 563-574

    PubMed  Google Scholar 

  • Shen W, Wei Y, Dauk M, Zheng Z and Zou J (2003) Identification of a mitochondrial glycerol-3-phosphate dehydrogenase from Arabidopsis thaliana: evidence for a mitochondrial glycerol-3-phosphate shuttle in plants. FEBS Lett 536: 92-96

    PubMed  Google Scholar 

  • Shimojima M, Ohta H, Iwamatsu A, Masuda T, Shioi Y and Takamiya K-I (1997) Cloning of the gene for monogalacto-syldiacylglycerol synthase and its evolutionary origin. Proc Natl Acad Sci USA 94: 333-337

    PubMed  Google Scholar 

  • Shintani DK and Ohlrogge JB (1994) The characterization of a mitochondrial acyl carrier protein isoform isolated from Ara-bidopsis thaliana. Plant Physiol 104: 1221-1229

    PubMed  Google Scholar 

  • Shockey JM, Fulda MS and Browse JA (2002) Arabidopsis con-tains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol 129: 1710-1722

    PubMed  Google Scholar 

  • Staehelin LA (1997) The plant ER: a dynamic organelle com-posed of a large number of discrete functional domains. Plant J 11: 1151-1165

    PubMed  Google Scholar 

  • Stelmach BA, M üller A, Hennig P, Gebhardt S, Schubert-Zsilavecz M and Weiler EW (2001) A novel class of oxylip-ins, sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. J Biol Chem 276: 12832-12838

    PubMed  Google Scholar 

  • Stroebel D, Choquet Y, Popot J-L and Picot D (2003) An atypical haem in the cytochrome b6 f complex. Nature 426: 413-418

    PubMed  Google Scholar 

  • Tai H and Jaworski JG (1993) 3-Ketoacyl-acyl carrier protein synthase III from spinach (Spinacia oleracea) is not similar to other condensing enzymes of fatty acid synthase. Plant Physiol 103: 1361-1367

    PubMed  Google Scholar 

  • Thelen JJ, Mekhedov S and Ohlrogge JB (2001) Brassicaceae express multiple isoforms of biotin carboxyl carrier pro-tein in a tissue-specific manner. Plant Physiol 125: 2016-2028

    PubMed  Google Scholar 

  • Tjaden J, M öhlmann T, Kampfenkel K, Henrichs G and Neuhaus HE (1998) Altered plastidic ATP/ADP-transporter activity in-fluences potato (Solanum tuberosum L.) tuber morphology, yield and composition of tuber starch. Plant J 16: 531-540

    Google Scholar 

  • van Besouw A and Wintermans JFGM (1978) Galactolipid for-mation in chloroplast envelopes: I. Evidence for two mecha-nisms in galactosylation. Biochim Biophys Acta 529: 44-53

    PubMed  Google Scholar 

  • Vijayan P, Routaboul J-M and Browse J (1998) A genetic ap-proach to investigating membrane lipid structure and function. In: Siegenthaler PA and Murata N (eds) Lipids in Photosyn-thesis: Structure, Function and Genetics, pp 263-285. Kluwer Academic Press, Dordrecht, the Netherlands

    Google Scholar 

  • Wallis JG and Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41: 254-278

    PubMed  Google Scholar 

  • Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7: 217-224

    PubMed  Google Scholar 

  • Weber H, Vick BA and Farmer EE (1997) Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci USA 94: 10473-10478

    PubMed  Google Scholar 

  • Wei Y, Periappuram C, Datla R, Selvaraj G and Zou J (2001) Molecular and biochemical characterizations of a plastidic glycerol-3-phosphate dehydrogenase from Arabidopsis. Plant Physiol Biochem 39: 841-848

    Google Scholar 

  • Weissenmayer B, Geiger O and Benning C (2000) Disruption of a gene essential for sulfoquinovosyldiacylglycerol biosynthe-sis in Sinorhizobium meliloti has no detectable effect on root nodule symbiosis. Mol Plant-Microbe Interact 6: 666-672

    Google Scholar 

  • Wolter FP, Schmidt R and Heinz E (1992) Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J 11: 4685-4692

    PubMed  Google Scholar 

  • Wu J, James DW Jr, Dooner HK and Browse J (1994) A mutant of Arabidopsis deficient in the elongation of palmitic acid. Plant Physiol 106: 143-150

    PubMed  Google Scholar 

  • Xu C, H ärtel H, Wada H, Hagio M, Yu B, Eakin C and Ben-ning C (2002) The pgp1 mutant locus of Arabidopsis encodes a phosphatidylglycerol-phosphate synthase with impaired activity. Plant Physiol 129: 594-604

    PubMed  Google Scholar 

  • Xu C, Fan J, Riekhof W, Froehlich JE and Benning C (2003) A permease-like protein involved in ER to thylakoid lipid trans-fer in Arabidopsis. EMBO J 22: 2370-2379

    PubMed  Google Scholar 

  • Yu B and Benning C (2003) Anionic lipids are required for chloroplast structure and function in Arabidopsis. Plant J 32: 762-770

    Google Scholar 

  • Yu B, Xu C and Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99: 5732-5737

    PubMed  Google Scholar 

  • Yu B, Wakao S, Fan J and Benning C (2004) Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol 45: 503-510

    PubMed  Google Scholar 

  • Zouni A, Witt H-T, Ke J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of photosystem II from Syne-chococcus elongatus at 3.8 A resolution. Nature 409: 739-743

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Döormann, P. (2007). Lipid Synthesis, Metabolism and Transport. In: Wise, R.R., Hoober, J.K. (eds) The Structure and Function of Plastids. Advances in Photosynthesis and Respiration, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4061-0_17

Download citation

Publish with us

Policies and ethics